
Mathematical Geosciences
https://doi.org/10.1007/s11004-023-10123-4

Hybrid Parametric Classes of Isotropic Covariance Functions
for Spatial Random Fields

Alfredo Alegría1 · Fabián Ramírez1 · Emilio Porcu2,3

Received: 26 October 2022 / Accepted: 12 November 2023
© International Association for Mathematical Geosciences 2024

Abstract
Covariance functions are the core of spatial statistics, stochastic processes, machine
learning, and many other theoretical and applied disciplines. The properties of the
covariance function at small and large distances determine the geometric attributes of
the associated Gaussian random field. Covariance functions that allow one to specify
both local and global properties are certainly in demand. This paper provides a method
for finding new classes of covariance functions having such properties. We refer to
these models as hybrid, as they are obtained as scale mixtures of piecewise covariance
kernels againstmeasures that are also defined as piecewise linear combinations of para-
metric families of measures. To illustrate our methodology, we provide new families
of covariance functions that are proved to be richer than other well-known families
proposed in earlier literature. More precisely, we derive a hybrid Cauchy–Matérn
model, which allows us to index both long memory and mean square differentiabil-
ity of the random field, and a hybrid hole-effect–Matérn model which is capable of
attaining negative values (hole effect) while preserving the local attributes of the tradi-
tional Matérn model. Our findings are illustrated through numerical studies with both
simulated and real data.

Keywords Cauchy model · Gaussian scale mixtures · Hole effect · Long memory ·
Matérn model · Mean square differentiability

1 Introduction

Covariance functions are central to many disciplines, including spatial statistics
(Cressie 1993; Chilés and Delfiner 2012; Hristopulos 2020), stochastic processes
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(Porcu et al. 2018a, b), machine learning (Schaback and Wendland 2006; James
et al. 2013; Barp et al. 2022), numerical analysis (Pazouki and Schaback 2011;
Cockayne et al. 2019), and stochastic mechanics (Ostoja-Starzewski 2006, with the
references therein). Recent applications in climatology (Guinness and Hammerling
2018; Edwards et al. 2019), oceanography (Furrer et al. 2007; Di Lorenzo et al. 2014),
environmental sciences (Cressie and Kornak 2003; Stein 2007), and natural resources
engineering (Chen et al. 2018; Emery and Séguret 2020) evidence the importance of
covariance functions.

The covariance function is customarily assumed to depend on the distance between
any pair of random variables located at two different points in the input space. Such an
assumption is referred to as isotropy in spatial statistics and machine learning, and it is
known as radial symmetry in other areas of applied mathematics. The behavior of the
covariance function at short or long distances (we call this local and global properties,
respectively) is crucial to understanding the properties of random processes with a
given covariance function. Specifically, the local properties are related to both the
fractal dimension and the geometric properties (e.g., mean square differentiability)
of the associated random process, as well as to its sample paths. On the other hand,
the global behavior of the covariance function allows one to characterize persistence
or anti-persistence (i.e., the long-term behavior) of the associated process. Another
global behavior of great interest is the so-called hole effect, which means that the
covariance function can take negative values in a certain interval.

Finding parametric families of isotropic covariance functions that allow us to index
both local and global behavior is a major challenge that has been addressed to a very
limited extent. TheMatérn family has been the cornerstone in spatial statistics for over
half a century now (Stein 1999). Its popularity is due to a parameter that controls the
degree of mean square differentiability and fractal dimension of the corresponding
random field (Stein 1999). Recently, Bevilacqua et al. (2022) showed that the Matérn
class is a special case of a richer class of models that, in addition to indexing local
properties, make it possible to switch between compact and global supports. In turn,
compactly supported models lead to sparse covariance matrices (Furrer et al. 2006;
Kaufman et al. 2008), and this implies considerable computational gains in both esti-
mation and prediction. Unfortunately, the Matérn class does not allow one to index
global behavior of the associated random process. The generalized Cauchy family
(Gneiting and Schlather 2004) allows for indexing of the fractal dimension and the
long memory behavior, that is, it allows for power-law tail behavior in the covariance
function, and this is reflected in the so-called Hurst parameter (Berg et al. 2008).
Notably, it does not allow one to index mean square differentiability, as the model is
either non-differentiable or infinitely differentiable at the origin. The same properties
are shared by the Dagum model (Berg et al. 2008), which also does not allow one to
index mean square differentiability. None of the aforementioned models allow one to
obtain negative spatial dependencies.

Spectral approaches can be a promising avenue for finding flexible families of
covariance functions. Laga andKleiber (2017) proposed amodified version of spectral
density associatedwith theMatérn family. The newclass has two additional parameters
that can be loosely interpreted as a continuous version of a moving average process.
More recently, Ma and Bhadra (2022) proved that a twofold application of Gaussian
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scale mixtures can provide models with polynomial decays while preserving the local
properties of the candidate covariance function. Other nonconventional properties of
covariance functions have been studied by Alegría (2020) and Alegría et al. (2021),
who proposed some modified scale mixture representations to obtain classes of cross-
covariance functions with non-monotonic behavior (the so-called cross-dimple effect)
for vector-valued random fields. In Schlather and Moreva (2017), models that enable
a smooth transition between stationary and intrinsically stationary Gaussian random
fields are derived.

