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Abstract
In this paper, an innovative approach for enhancing fluid transport modeling in porous
media is presented, which finds application in various fields, including subsurface
reservoir modeling. Fluid flow models are typically solved numerically by addressing
a system of partial differential equations (PDEs) using methods such as finite differ-
ence and finite volume. However, these processes can be computationally demanding,
particularly when aiming for high precision on a fine scale. Researchers have increas-
ingly turned to machine learning to explore solutions for PDEs in order to improve
simulation efficiency. The proposed method combines an adaptive multi-scale strat-
egy with generative adversarial networks (GAN) to increase simulation efficiency on a
fine scale. The devised model, called simulation enhancement GAN (SE-GAN), takes
coarse-scale simulation results as input and generates fine-scale results in conjunction
with the provided petrophysical properties. With this new approach, a deep learn-
ing model is trained to map coarse-scale results to fine-scale outcomes, rather than
directly solving the fluid flow model. Case studies reveal that SE-GAN can achieve
a significant improvement in accuracy while reducing computational time compared
to the original fine-scale simulation solver. A comprehensive evaluation of numerical
experiments is conducted to elucidate the benefits and limitations of this method. The
potential of SE-GAN in accelerating the numerical solver for reservoir simulations is
also demonstrated.

Keywords Reservoir simulation · Numerical simulation enhancement GAN ·
Deep-learning-assisted simulation

1 Introduction

Subsurface flow modeling is critical for addressing various contemporary technolog-
ical challenges (Lie 2019). Achieving accurate and reliable numerical simulations of
subsurface flow is essential for overcoming these challenges, particularly in petroleum
engineering, where the focus is on the flow of oil, gas, and water through porous media
due to pressure differentials. The efficiency of these simulations depends on the choice
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of numerical solver and the geological and petrophysical characteristics of subsurface
reservoirs. In long-term oil recovery processes, operations rely heavily on simulation
outcomes for aspects such as downhole rate control, well allocation, and production
strategy optimization. Consequently, reservoir simulation models are widely used to
determine objective functions, which require forwardmodels to be executed numerous
times (Brown et al. 2017; Olalotiti-Lawal et al. 2019; Salehi et al. 2019; Shirangi and
Durlofsky 2016), thus posing computational challenges.

Efficiently and accurately solving fluid flowgoverning equations, typically a system
of partial differential equations (PDEs), has been a longstanding challenge for simula-
tion methodologies. Among numerical solvers, the finite-volume approach, which is
derived from conservation principles applied to specific domains, has been widely
adopted (Karimi-Fard and Durlofsky 2012). The approximations in finite-volume
methods are based on averaged quantities, making them more physically grounded
than the finite-difference method employed in many commercial software applica-
tions. To meet accuracy demands, a refined grid system is necessary, particularly in
near-well regions (Cao et al. 2019a, b), where pressure changes are more pronounced
than in areas farther from wells. However, computational costs increase significantly
with larger grid systems, especially when the flow domain is highly heterogeneous
and anisotropic (Cao et al. 2019a, b).

Recently, deep learning methods have been developed to address PDEs in various
application fields, demonstrating significant progress and innovation. Despite many
unanswered fundamental questions, deep learning as an emerging research direction
has shown considerable potential and promising results. This background section
focuses on the related work of deep learning concerning the numerical solutions of
PDEs, which can be broadly divided into three main categories.

The first strategy is to solve directly PDEs using deep learning. Numerous studies
have utilized deep learning networks to directly estimate PDE solutions. The major-
ity of these works employ a data-driven strategy under supervised learning. These
data-driven methods necessitate training procedures with existing data and have been
shown to outperform physics-driven models in various tasks, particularly in solving
high-dimensional PDEs (Brown et al. 2017; Bukharev et al. 2018; Nabian andMeidani
2018). Raissi et al. (2019) combined the classical implicit Runge–Kutta method and
investigated the inverse problem of the equation. The Deep Ritz method (Weinan and
Yu 2018) uses an energy minimization formulation as the loss function of artificial
neural networks (ANNs) to solve PDEs, and recent studies (Xu et al. 2020; Li andChen
2020) have employed deep learning to solve the Fokker–Planck equation and several
nonlinear evolution equations. Wang et al. (2021) developed a pore-scale imaging
and modeling workflow based on deep learning, spanning from image processing to
physical processing. Wang et al. (2022a, b) proposed a methodology for constructing
approximate solutions for stochastic partial differential equations (SPDEs) in ground-
water flow by combining two deep convolutional residual networks. Chen et al. (2022)
presented a numerical framework for deep neural networkmodeling of time-dependent
PDEs using their trajectory data. A framework integrating deep learning and integral
form has been proposed to address the challenges of PDEs with high order, data spar-
sity, noise, and simultaneous discovery of heterogeneous parameters (Xu et al. 2021).
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The second strategy is to use deep learning to enhance and accelerate simulations.
Many efforts have been made to deploy deep learning to reduce the complexity and
improve the computational efficiency of existing numerical algorithms. For example,
Bhalla et al. (2020) used neural networks to replace the flamelet look-up tables and
reduced the memory it requires. In the study by Tompson et al. (2017), convolutional
neural networks (CNN) were used to solve the large linear system derived from the
discretization of incompressible Euler equations. Suzuki (2019) developed a neural
network-based discretization scheme for the nonlinear differential equation using the
regression analysis technique. A deep-learning-based approach was developed for
the efficient evaluation of thermophysical properties in the numerical simulation of
complex real-fluid flows (Milan et al. 2021). Ryu et al. (2022) formalized a deep-
learning-based fast simulation model of thermal–hydraulic code and proposed a novel
deep learning model, the ensemble quantile recurrent neural network (eQRNN).

In addition, an adaptive collocation strategywas proposed byAnitescu et al. (2019),
while Raissi et al. (2019) employed latent variable models to construct probabilistic
representations for the system states and put forth an adversarial inference procedure
to train them. Wang et al. (2022a, b) proposed the theory-guided convolutional neural
network (TgCNN), which incorporates the discretized governing equation residuals
into CNN training, and extends it to the two-phase porous media flow problems,
obtaining adequate inversion accuracy. The premise underlying all these efforts is
to constrain their predictions to satisfy the given physical laws expressed by partial
differential equations. Despite the improvement over classical numerical methods,
however, these methods still suffer from exponentially increasing problems and are
unsuitable for high-dimensional PDEs.

The third strategy is to upscale reservoir simulation using machine learning. San-
tos et al. (2022) proposed an artificial intelligence approach that achieved accurate
upscaling, surpassing the reference method, with predicted production similar to the
fine-scale model. Moreover, when considering multiple geological realizations, it also
demonstrated fast computation speed, as it reduced the required numerical simulations
to a fraction of the total. Trehan and Durlofsky (2018) introduced a machine-learning-
based post-processing framework to model errors in the coarse model results under
uncertainty quantification. The corrected coarse-grained solution demonstrated signif-
icantly improved accuracy in predicting oil production and quantifying uncertainty in
important statistical measures compared to the uncorrected solution. Rios et al. (2021)
focused on improving the representation of small-scale heterogeneity in coarse mod-
els. They extended the scale-up technique for dual porosity and dual permeability to
apply to three-dimensional highly heterogeneous systems. Compared to traditional
flow-based scale-up methods, this approach can provide more accurate results.

The existing research collectively demonstrates that deep learning can effectively
characterize the numerical solution of a PDE. However, it is crucial to note that the
primary challengewith current numerical simulations lies in the trade-off between sim-
ulation accuracy and computational cost. As the number of grid blocks in a reservoir
model increases, computational costs can rise dramatically, potentially approaching
exponential growth. As shown in Table 1, the computational time andmemory require-
ments for numerical simulation significantly increase with the increase in the number
ofmodel grids. The challenge, therefore, is not with the simulation approaches—many
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Table 1 A comparison between the simulation time and memory consumption of different model grid sizes

Model grid size 2,500 × 2,500 2,000 × 2,000 1,500 × 1,500 1,000 × 1,000

Simulation time (s) 301 187 89 37

Memory cost (GB) 6.13 2.79 1.78 0.65

ofwhich are robust and efficient—butwith the computational expenses associatedwith
large model sizes.

In this study, we introduce an indirect method that maps coarse-grid simulation
results to fine-grid simulation outcomes based on fine-scale geological models using
deep learning techniques. Themain objective is to improve and enhance the simulation
processwith deep learningwhile preserving engineering comprehension.Unlike direct
solutions to PDEsusing deep learning, the indirect approach capitalizes on both coarse-
scale simulation results and fine-scale geological models, both of which are physically
fundamental to the final fine-scale simulation results. This method aligns with the
reservoir engineering workflow, where both coarse- and fine-scale models and results
are generated for various purposes.

The remainder of the paper is structured as follows: First, we present the methodol-
ogy as an integrated workflow, incorporating a numerical reservoir simulationmethod,
fine-scale geological models, and a simulation enhancement GAN (SE-GAN) struc-
ture. The structural details of the SE-GAN, including the generator, discriminator, and
loss function, are discussed. Next, we implement the workflow in a classical quarter-
five-spot well pattern of a heterogeneous reservoir to train and evaluate the proposed
method. Numerical case studies are investigated through a series of simulation exper-
iments, where the accuracy and efficiency of the results are assessed and compared
with fine-scale numerical simulations. Finally, we present the conclusions drawn from
the case study, along with a discussion of limitations and future work.

2 Methodology

The conventional workflow for reservoir engineers involves generating models on
both coarse and fine scales, as illustrated in Fig. 1. A geological model is typically
represented numerically through discretization in a grid system with estimated petro-
physical properties. The level of discretization can be chosen according to different
requirements, and any simulation method can be used, yielding results with varying
degrees of approximation. Finer discretization levels yield more accurate results but
at the expense of higher computational costs. The discrepancies between simulation
results arise from the numerical simulation approximations of different discretization
grids. The primary objective is to bridge these gaps without numerically solving the
problem on a fine scale while achieving high accuracy in results with lower memory
and central processing unit (CPU) time costs.

To achieve this objective,we employ adeep learning approach, a subfield ofmachine
learning, to estimate the deviations between approximations from simulation results
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Fig. 1 Thegeneration process of deviation between different discretization scales of finite-volume simulation

of different discretization levels. However, this estimation is a multi-solution problem
with considerable uncertainty. Therefore, we use the fine grid representing petrophys-
ical properties as physics-informed data to reduce uncertainty and increase reliability
on a large scale. These combined features have the potential to overcome the above-
mentioned limitations by improving the simulation results.

To address this challenge, we propose an adaptive multi-scale simulation method
using the GAN structure. By employing deep learning methods and incorporating
additional physics-informed data to reduce uncertainty, coarse-scale results can be
enhanced. Ultimately, this approach can overcome the inherent limitations of general
deep-learning-based solutions by improving simulation outcomes. The method uses
the simulation results from a coarse grid as prior knowledge and physics-informed
data to generate enhancement results comparable to those obtained from a fine-grid
simulation. This implies that with the time and memory costs of a coarse-grid simula-
tion, we can achieve results similar to those of a fine-grid simulation. Furthermore, the
petrophysical data on fine grids are used as additional information to ensure improved
simulation-enhanced results accuracy and a low level of uncertainty.