All the previously mentioned parametric classes of covariance functions admit a
scale mixture representation of a Gaussian kernel against a continuous, positive and
bounded measure. Our paper starts from the Schoenberg integral representation of
isotropic covariance functions on R

d (Schoenberg 1938), for all natural numbers, d.
We specifically assume theSchoenbergmeasures to be parametric families ofmeasures
that are defined piecewise. Such a strategy is then shown to provide hybrid classes
that generalize classes proposed in earlier literature. We illustrate this methodology
by constructing a model that combines the global attributes of the Cauchy class and
the local properties of the Matérn class. We show that the proposed model admits
a closed-form expression and examine its theoretical properties. Additionally, we
study a more flexible formulation where the Gaussian kernel involved in the scale
mixture is replaced with a covariance kernel that is also defined piecewise. Following
this approach, we derive a hybrid model with local behavior of Matérn type, and
global behavior that allows for covariance functions with negative values. We conduct
numerical experimentswith both simulated and real data in order to assess the statistical
performance of the proposed models.

The remainder of the article is organized as follows. Section2 presents a concise
review of random fields and covariance functions coming from scale mixtures. Sec-
tion3 discusses general methods for building hybrid covariance models. The hybrid
Cauchy–Matérn and the hybrid hole-effect–Matérn classes are then derived. Section4
guides the reader through some numerical studies. Finally, a critical discussion is pre-
sented in Sect. 5, including a description of technical extensions of the present work
such as the multivariate case where covariance functions are matrix-valued, and the
case of spherically indexed fields where isotropy is defined in terms of the geodesic
distance.

2 Background

Let {Z(s) : s ∈ R
d} be a (centered) second-order stationary Gaussian random field

on Rd . Such a field is completely characterized by its covariance function (or kernel).
The isotropy of the covariance function is defined through a mapping ϕ : [0,∞) → R

such that cov[Z(s), Z(s′)] = ϕ(h), for every s, s′ ∈ R
d , where h = ‖s − s′‖. The

covariance function must satisfy the positive (semi)-definiteness condition: for any
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k ∈ N, {a1, . . . , ak} ⊂ R and {s1, . . . , sk} ⊂ R
d ,

k∑

i, j=1

aia jϕ(‖si − s j‖) ≥ 0.

Weuse the notation ϕ(·;λ) for a parametric family of continuous covariance functions,
where λ ∈ R

p is a vector of parameters. Further, we make use of the celebrated
Schoenberg theorem (Schoenberg 1938), whereby the functions ϕ that are valid in
any dimension d ∈ N are uniquely written as Gaussian scale mixtures of positive and
bounded measures, that is,

ϕ(h;λ) =
∫ ∞

0
exp(−uh2)G(du;λ), h ≥ 0,

where {G(d·;λ), λ ∈ R
p} is a parametric family of measures, which are termed

Schoenberg measures in Daley and Porcu (2014). Most of the covariance classes listed
in the introduction admit such a representation against a measure that is absolutely
continuous with respect to the Lebesgue measure, that is,

ϕ(h;λ) =
∫ ∞

0
exp(−uh2)g(u;λ)du, h ≥ 0, (2.1)

for {g(·;λ), λ ∈ R
p} a parametric family of nonnegative functions. Throughout, we

call g the mixing function.
We now describe examples of some parametric classes of functions ϕ that are

determined according to (2.1). Special attention is devoted to the Matérn, Cauchy,
and generalized Cauchy models. Other examples, including the stable and general-
ized hyperbolic models, can be found in Yaglom (1987), Barndorff-Nielsen (1978),
Schlather (2010), and Porcu et al. (2018b).

Example 1 (Matérn) This class of covariance functions is defined as Matérn (1986)

ϕM (h;λ) = 21−ν

Γ (ν)
(h/α)νKν(h/α), h ≥ 0, (2.2)

where Γ is the gamma function and Kν is the modified Bessel function of the second
kind (Abramowitz and Stegun 1972). Here, λ = [α, ν]	, with α and ν being positive
parameters that control the scale (the rate of decay of the covariance in terms of h)
and shape of (2.2), respectively. More precisely, ν regulates the degree of mean square
differentiability of the random field (larger values of ν are associated with smoother
sample paths) (Stein 1999). When λ = [α, 1/2]	, (2.2) simplifies into the exponential
model, exp(−h/α). On the other hand, as ν → ∞, a reparameterization of (2.2) tends
to the Gaussian covariance function, defined as exp(−h2/α).
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Example 2 (Cauchy) This class of covariance functions is given by Chilés andDelfiner
(2012)

ϕC (h;λ) =
(
1 + h2/α

)−ν/2
, h ≥ 0, (2.3)

with λ = [α, ν]	. As in theMatérnmodel, α > 0 is a scale parameter. However, unlike
the Matérn model, which decays exponentially with distance (Stein 1999), (2.3) has
a polynomial decay regulated by ν > 0. When ν ∈ (0, 2), such a polynomial decay
is connected with the Hurst parameter, a measure of long-term memory, given by
H = 1 − ν/2.