2.1 AppliedMethodological Sequence

The sequence of this method consists of three main steps, as illustrated in Fig. 2.
The initial step involves preparing the training datasets for our SE-GAN. The training
dataset comprises several two-dimensional permeability grids and their corresponding
pressure simulation results. These result matrices are simulated using finite-volume
methods on randomly generated permeability grids. The grid sizes are divided into
two groups: the coarse grid group and the fine grid group. For instance, in the first
experiment, we use 50 × 50 (coarse) and 200 × 200 (fine) grids. The coarse grid
is obtained by upscaling the fine grid using the arithmetic mean of its permeability
values.
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Fig. 2 Applied methodological
sequence
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During the subsequent training phase, the coarse andfine pressure simulation results
and the fine permeability grids are fed into the SE-GAN. Through the iterative pro-
cess, SE-GAN gradually learns the relationship between the corresponding simulation
results from coarse and fine grids, aided by the fine permeability grid. Enhancing the
coarse results is a multi-solution problem, which leads to unavoidable uncertainty.
To further improve the enhancement results and reduce uncertainty, the petrophysical
property in the fine grid, namely permeability, serves as a physics-informed network
in this training procedure. This offers additional information for the model, helping
generate more reliable results without incurring any significant computational costs.

In the final step, the trained SE-GAN generator model can be used to enhance
other random simulation results when simulating pressure distribution with a given
petrophysical grid of permeability. The input grid size can be upscaled to 1/16 or
lower, and the finite-volume simulation process is executed on this coarse grid. This
approach requires less than 10% of the computational effort compared to simulations
using the original grid, as shown in Table 4. Ultimately, SE-GAN can enhance this
result using the original grid as input, requiring virtually no additional computational
resources.

2.2 SE-GAN Generator

The generator of our SE-GAN,which incorporates the residual dense block (RDB) and
residual channel attention block (RCAB), is capable of efficiently extracting and utiliz-
ing features from different layers to reconstruct the simulation matrix. The structure
of the SE-GAN generator is shown in Fig. 3. It consists of three main steps: shal-

Fig. 3 Structure of generator model of SE-GAN
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low numerical feature extraction, deep numerical feature extraction, and numerical
simulation reconstruction. The details of these steps are introduced in the following.

2.2.1 Shallow Numerical Feature Extraction

The input Pcoarse matrix must be scale-adjusted (SA) to match the size of Pfine and
Kreference. In our first experiment, Pcoarse is 50 × 50 and should be adjusted to 200 ×
200 as ˜Pcoarse by simply assigning every value from Pcoarse into each element of a 4 ×
4 matrix. Once this SA preprocessing is complete, ˜Pcoarse and Kreference are combined
into the matrix X ∈ RM ·N ·CX . First, a 3 × 3 CNN layer FS(·) is used to extract the
shallow features fS ∈ RM ·N ·Cim from X , where fS can be expressed as Eq. (1).

f S = FS(X). (1)

Here, M and N are the input matrix size, and CX and Cim represent the chan-
nel number of X and the intermediate feature. In our numerical experiment, M =
N = 200, CX = 2, and Cim = 64. FS(·), as the first CNN layer, can map matrix
X from low-dimensional to high-dimensional to extract potential features for subse-
quent processing steps. Furthermore, it helps our model learn the simulation matrix
representation and produce stable optimization results.

2.2.2 Deep Numerical Feature Extraction

From the first shallow layer, we obtain f S as the output. In this step, model FD(·)
consists of K residual channel attention dense blocks (RCADB) and one CNN layer,
which is used to extract deep features from f S. RCADB is a composite module, and
its detailed structural design is shown in Fig. 3. This procedure can be represented as
Eq. (2).

f D = FD
(

f S
)

, f D ∈ RM·N·Cim . (2)

The CNN layer FC(·) is the last layer of the entire feature extraction process.
After the RCADB layers have extracted numerous high-dimensional features, FC(·)
is then prepared to introduce the bias of the convolution operation into our network
and provide a better foundation for the later aggregation of features from shallow and
deep networks. This deep feature extraction step can be described in detail as Eq. (3),
where K represents the number of RCADB blocks.

f1 = FRCADB1( fS),

fi = FRCADBi ( fi−1), i = 2, . . . , K ,

fD = FC ( fK ).

(3)

123



Mathematical Geosciences

Fig. 4 Structure of discriminator model of SE-GAN

2.2.3 Numerical Simulation Reconstruction

Through the previous two steps, shallow feature fS and deep feature fD are
extracted. fS contains information from low-frequency and fD contains relatively
high-frequency information. The main objective of this step is to use the aggregation
of these features to produce a complete simulation matrix. Therefore, we propose a
global residual-based skip connection network to aggregate shallow and deep features
together. The key network here is FR(·), which consists of four 3 × 3 CNN layers
and three leaky rectified linear unit (ReLU) activation layers arranged alternately in a
series. This structure enables FD(·) to transmit low-frequency information directly to
the reconstruction model and make the training procedure more stable. After that, the
global residual connection can fuse shallow features and deep features.

2.3 Discriminator

The discriminator of our SE-GAN is a U-Net with spectral normalization, as shown in
Fig. 4. U-Net is an encoder–decoder structure suitable for dense prediction. Spectral
normalization can stabilize the U-Net training procedure. Altogether, this structure
can precisely evaluate the quality of the generator’s results.

2.4 Loss Function

The simulation enhancement loss LSE is used to describe theL1normdistance between
the generated matrix GSE(X) and real simulated matrix Y . Our generator benefits
from the gradients of these two factors. The loss can be written as Eq. (4), where ξSE
represents the weight of LSE.

LSE = ξSEE(X)||GSE(X) − Y ||1. (4)

Adversarial loss Ladversarial is produced by the discriminator. When GSE(X) has
been generated, Ladversarial can be computed by Eq. (5) with the output of discriminator
DSE(GSE(X)), where ϕ is the sigmoid function, and ξadversarial represents the weight
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loss of Ladversarial.

Ladversarial = −ξadversarialE(SE(X))

[

log(ϕ(DSE(GSE(X))))
]

. (5)

The total loss L total is used in each iteration during training and is computed by
adding the above two loss values as expressed in Eq. (6), and in our experiment, the
weight used in each formula is ξSE = 1 and ξadversarial = 0.1.

L total = LSE + Ladversarial. (6)

3 Comprehensive Numerical Analysis of Pressure Field Predictions
with SE-GAN

Section 3.1 introduces the datasets employed in our experiments. Section 3.2 presents
the training process for three distinct SE-GAN networks. The enhancement results for
16-times upscaled grid examples are thoroughly evaluated and analyzed in Sect. 3.3.
Section 3.4 assesses the general effectiveness of SE-GAN for various upscaling factors
using 64-times and 256-times upscaled grids. Lastly, the three trained networks are
applied to larger-scale example cases to enhance simulation results with SE-GAN. All
results shown in the figures and tables of Sect. 3 are derived from the testing dataset.

3.1 Simulation-Based Datasets

In this study, the training and testing datasets are generated from the simulation
results obtained using the finite-volume method, implemented with the MATLAB
Reservoir Simulation Toolbox (MRST) (Lie 2019) for a two-dimensional case. A
well-established two-dimensional quarter-five-spot case is chosen, featuring onewater
injector and one oil producer, situated in the top left and bottom right grids, respec-
tively, as illustrated in Fig. 5. The permeable grid is two-dimensional, generated by
randomly assigned values, with a representative distribution depicted in Fig. 5. In this
scenario, approximately 50% of the values are assigned below 0.1D, a majority of
other values fall between 0.1 and 0.6D, and a mere 5% of values exceed 0.6D. The

Fig. 5 Left: The average permeability distribution in the training dataset. Right: A sample of a fine-
permeability grid and the two well locations
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reservoir contains two fluid phases, water and oil, with identical viscosity of 10−3 Pa·s
and density of 1,000 and 750 kg/m3, respectively. A bottom hole pressure difference
of 1 Mpa is set between the injection well and production well. Initial oil and water
saturation values are 0.8 and 0.2, respectively. The external boundary is considered a
no-flow boundary condition, and the influence of gravity is disregarded.

In the numerical experiments, three datasets are designed to assess our SE-GAN
from various perspectives. Here, we define the enhancement case using the ratio of
the number of fine grids (N f ∗ N f ) to the number of coarse grids (Nc ∗ Nc). It should
be noted that a trained model has a constant ratio Nf

Nc
. The input coarse grid size Nc

can be random, and the fine grid size N f is determined accordingly.
The details of these data sets are listed below and also summarized in Table 2:

(A) Dataset A is used to train and test the ×16 SE-GAN model. The fine grid is 200
× 200, and the corresponding coarse grid is 50× 50. Dataset A comprises 5,000
samples each for fine and coarse results (each sample pair contains input data and
output label data, with the input data containing unique permeability grid data
randomly generated at random times during simulations). Among them, 4,500
sample pairs are used for training, and the other 500 pairs are used for testing
the trained SE-GAN.

(B) Dataset B aims to quantitatively evaluate the accuracy deviation affected by
different discretization scales between fine and coarse grids. We choose 8-times
and 16-times grids to simulate datasetB, divided into two independent groups, the
8-times group and the 16-times group, with the same sample number as dataset
A for each group. The ratio of the training and testing pair is also 4,500:500.
The size of the fine grid is changed to 256 × 256, and the coarse grid sizes in
the 64-times and 256-times groups are 32 × 32 and 16 × 16, respectively. Other
parameters and simulation settings remain the same as for dataset A.

(C) Dataset C involves generating numerous simulation results with a larger grid
system and testing the generalizability of the SE-GAN model by evaluating
the enhancement performance based on various coarse grid size models. This
process is purely for testing, meaning that it deploys the trained models from
datasets A and B without requiring any additional training. It should also be
noted that although the model size of the coarse grid can be chosen randomly,

Table 2 The three datasets used in our paper

Name Fine size Coarse size Training
number

Testing
number

Upscale size

A × 16 200 × 200 50 × 50 4,500 500 16-times

B × 64 256 × 256 32 × 32 4,500 500 64-times

× 256 256 × 256 16 × 16 4,500 500 256-times

C No. 1 200 0× 2000 50 0× 500 – 10 16-times

No. 2 200 0× 2000 250 × 250 – 10 64-times

No. 3 200 0× 2000 125 × 125 – 10 256-times
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the corresponding refinement grid number can only be in specific multiples,
which are 16, 64, and 256 for this research.

3.2 Training of SE-GAN

All the training procedures in our experiments share the same hyperparameters, as
shown in Table 3.