Example 3 (Generalized Cauchy) This class of covariance functions is defined as
(Gneiting and Schlather, 2004 and references therein)

ϕGC (h;λ) = (
1 + hδ/α

)−ν/δ
, h ≥ 0, (2.4)

with λ = [α, ν, δ]	, where δ ∈ (0, 2], α > 0, and ν > 0. This generalized class
preserves the polynomial decay of (2.3) but is more flexible in the sense that the
fractal dimension can be arbitrarily regulated through δ (see Gneiting and Schlather
2004 for details). Perhaps surprisingly, this model does not allow one to control the
mean square differentiability of the respective random field, as the model is either
non-differentiable or infinitely differentiable at the origin.
We note that a unified version of the function g that encompasses the three cases
altogether can be found in equation (4) of Porcu et al. (2018b).

Additional classes of covariance functions can be obtained from the more general
mixture

ϕ(h;λ,ϑ) =
∫ ∞

0
φ(h; u,ϑ)g(u;λ)du, h ≥ 0, (2.5)

where φ(·; u,ϑ) is an arbitrary covariance kernel for every u > 0, and ϑ is a vector
of parameters. Since positive definiteness is preserved under products, linear combi-
nations with nonnegative weights, and limits (see, e.g., Chilés and Delfiner 2012, p.
62), if φ is valid (positive definite) inRd for d ≤ d ′ for some d ′ ∈ N, then ϕ is valid in
R
d for d ≤ d ′ as well. We refer the reader to Emery and Lantuéjoul (2006) for several

explicit examples.

3 Hybrid Classes of Covariance Functions

3.1 General Construction

In this study, we propose new parametric classes of isotropic covariance functions,
ϕ̃(·;λ,ω, ξ), determined according to
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ϕ̃(h;λ,ω, ξ) = ω1

∫ ξ1

0
exp(−uh2)g1(u;λ1)du + ω2

∫ ∞

ξ2

exp(−uh2)g2(u;λ2)du,

(3.1)

where g1 and g2 are nonnegative functions on [0, ξ1) and [ξ2,∞), respectively, and
λ = [λ	

1 ,λ	
2 ]	, ω = [ω1, ω2]	 and ξ = [ξ1, ξ2]	 are vectors of parameters, with

ωi , ξi > 0 for i = 1, 2. In other words, we replace the mixing function, g, in Eq. (2.1)
with a function g̃ that is defined piecewise as

g̃(u;λ,ω, ξ) = ω1 g1(u;λ1)1[0,ξ1)(u) + ω2 g2(u;λ2)1[ξ2,∞)(u), u ≥ 0, (3.2)

with 1A(·) standing for the indicator function of a set A. Note that g̃may have disconti-
nuities as it is built by gluing two individual pieces. If the functions gi are continuous
and bounded on their domains, a direct application of the dominated convergence
theorem (which allows us to exchange limit with integral) implies that the proposed
covariance function (3.1) is continuous on [0,∞). Throughout this manuscript, each
function gi is positively proportional to a continuous probability density function.
Hence, the parametric family proposed in Eq. (3.1) belongs to the Schoenberg class
as defined through Eq. (2.1).

A more general construction considers different kernels in each segment of the
mixture

ϕ̃(h;λ,ω, ξ ,ϑ) = ω1

∫ ξ1

0
φ1(h; u,ϑ1)g1(u;λ1)du

+ω2

∫ ∞

ξ2

φ2(h; u,ϑ2)g2(u;λ2)du, (3.3)

where ϑ = [ϑ	
1 ,ϑ	

2 ]	. If φi is a valid covariance function inRd for d ≤ d ′
i , for some

d ′
i ∈ N, i = 1, 2, then (3.3) is a valid model in R

d if and only if d ≤ min(d ′
1, d

′
2).

The continuity of (3.3) can be justified by following the same arguments used for the
continuity of (3.1). The validity (positive definiteness) of such a construction is guar-
anteed by the fact that positive definite functions are closed under linear combinations
with nonnegative weights.

Remark 1 Let us point out some additional remarks on this methodology:

(1) When ξ1 = ξ2 = ξ , this parameter creates a continuous bridge between two
apparently disunited models. Indeed, as it goes from 0 to∞, we gradually go from
ω2

∫ ∞
0 φ2(h; u,ϑ2)g2(u;λ2)du to ω1

∫ ∞
0 φ1(h; u,ϑ1)g1(u;λ1)du. We will use

the term marginal models to refer to these limit models.
(2) When ξ1 > ξ2, instead, there is a superposition of the marginal structures in

the interval [ξ2, ξ1). As ξ2 → 0 and ξ1 → ∞, we obtain the greatest possible
superposition, which corresponds to a linear combination of the marginal models,
ω1

∫ ∞
0 φ1(h; u,ϑ1)g1(u;λ1)du + ω2

∫ ∞
0 φ2(h; u,ϑ2)g2(u;λ2)du.

While the spectral density is not required throughout the manuscript, it is worth
noting that explicit expressions for it can be derived depending on the functions gi ,
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leveraging the fact that ϕ̃ is written as a scale mixture and making use of Fubini’s
theorem. The apparent flexibility of the proposed mixtures is justified by classical
theory on local and global behavior of covariance functions. In particular, classical
results from probability theory (see Stein 1999, for instance) prove that the local
properties of the covariance functions (hence the differentiability at the origin) are
uniquely determined by the tails of the function g2. On the other hand, direct inspection
in concert with equation (4) in Gneiting and Schlather (2004) shows that the behavior
of ϕ̃ at long distances is determined by g1. The proofs of the main results below will
elaborate on these aspects. The next sections also show that it is possible to provide
examples in algebraically closed form that allow one to attain the desired flexibility.

3.2 A Hybrid Cauchy–Matérn Class

We present a hybrid Cauchy–Matérn model, for which the acronym CM is used. This
model is a special case of (3.1). Let us first introduce the generalized incomplete
gamma function (Chaudhry and Zubair 1994),

Γ (a; b; c) =
∫ ∞

b
ta−1 exp(−t − ct−1) dt,

and the lower incomplete gamma function, γ (a, b) = Γ (a; 0; 0) − Γ (a; b; 0).
Proposition 1 Let λ = [λ	

1 ,λ	
2 ]	, where λi = [αi , νi ]	, ω = [ω1, ω2]	, and ξ =

[ξ1, ξ2]	 are vectors having positive elements. Let

ϕ̃CM (h;λ,ω, ξ) = ω1 ϕ̃
(1)
C (h;λ1, ξ1) + ω2 ϕ̃

(2)
M (h;λ2, ξ2), h ≥ 0, (3.4)

where

ϕ̃
(1)
C (h;λ1, ξ1) = γ (ν1/2, (h2 + α1)ξ1)

Γ (ν1/2)
ϕC (h;λ1) (3.5)

and

ϕ̃
(2)
M (h;λ2, ξ2) = ϕM (h;λ2) − 1

Γ (ν2)
Γ

(
ν2; 1

4ξ2α2
2

; h2

4α2
2

)
, (3.6)

where ϕM and ϕC are the Matérn and Cauchy models defined at (2.2) and (2.3),
respectively. Then, ϕ̃CM is positive definite in Rd for all d ∈ N.

Proof We provide a proof of the constructive type by showing that ϕ̃CM admits the
representation (3.1), with g1(u;λ1) = gC (u;λ1) and g2(u;λ2) = gM (u;λ2), in
which gC and gM are respectively defined as

gC (u;λ1) = α
ν1/2
1

Γ (ν1/2)
uν1/2−1 exp (−α1u) , (3.7)
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and

gM (u;λ2) = 1

Γ (ν2)

(
1

2α2

)2ν2
u−ν2−1 exp

(
− 1

4uα2
2

)
, (3.8)

where for both cases all the parameters are positive. To obtain the analytical expression
of ϕ̃

(1)
C , we note that

∫ ξ1

0
exp(−uh2)gC (u; λ1)du = ϕC (h; λ1)

∫ ξ1

0

(h2 + α1)
ν1/2

Γ (ν1/2)
uν1/2−1 exp(−(h2 + α1)u)du

= ϕC (h; λ1)
γ (ν1/2, (h2 + α1)ξ1)

Γ (ν1/2)
,

where the second equality is due to the fact that the integral on the right-hand side
of the first line amounts to the cumulative distribution function of a gamma random
variable with parameters h2 + α1 and ν1/2.

To obtain the expression of ϕ̃
(2)
M , we invoke equation (10) in Alegría et al. (2021),

so that

∫ ξ2

0
exp(−uh2)gM (u;λ2)du = 1

Γ (ν2)
Γ

(
ν2; 1

4ξ2α2
2

; h2

4α2
2

)
. (3.9)

The function ϕ̃
(2)
M is thus obtained by invoking formula 3.471.9 in Gradshteyn and

Ryzhik (2007), for which we have
∫ ∞
0 exp(−uh2)gM (u;λ2)du = ϕM (h;λ2). ��

When ν2 = n+1/2, for some n ∈ N, (3.6) can be expressed in terms of complementary
error functions and modified Bessel functions of the first and second kinds. We refer
the reader to Alegría et al. (2021) for a more detailed study of these special cases.

The flexibility of the proposed structure is now illustrated through the following
result, where we use the notation f1(h) ∼ f2(h), h → ∞, to indicate that, for some
positive constant c0, the asymptotic relationship limh→∞ f1(h)/ f2(h) = c0 holds.
For an isotropic covariance function ϕ, if for some β ∈ (0, 2) we have ϕ(h) ∼ hβ ,
h → ∞, then the process is said to have a long memory with Hurst effect (parameter)
H that is equal to H = 1 − β/2. If H ∈ (1/2, 1), the covariance is called persistent,
and if H ∈ (0, 1/2), the covariance is called anti-persistent.