The results for pressure distribution, a two-dimensional matrix, are evaluated. The
relative difference between the coarse- and fine-grid simulation results for all training
data is displayed in Fig. 6a, while the generator’s loss value is presented in Fig. 6b.
From Fig. 6a, it can be observed that the relative difference converges rapidly to a
level below 2% as the iteration number increases. A similar phenomenon can be seen
in Fig. 6b. The convergence of both the relative difference and the generator’s loss
value to lower levels during the training procedure provides direct evidence that our
SE-GAN model can learn the correlation between coarse- and fine-grid simulation
results and subsequently produce improved outcomes based on coarse input. It should
be noted that the deepmapping relationship between coarse grid and fine grid is highly
complex, and it is very challenging to train themodel to obtain optimal networkweight
parameters. Figure 6 is presented to illustrate that the loss value at higher iteration
numbers is smaller and tends towards zero compared to lower iteration numbers, and
its variation is relatively more stable.

Table 3 Hyperparameters used in all training procedures

Total iteration Pretrained Type of optimizer Learning ratio Batch size

40,000 No Adam 0.0001 1

Fig. 6 The relative error and loss value within the training procedure: a relative difference while training;
b loss value of generator while training
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3.3 Enhancement Experiment Analysis

Sample no. 4,553 from the testing dataset of dataset A is randomly selected to demon-
strate SE-GAN’s capability in enhancing simulation results. As illustrated in Fig. 10,
the fine-scale result (Fig. 7d) is simulated by the fine permeable grid (Fig. 7b) for
comparison. Our SE-GAN requires the coarse simulation result (Fig. 7c), simulated
from a coarse grid (Fig. 7a), and the fine permeable grid (Fig. 7b) as input to generate
the enhanced result (Fig. 7e). From a human visual perspective, the enhanced result
appears nearly identical to the real simulation result. In numerical terms, the average
relative difference between them is only 0.0157%. The detailed distribution of rel-
ative error for each pixel is shown in Fig. 7f. The largest error, 2.7%, occurs in the
right corner where the production well is located. The largest errors are found in the
near-well regions of both the producer and the injector, where the pressure changes
drastically. When the matrix values change rapidly between adjacent elements, the
SE-GAN cannot fully capture the underlying patterns. However, even in the worst
sample in the test dataset, SE-GAN still achieves over 99.7% accuracy on average
after enhancement.

The other four randomly chosen samples are shown in Fig. 8. In most cases, SE-
GAN demonstrates a powerful ability to enhance finite-volume simulation results,
with stable and high prediction accuracy. The average accuracy for all testing sample
results is 99.9235% in these samples.

We also calculated the average relative error interval distribution based on the 500
samples in the testing dataset of dataset A, as shown in Fig. 9. In our assessments,
we observed that SE-GAN exceeds accuracy of 99.9% in over 80% of the evaluated

Fig. 7 Effect of SE-GAN in ×16 scale coarse grid enhancement: a permeable coarse grid; b permeable fine
grid; c coarse grid pressure simulation result; d coarse grid pressure simulation enhancement result; e fine
grid pressure simulation result; f relative error between d and e
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Fig. 8 Comparisons of enhancements for different ×16 samples: a coarse grid pressure simulation result;
b enhancement of coarse grid pressure simulation; c fine grid pressure simulation result; d relative error
between b and c

Fig. 9 Average relative error interval distribution between fine simulation result and SE-GAN result based
on the testing dataset of dataset A (×16 samples)
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Fig. 10 Temporal evolution of
wellbore pressure at the
injection site

instances. Furthermore, a distinct 13% of the total samples exhibited enhanced accu-
racy, surpassing 99.97%, when benchmarked against the original simulation results
derived from the fine grid. It is noteworthy that a mere 6% of the samples fell below
the 99.83% accuracy threshold. From Fig. 9, we can conclude that SE-GAN is capable
of providing stable and accurate enhancement results for finite-volume simulations.

Figure 10 illustrates the dynamic changes in pressure at the injection well location,
as derived from both coarse- and fine-grid simulations and SE-GAN, over the course
of the injection process. The distinct trajectories underscore the model’s precision and
its alignment with the fine grid data, offering insights into SE-GAN’s capability to
bridge the disparity in pressure readings between coarse and fine grids.

3.4 Other Discretization Scale in SE-GAN

In the previous section, we used the 16-times upscaled grid as the coarse grid. To
fully evaluate the influence of the upscale size, we provide 64-times and 256-times
upscaled grids in this section for experimental examples. All the hyperparameters used
in the training procedure in this section are the same as in Table 2. Compared with ×
16 results in Fig. 8, the ×64 sample enhancement in Fig. 11 is relatively blurred in
pressure details, and the relative error is correspondingly higher but still occurs within
the two corners where the injection well and production well are located. The average
accuracy of the SE-GAN in the ×64 samples is 99.8553%.

From the relative error distribution of the 8-times SE-GAN in Fig. 12, we can
observe that relative errors above 0.13% have increased from less than 6% (×16) to
more than 25% (×64). The recovery ability of the SE-GAN has been significantly
affected by the upscale size of the input coarse grid.

When the upscale level of the coarse grid is up to 256 times, the overall trend
of pressure distribution can still be recovered, as shown in Fig. 13. However, many
detailed changes are missing, which makes the image less distinct.

When the discretization scale of the coarse grid was upscaled to 256 times, the
relative error also increased. The average relative error in the test dataset increased
from 0.0765% (×16) and 0.1447% (×64) to 0.2603% (×256). From the distribution
figure (Fig. 14), the relative error of all samples is greater than 0.1%, and more than
22% of the sample experiments resulted in an error between 0.25 and 0.3%.
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Fig. 11 Comparison of enhancement between different ×64 samples: a coarse grid pressure simulation
result; b enhancement of coarse grid pressure simulation; c fine grid pressure simulation result; d relative
error between b and c

Fig. 12 Relative error interval distribution between fine simulation result and SE-GAN result based on the
testing dataset of dataset B (×64 samples)
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Fig. 13 Comparison of different ×256 sample enhancements: a coarse grid pressure simulation result;
b enhancement of coarse grid pressure simulation; c fine grid pressure simulation result; d relative error
between b and c

3.5 Practical Application Analysis

When SE-GAN is produced for practical application, it is hard to guarantee that the
size of the input grid will be the same as our training dataset. Hence, in this section, we
use dataset C to test whether the SE-GAN is applicable for any given grid system size,
and then move on to discuss its generalizability. The SE-GAN generation model was
trained as described in Sects. 3.3 and 3.4. Here, the fine-scale grid is set as 2,000 ×
2,000 as shown in Tables 2 and 4, and various coarse-scale grids with 1/16, 1/64, and
1/256 of the fine grids are upscaled. To reduce the uncertainty of different samples and
validate this experiment, we build a dataset with 10 scenarios in this experiment, and
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Fig. 14 Relative error interval distribution between fine simulation result and SE-GAN result based on the
testing dataset of dataset B (×256 samples)

Table 4 The comparison between enhancement accuracy, time, and memory cost between fine grids and
grids with different discretization scales

Fine
grid

No. 1 (16-times) No. 2 (64-times) No. 3 (256-times)

Enhancement error (corner) – 1.65% 1.8% 2.4%

Coarse grid error (corner) – 9.73% 11.0% 12.54%

Enhancement error – 0.00835% 0.044% 0.1%

Coarse grid error – 1.1826% 2.32% 4.7312%

Memory cost (MB) 16,483 854 66 17

Simulation time 174 s 18.2 s 11.4 s 9.3 s

Enhancement time – 2.34 s 0.036 s 0.027 s

the whole analysis index is based on their average values in Table 4. The simulation
process is executed on a PCwith an Intel Core i7-9700Kprocessor and 32GBmemory.

To demonstrate the performance of SE-GAN in extremely challenging cases, we
extract the data from the right corner for additional reference. The right corner is where
the production well is located, and the pressure drops rapidly within the fluid recovery,
which creates difficulty in the following enhancement process. For this, 3 × 3 grid
data from the right corner of each coarse grid are extracted to represent the extreme
conditions for comparison and analysis.

As demonstrated in Table 4, the benefits of using SE-GAN are more pronounced in
the context of large grid enhancement. Compared to direct simulation of the fine grid,
the overall time consumption in dataset 3o. 3 of dataset C can be decreased to 1/18th
of the original time, while reducing the memory cost to approximately 1/1,000. This
is achieved with only a 2.4% error in corner parts and a 0.1% error for the total grid.
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In the case of large grids, the differences in simulation results are not easily dis-
cernible from a visual perspective, as shown in I of Figs. 15, 16, and 17; these
discrepancies can only be observed upon closer examination of the details. There-
fore, we focus on the corner part of the grids, with the results displayed in II. The
enhancement results for the SE-GAN in large grids are similar to those in smaller
grids, as presented in Sects. 3.3 and 3.4. Compared to the ×16 and ×64 results, the
×256 results lose some detail, causing the output to appear somewhat blurred. Tak-
ing into account both accuracy and computational costs, the ×64 enhancement is
recommended due to its balance between these two factors.

Fig. 15 Enhancement comparison based on the first sample (16-times) in dataset no.1 of dataset C: I, whole
grid; II, bottom right corner part of I as shown in the yellow rectangle in I; a coarse grid pressure simulation
result; b enhancement of coarse grid pressure simulation; c fine grid pressure simulation result; d relative
error between b and c

Fig. 16 Enhancement comparison based on the first sample (64-times) in dataset no. 2 of dataset C: I, whole
grid; II, bottom right corner part of I as shown in the yellow rectangle in I; a coarse grid pressure simulation
result; b enhancement of coarse grid pressure simulation; c fine grid pressure simulation result; d relative
error between b and c

123



Mathematical Geosciences

Fig. 17 Enhancement comparison based on the first sample (256-times) in dataset no. 3 of dataset C: I,
whole grid; II, bottom right corner part of I as shown in the yellow rectangle in I; a coarse grid pressure
simulation result; b enhancement of coarse grid pressure simulation; c fine grid pressure simulation result;
d relative error betweenb andc

3.6 Role of RCAB and GAN Structure

The inclusion of the RCAB in the SE-GANmodel resulted in higher accuracy at every
stage of training compared to the model without RCAB. The introduction of RCAB
during the SE-GAN training process helps to improve the accuracy of the generated
results and stabilize the model training process, as shown in Table 5.

As for the GAN structure, the main difference lies in the addition of a discriminator
network and an extra loss term, the adversarial loss. The primary purpose of the
discriminator network is to complement the traditional pixel-based loss computation
method. This is particularly beneficial for enhancing the learning capability of the
model when dealing with rapid pressure changes at well locations.

In summary, the incorporation of RCAB and the GAN structure contributes to
improving the performance of the SE-GANmodel. The RCAB enhances the accuracy
and stability of the training process, while the discriminator network, along with the
adversarial loss, helps capture rapid pressure changes at well locations more effec-
tively. This combination results in a more robust and accurate model for subsurface
problems.