Proposition 2 Let Z be a Gaussian random field with covariance function of the form
(3.4). Then, Z is κ-times mean square differentiable if and only if ν2 > κ ≥ 0. More-
over, it is true that ϕ̃CM (h;λ,ω, ξ) ∼ h−ν1 , h → ∞. Hence, the Hurst parameter
associated with Z is solely indexed by the parameter ν1.

Proof Arguments in chapter 2 of Stein (1999) show that an isotropic random field with
covariance function ϕ is κ-times mean square differentiable if and only if ϕ(2κ)(0;λ)

exists and is finite. See also Adler (2010). In turn, a direct application of dominated
convergence proves that
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ϕ(2κ)(0;λ) =
∫ ∞

0

( d2κ

dh2κ
exp

(
−uh2

) ∣∣∣
h=0

)
g(u;λ)du,

which in turn proves that ϕ(2κ)(0;λ) is well defined if and only if

∫ ∞

0
uκg(u;λ)du < ∞. (3.10)

We use the latter argument for the special case of the function ϕ̃CM , for which the
tail of the resulting mixing function is uniquely determined by the mixing function
associated with ϕ

(2)
M as in Proposition 1. Direct inspection shows that (3.10) is true if

and only if ν2 > κ . The first part of the proposition is established.
For the second part, note that (3.5) behaves as h−ν1 , as h → ∞, because the lower

incomplete gamma function involved in such an equation tends to Γ (ν1/2), and the
Cauchy class with parameter ν1 decays as h−ν1 . The result follows by noting that (3.6)
is dominated by the traditional Matérn model, which decays exponentially. ��

To wrap up, the hybrid Cauchy–Matérn model allows us to index both the mean
square differentiability and long-term behavior of the associated Gaussian random
field.We also note that these properties are independently addressed by the two param-
eters ν1 and ν2, and hence those parameters are statistically identifiable and allow us
to decouple local and global properties.

From a statistical viewpoint, a parsimonious choice may be considered by setting
ω1 = ω2 = ω, α1 = α2 = α and ξ1 = ξ2 = ξ . Thus, we obtain that Proposition 1
provides a five-parameter family where ω indexes the variance, α the scale, ν2 the
mean square differentiability, and ν1 the Hurst effect, whereas ξ is a parameter that
balances the shapes of the marginal structures involved in this model. Hence, (3.4)
generalizes the Matérn model in that it allows for polynomial decay while indexing
continuously mean square differentiability.

Figure 1 shows the parsimonious hybrid Cauchy–Matérn model for different values
of ξ . The traditional Matérn and traditional Cauchy, as well as their average, which are
also special cases of the hybrid construction, are reported for comparison purposes.
Note that the curves have a linear or parabolic decay near the origin according to ν2 =
1/2 or ν2 = 3/2, respectively, and then the decay is more gradual (polynomial rate) for
large distances according to ν1, which is consistent with the local and global patterns
that coexist. We observe that ξ has a manifest impact on the shape of the covariance
function, as it produces some interesting forms (apparent changes of concavity) that
could be useful in practice.

3.3 A Hybrid Hole-Effect–Matérn Class

We now present a hybrid class of covariance functions, with local attributes of the
Matérn type, obtaining negative values at large distances. We use the acronymH M
for this model, termed hybrid hole-effect–Matérn. The proposed class comes from the
mixture (3.3), where φ1 is chosen in such a way that the resulting model can take
negative values.

123



Mathematical Geosciences

Fig. 1 Parsimonious hybrid Cauchy–Matérn model for ω = 1/2, α = 1/8, ν1 = 3/4, and different values
of ξ . (Left) ν2 = 1/2 and (Right) ν2 = 3/2. The dashed lines represent the purely Cauchy, purely Matérn,
and their average. All the models have been appropriately rescaled in order to obtain correlation functions

Proposition 3 Let λ = [λ	
1 ,λ	

2 ]	, where λi = [αi , νi ]	, ω = [ω1, ω2]	 and ξ =
[ξ1, ξ2]	 are vectors having positive elements, andϑ = [τ, η]	 is a vector of additional
parameters. Let

ϕ̃H M (h;λ,ω, ξ ,ϑ) = ω1 ϕ̃
(1)
H (h;λ1, ξ1,ϑ) + ω2 ϕ̃

(2)
M (h;λ2, ξ2), h ≥ 0,

(3.11)

where

ϕ̃
(1)
H (h;λ1, ξ1,ϑ) = τ

Γ (ν1)
Γ

(
ν1; 1

4ξ1α2
1

; ηh2

4α2
1

)
− 1

Γ (ν1)
Γ

(
ν1; 1

4ξ1α2
1

; h2

4α2
1

)
,

(3.12)

and ϕ̃
(2)
M as in (3.6). Then, ϕ̃H M is positive definite inRd if and only if 1 < η < τ 2/d .

Proof We consider the construction (3.3), with both g1 and g2 of the form (3.8), and φ2

of Gaussian type. Thus, the derivation of ϕ̃
(2)
M follows the same arguments employed

in the proof of Proposition 1. Before deriving (3.12), let us introduce the following
lemma, which is a combination of Corollaries 4, 8, and 11 in Posa (2023).