Table 5 The average relative error between fine pressure data generated by SE-GANwithRCABandwithout
RCAB, respectively

Iteration of training 10,000 20,000 30,000 40,000

Without RCAB 0.5322% 0.2879% 0.1084% 0.1179%

With RCAB 0.4689% 0.1288% 0.0885% 0.0765%
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3.7 The Physics-Informed Effect of Permeability

In order to evaluate the role of permeability in reducing the multi-solution problem in
enhanced models, this subsection presents an experiment to demonstrate the physics-
informed ability of permeability data. We conducted experiments on several groups
of test cases, and the results of one group are shown in Fig. 18. From these images and
comparisons, we can conclude that introducing permeability data in the model input
can significantly improve the enhancement accuracy. Integrating Kreference into the
input of SE-GAN effectively guides the model to learn the deep mapping relationship
between the coarse grid and the target fine grid simulation results, reducing the impact
of multiple solutions during the enhancement process. These cases all present obvious
improvements with Kreference. Specifically, in the relative error plots, Kreference, which
is the physics-informed data, significantly reduces their errors by almost 20-fold.

Fig. 18 The introduction of permeability in the input imposes physics-informed data on the enhancement
results of SE-GAN: a permeable fine grid; b coarse grid pressure simulation result; c fine grid pressure
simulation result;d relative error between c and e; e coarse grid pressure simulation enhancement result using
input Kreference and Pcoarse; f relative error betweenc andg; g coarse grid pressure simulation enhancement
result using only input Pcoarse
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3.8 Evaluation of SE-GAN in Highly Heterogeneous Permeability Model

On the other hand, SE-GAN also demonstrated satisfactory enhancement results on
highly heterogeneous permeability data with increased challenges. One representative
height heterogeneity permeability matrix data example is shown in Fig. 19, with a
wider range of permeability and closer resemblance to the scenarios encountered in
actual reservoir engineering applications. We evaluated the performance of SE-GAN
on simulated data with highly nonuniform permeability at×16,×64, and×256 scales.
It is worth noting that in this set of experiments, we increased the number of training
iterations to 10,000 and the training set size to 9,000. The comparative results are
shown in Table 6. In the scenario of highly nonuniform permeability simulation, due
to the significant differences in numerical distribution and high randomness inherent
in the simulated data, the enhancement effect of SE-GAN is slightly inferior to the
results in Table 3. However, it still achieves a high level of enhancement accuracy.

Fig. 19 One representative height
heterogeneity permeability
matrix data example

Table 6 Comparison of enhancement accuracy, time, and memory cost between fine grids and grids with
different discretization scales in datasets of highly heterogenous permeability

Fine
grid

No. 1 (16-times) No. 2 (64-times) No. 3 (256-times)

Enhancement error (corner) – 1.65% 2.08% 3.34%

Coarse grid error (corner) – 17.75% 41.86% 72.95%
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4 Extending SE-GAN Applications: Oil Saturation Time Series
Prediction and Analysis

Seeking to harness the transformative power of SE-GAN, we directed our efforts
towards the time series diffusion modeling of oil saturation. This venture was influ-
enced considerably by the intricacies of the permeability field, especially given our
reservoir’s detailed simulation setup.

4.1 Reservoir and Simulation Configuration

Our simulation adapted to a 128× 128× 128 two-dimensional grid, marking a distinct
shift in spatial resolution. In contrast, the generation of the permeability field remained
consistent with the methodology outlined in Sect. 3.1. The nuanced interplay between
permeability and porosity was captured through a Gaussian field, a strategy anchored
in predefined specific parameters, ensuring coherence in the reservoir’s physical char-
acterization while accommodating the refined grid scale.

The fluid dynamics were governed by a biphasic system, characterized by distinct
viscosities and densities, aligning with the parameters detailed in Sect. 3.1. Similarly,
the simulation incorporated two pivotal wells, an injector and a producer, positioned
at the top left and bottom right of the grid, respectively. This arrangement, consistent
with the well configuration in Sect. 3.1, exemplifies a standard reservoir operation,
ensuring uniformity in simulation conditions across different scales and models.

The bedrock of our simulation rested upon the incompressible two-point flux
approximation (TPFA) method. Initiating from a predetermined reservoir state, our
approach was iteratively time-stepped, where each phase updated the saturation pro-
file. An outcome of interest, the oil in place (OIP), was methodically calculated after
each iteration, capturing the progressive essence of oil saturation within the reservoir.

4.2 SE-GAN Network Structure and Simulation Strategy for Saturation Prediction

In our pursuit of refined oil saturation predictions, both the structure and operational
strategy of the SE-GAN were meticulously adapted to accommodate the complex
dynamics and data intricacies inherent to this specific application, all of which are
comprehensively detailed in Fig. 20. These can be summarized as follows:

(1) Network structure adaptations

While the foundational SE-GAN structure was preserved, the intricate nature of oil
saturationmodeling necessitated several critical modifications. A key focus was on the
integration of permeability and fluid pressure data. These elements were strategically
assimilated into the numerical reconstruction module, enhancing the model’s ability
to generate nuanced, accurate predictions that are deeply rooted in the actual physical
and operational conditions of the reservoir.