Lemma 1 The mapping h �→ A exp(−ah2) − B exp(−bh2) is positive definite in Rd

if and only if

1 <
a

b
<

(
A

B

)2/d

. (3.13)

The proof of this lemma relies on Bochner’s theorem. Specifically, under condi-
tion (3.13), Posa (2023) proved that the spectral density of h �→ A exp(−ah2) −
B exp(−bh2) is nonnegative for almost all frequencies. Although Posa (2023) focused
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on dimensions d ≤ 3, the same proof can be used in arbitrary dimensions. To obtain
the expression (3.12), we take the following covariance kernel in the first segment of
the scale mixture

φ1(h; u,ϑ) = τ exp(−uηh2) − exp(−uh2), h ≥ 0. (3.14)

Lemma 1 ensures that (3.14) is positive definite in R
d , provided that u > 0 and

1 < η < τ 2/d . Thus,

ϕ̃
(1)
H (h;λ1, ξ1,ϑ) = τ

∫ ξ1

0
exp(−uηh2)gM (u;λ1)du

−
∫ ξ1

0
exp(−uh2)gM (u;λ1)du. (3.15)

Finally, we invoke the identity (3.9), and we apply it to each integral involved in the
right-hand side of Eq. (3.15). ��

The covariance function (3.14) always takes negative values (Posa 2023), so it is
a natural building block to achieve hybrid models with the hole effect. Figure4a in
Posa (2023) can assist the reader in gaining insight into the behavior of this mapping
for different combinations of parameters. The parameters in ϑ are responsible for the
sharpness of the hole effect. More precisely, as η approaches τ 2/d , the hole effect
is more pronounced because the positive term the right-hand side of (3.14) has less
dominance. Moreover, when d = 1, we have the least restrictive condition on η,
and the resulting hole effect is more marked. It is well known that the possibility for
significant negative correlations vanishes as the dimension increases (see, e.g., p. 45
in Stein, 1999).

The next proposition characterizes the local attributes of (3.11) and provides a lower
bound for this model.

Proposition 4 Let Z be a Gaussian random field with covariance function of the form
(3.11). Then, Z is κ-times mean square differentiable if and only if ν2 > κ ≥ 0.
Moreover, we have the lower bound

ϕ̃H M (h;λ,ω, ξ ,ϑ) ≥ ω1(τη)−1/(η−1)
(
1 − η

η

) (
1 − γ (ν1;α1/ξ1)

Γ (ν1)

)
, h ≥ 0.

(3.16)

Proof The fact that ν2 controls themean square differentiability is a direct consequence
of the arguments used in the proof of Proposition 2. On the other hand, to find a lower
bound, we note that

ϕ̃H M (h;λ,ω, ξ ,ϑ) ≥ ω1 inf
h≥0

ϕ̃
(1)
H (h;λ1, ξ1,ϑ) + ω2 inf

h≥0
ϕ̃

(2)
M (h;λ2, ξ2)

= ω1

∫ ξ1

0
inf
h≥0

φ1(h; u,ϑ)g1(u;λ1)du.
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In the second line, we employed the fact that the infimum of the Gaussian covariance
kernel, and consequently of ϕ̃

(2)
M , equals zero. A straightforward calculation shows

that φ1 attains its lowest value at h∗ =
√

log(τη)
u(η−1) . Thus,

φ1(h; u,ϑ) ≥ φ1(h
∗; u,ϑ) = τ exp

(
−η log(τη)

η − 1

)
− exp

(
− log(τη)

η − 1

)

= (τη)−1/(η−1)
(
1 − η

η

)
.

Since g1 is given by (3.8),we invoke the formula of the cumulative distribution function
of an inverse gamma random variable to establish that

∫ ξ1

0
g1(u;λ1)du = 1 − γ (ν1;α1/ξ1)

Γ (ν1)
.

This completes the proof. ��
Note that as ξ1 → ∞ (i.e., as the hole effect predominates), the lower bound in Eq.

(3.16) decreases to (τη)−1/(η−1)(1− η)/η. On the contrary, as ξ1 → 0, such a bound
increases to zero, that is, the hole effect becomes negligible, which is not surprising,
because in such a case the Matérn class is predominant. A similar conclusion can be
obtained in the limit case η → 1.

A parsimonious variant of this model consists in taking ω1 = ω2 = ω (variance
parameter),α1 = α2 = α (scale parameter), and ν1 = ν2 = ν (smoothness parameter),
whereas ϑ regulates the hole effect (as discussed above) and ξ1 = ξ2 = ξ has a similar
interpretation as in the hybrid Cauchy–Matérn model.

Figure 2 shows the parsimonious hybrid hole-effect–Matérn model for different
values of ξ . The limit cases described in Remark 1 are also reported, in a similar
fashion as in Fig. 1. It can be seen that negative values coexist with different levels of
smoothness at the origin, as expected.

4 Numerical Experiments

4.1 Simulated Data

We conduct simulation studies to assess the performance of maximum likelihood
inference when a hybrid covariance structure is present. We focus on the parsimo-
nious hybrid Cauchy–Matérn dependence structure, as it will be applied to real data in
the next section. We consider ω = 1, α = 1/8, ν1 = 3/4 and the following scenarios
for [ν2, ξ ]: (a) [1/2, 40], (b) [1/2, 120], (c) [3/2, 40], and (d) [3/2, 120]. The choice to
explore these scenarios is motivated by the significance of the unconventional param-
eter ξ within our formulation. Analyzing different values of ξ is of particular interest,
while ν2 = 1/2, 3/2 align with the typical and more realistic choices when examining
spatial data.

123



Mathematical Geosciences

Fig. 2 Parsimonious hybrid hole-effect–Matérn model in dimension 1, for ω = 1/2, α = 1/8, τ = 2,
η = 7/2, and different values of ξ . (Left) ν = 1/2 and (Right) ν = 3/2. The dashed lines represent
the limit cases reported in Remark 1. All the models have been appropriately rescaled in order to obtain
correlation functions

All our numerical experiments were conducted using R software. For each sce-
nario, we simulate 200 independent realizations of a Gaussian random field on 100
uniformly sampled points in the square [0, 3]2 and estimate the parameters through
maximum likelihood. We then repeat the experiment with 256 spatial locations. We
only estimate ω, α, and ξ , whereas ν1 and ν2 are fixed, which is a common practice
in geostatistics. Instead of directly estimating ξ , we consider the alternative parame-
terization ξ̃ = √

ξα, which seems to be a natural choice according to Eqs. (3.5) and
(3.6). To sum up, for each scenario and simulated sample, we estimate the vector of
parameters [ω, α, ξ̃ ]. The estimates are obtained by maximizing the likelihood func-
tion numerically using the default Nelder–Mead method (Nelder and Mead 1965),
which is a direct search method known for its effectiveness in nonlinear optimization
problems. In all our experiments, it successfully converges to a solution, and we have
not encountered any issues with the method becoming degenerate. The initial values
for initializing the algorithm are randomly selected within a broad interval around the
true values of the parameters. The computation times for evaluating the objective func-
tion are standard in the context of maximum likelihood inference in spatial statistics.
In this study, we have not experienced the computational challenges of the cubic com-
putational order of maximum likelihood, as we worked with moderate sample sizes.
For a more detailed discussion of these computational aspects, we refer the reader to
Bevilacqua and Gaetan (2015), where several likelihood-based methods are analyzed
from computational and statistical perspectives.

Figure 3 displays the results. The estimates are approximately unbiased, and the
variance decreases as the sample size increases from 100 to 256, which is an expected
behavior. The variability in the estimates decreases substantially in scenarios (c) and
(d), that is, when the randomfield is smoother, which is a typical attribute of likelihood-
based estimates in this context (Bevilacqua and Gaetan 2015). On the contrary, such
variability deteriorates as ξ increases from40 to 120. Figure 4 shows the log-likelihood
in terms of ξ and α, with fixed ω, for a single realization of the random field under
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Fig. 3 Centered boxplots of themaximum likelihood estimates for the parsimonious hybrid Cauchy–Matérn
model in scenarios (a)–(d)

scenario (b). Although the surface has a clear maximum value, the objective function
is apparentlymore flat in the direction of ξ . This could explain the increased variability
in scenarios (b) and (d) with respect to (a) and (c). Despite the previous remarks, in
general, the estimates appear to be reasonable in each scenario, and no identifiability
issues are observed.

We now explore the predictive performance of the proposed class through a cross-
validation analysis. We simulate 200 independent realizations on 100 uniformly
sampled locations in [0, 3]2 according to scenarios (a) to (d) described above. We
assess the accuracy through a leave-one-out prediction strategy in terms of the mean
squared error (MSE), mean absolute error (MAE), log-score (LSCORE), and con-
tinuous ranked probability score (CRPS) (see Zhang and Wang 2010). Small values
of these indicators suggest superior predictions. We evaluate the performance of the
hybrid Cauchy–Matérn model, using the generalized Cauchy class as benchmark.
Thus, for each realization, we estimate the parameters with both models and pro-
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Fig. 4 Log-likelihood function, with respect to α and ξ for scenario (b). Left and right panels correspond
to the same plot from different viewpoints

Table 1 Cross-validation scores for the parsimonious hybrid Cauchy–Matérn and generalized Cauchy (with
δ = 1, 2) models in scenarios (a)–(d)