(2) Simulation and prediction strategy

Diverging from the direct generation strategy employed in pressure predictions,
our approach for oil saturation leveraged an enhanced strategy. SE-GAN was tasked
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Fig. 20 The network architecture of the SE-GAN generator used for oil saturation prediction and enhance-
ment

with utilizing coarse-grid data from the initial six time steps to predict fine-grid oil
saturation across 24 time steps. This approach allowed us to evaluate SE-GAN’s capa-
bility in a more dynamic, temporally extended context, effectively benchmarking its
performance against complex, real-world scenarios where data may be limited. The
integration of this enhanced generation strategy within the SE-GAN’s modified struc-
ture, as depicted in Fig. 20, presents a comprehensive viewof our approach, combining
structural adaptability with strategic innovation to optimize oil saturation predictions.

4.3 Results and Comparative Analysis

Our tailoredSE-GANmodel yielded intriguing insights,with Figs. 21 and22providing

Fig. 21 Early-stage oil saturation predictions with coarse data integration for the time series at the first and
fifth instances
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Fig. 22 Extended oil saturation predictions across multiple time steps for the time series at the first, fifth,
seventh, ninth, 13th, 17th, 21st, and 24th instances
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a visual representation of the results at select time steps—1, 5, 7, 9, 13, 17, 21, and
24. These milestones in the simulation process were critical in assessing the model’s
performance under varying conditions and complexities. They are summarized as
follows:

(1) Early-stage insights

In the early stages, the integration of coarse data constraints provided a foundational
guide, establishing an initial benchmark for evaluating the predictive fidelity of the
SE-GAN. The model demonstrated remarkable precision, offering insights into its
capability to navigate and represent complex oil saturation dynamics.

(2) Extended predictions

Transitioning into the latter stages, SE-GAN exhibited an innate ability to extrap-
olate data and predict future states with a significant degree of accuracy. Even in the
absence of immediate coarse data guides, themodel maintained its predictive integrity,
illuminating its potential application in real-world scenarios where data can often be
sparse.

(3) Key observations

A detailed examination revealed that major discrepancies were localized in regions
of pronounced saturation gradients, aligning with observations noted in pressure pre-
dictions. These insights are instrumental in understanding the model’s strengths and
potential areas for further refinement, marking a significant step towards the optimiza-
tion of SE-GAN for comprehensive reservoir simulations.

4.4 Numerical Experiment Result Discussion

The above experiments confirm the ability of the SE-GAN model to characterize
the correlation between different discretization scales in reservoir simulation results.
From the numerical experiments, even though the input simulation result is from a
coarse grid system that has been upscaled to 1/256 of the fine-scale grid, SE-GAN
achieves 99.7397% accuracy on average. The generalizability of the SE-GANwas also
demonstrated for the reservoir model with various coarse grids. Once this model has
been trained, it can be used in other grids of any size. Less difference between coarse
and fine grid size leads to higher enhancement accuracy and recovery of more detail
but with more computation time and memory cost. Therefore, the SE-GAN provides
a flexible choice of grid numbers.

However, the limitations of SE-GAN applied here must also be noted, as follows:

(1) Limitations of specific size proportions
Although the model is generally applicable to any input coarse grid size, the
refined grid size (N f ) is limited to specific multiples of the coarse grid size (Nc).
In this study, we trainedmodels for three cases:×16,×64, and×256. This means
that the enhancement model is inherently designed for a constant ratio N f /Nc

between the total grid numbers of coarse- and fine-scale models.
(2) Special location of injection well and production well
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While SE-GAN can be adapted to grids of any size, it is sensitive to the locations
of injection and production wells. Changes in their location or bottom pressure
may cause the enhancement to fail, limiting the generalizability of the SE-GAN.
However, well locations are usually fixed in a reservoir, and retraining a new
model might only be considered when a new infill well is added to the reservoir.

(3) Specific numerical solver
SE-GAN’s performance is based on a specific numerical solver in structured grid
systems. The conclusions and recommendations are also limited to the simulation
solver, specifically for water flooding cases in a quarter-five-spot case.

(4) Extension of model
The current simulation case is based on a two-dimensional model, and extending
the development to three-dimensional models is considered for future work.

The experiments presented above demonstrate SE-GAN’s ability to characterize the
correlation between different discretization scales in reservoir simulation results. The
numerical experiments show that even when the input simulation result comes from a
coarse grid system that has been upscaled to 1/256 of the fine scale, SE-GAN achieves
average accuracy of 99.7397%. The generalizability of the SE-GAN for reservoir
models with various coarse grids is also evident. Once trained, the model can be used
with grids of any size. A smaller difference between coarse and fine grid sizes results
in greater enhancement accuracy and more detailed recovery, albeit with increased
computation time and memory cost. As a result, SE-GAN offers a flexible choice of
grid numbers.

5 Conclusions

To expedite reservoir simulation processes and reduce computational costs, we have
proposed a deep learning method for enhancing simulation results from upscaled dis-
cretization grids. The designed model maps coarse-scale simulation results together
with petrophysical properties to the fine-scale results. The results of numerical experi-
ments demonstrate that themethodproduces enhanced resultswith high accuracywhile
incurring minimal computational expenses. Specifically, the enhancement results for
1/16, 1/64, and 1/256 upscaled grids were produced, analyzed, and evaluated. In the
quarter-five-spot case study, the 64-times upscaled grid is recommended for practi-
cal application of our SE-GAN to strike a balance between computational accuracy
and cost. In summary, SE-GAN can significantly reduce the time andmemory require-
ments for numerical simulation at the cost of minor precision loss. The comprehensive
evaluation and analysis of the numerical experiment results verify the ability of the SE-
GAN to notably accelerate the reservoir simulation process, showing great potential
for numerical simulation applications.
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