Scenario Model MSE MAE LSCORE CRPS

(a) Hybrid Cauchy–Matérn 0.706 0.668 1.231 1.773

Generalized Cauchy (δ = 1) 0.714 0.672 1.238 1.787

Generalized Cauchy (δ = 2) 0.718 0.674 1.241 1.798

(b) Hybrid Cauchy–Matérn 0.480 0.549 1.034 1.462

Generalized Cauchy (δ = 1) 0.489 0.555 1.046 1.480

Generalized Cauchy (δ = 2) 0.497 0.559 1.055 1.506

(c) Hybrid Cauchy–Matérn 0.172 0.316 0.398 0.840

Generalized Cauchy (δ = 1) 0.176 0.319 0.446 0.851

Generalized Cauchy (δ = 2) 0.176 0.319 0.414 0.862

(d) Hybrid Cauchy–Matérn 0.075 0.210 0.024 0.561

Generalized Cauchy (δ = 1) 0.077 0.213 0.052 0.575

Generalized Cauchy (δ = 2) 0.082 0.219 0.103 0.612

ceed to make the predictions through a simple kriging approach. The generalized
Cauchy model (2.4) has been augmented with a multiplicative parameter ω, namely
h �→ ω(1 + hδ/α)−ν/δ , so it is parameterized by ω and α, and ν = 3/4 and δ = 1, 2
are fixed.

Table 1 shows that in each scenario, the proposed hybrid model outperforms its
competitor. All the cross-validation scores decrease substantially in scenarios (c) and
(d). From this brief study, we observe that when the true underlying covariance has
a hybrid structure, an incorrect specification of the spatial association has a negative
impact on the posterior predictions. Since the behavior of an isotropic covariance
function near the origin has a strong impact on the quality of predictions (Stein 1999),
our simulation experiment suggests that in some circumstances the local shape of the
proposed model cannot be replicated by other appealing existing structures.
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Fig. 5 Histograms of the original (left) and transformed (right) data

4.2 A Real Data Illustration

The estimation of recoverable resources is a task of fundamental importance inmodern
mining processes. A sound evaluation of such resources is crucial from an economic
viewpoint and is critical for assessing the long-term availability of mineral resources
and its impact on society.Geostatisticalmodels offer a valuable framework for address-
ing this challenge by considering the spatial distribution and inherent variability of
these resources. This approach enables well-informed decision-making for resource
management and operational planning. Next, we will investigate how the versatility
of the models outlined in this manuscript can contribute to obtaining more accurate
resource estimations, thereby facilitating a more precise analysis.

We consider a data set from a lateritic nickel deposit mined by open pit in Colombia,
which containsmeasurements of the grades of nickel, iron, chrome, alumina,magnesia,
and silica. This study focuses on nickel concentrations that are placed at an elevation
of about 120m, where 199 irregularly spaced observations are available. We apply a
log transformation to reduce the skewness, and then the sample mean is subtracted.
Figure5 displays histograms of the original and transformed data. The resulting values
are approximately Gaussian. The left panel of Fig. 7 shows the transformed data set.

We fit two covariance models: the first is the parsimonious hybrid Cauchy–Matérn,
parameterized by ω, α, and ξ̃ , with fixed ν1 = 1/4 and ν2 = 1/2, and the second
is the generalized Cauchy, parameterized as in Sect. 4.1, with fixed ν = 1/4 and
δ = 0.95. The values of the fixed parameters were selected after some experimental
trials, taking into account the local behavior of the sample covariance (see Fig. 6).
Table 2 reports the likelihood estimates,with the corresponding standard errors, and the
Akaike information criterion (AIC).Weobserve that the hybridCauchy–Matérnmodel
outperforms its competitor in termsof theAIC.Figure6 (left panel) shows that thefitted
covariance models seem to be reasonably close to the sample covariance. The fitted
models differ substantially near the origin (distances less than 3m), since the hybrid
model decays more quickly. On the contrary, for larger distances, the hybrid model
decays more slowly, although the difference between the curves becomes slight for
distances greater than 15m. In brief, this graph clearly shows a significant break in the
hybrid model’s curve, in contrast to its competitor, which maintains a fixed structure,
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Table 2 Parameter estimates and Akaike information criterion (AIC) of fitted covariance models

Model ω α ξ̃ AIC

Hybrid Cauchy–Matérn 1.055 12.31 0.063 −34.03

(0.2516) (2.801) (0.042)

Generalized Cauchy 0.164 1.959 − −31.93

(0.040) (0.849) −
Standard errors are reported in parentheses

Fig. 6 (Left) Sample (circles) and modeled (solid lines) covariances of log-nickel concentrations. (Right)
More detailed illustration of the fitted models for distances less than 8m

therebymaking it a very versatile model. In Fig. 6 (right panel), we also offer a detailed
comparison of the fitted models, with a specific focus on distances less than 8m.
This range holds significant importance for predictions. Visualize this by considering
a circle with an 8-m radius centered at each spatial location; it contains numerous
data points. Any disparities between the models within this range can significantly
impact their predictive accuracy, as kriging predictions are highly dependent on the
neighboring data points. We will delve deeper into the prediction problem below.

In order to compare the models in terms of predictive performance, we conduct a
cross-validation study based on simple kriging, in a similar fashion to the experiments
performed with simulated data. Table 3 shows evidence, based on a leave-one-out
cross-validation scheme, that the hybrid model performance is better for this specific
data set. In percentage terms, theMSE shows an improvement of approximately 3.4%.
The largest difference occurs when we compare the LSCOREs (about 9% improve-
ment). We conclude this section with an illustration of a downscaled map of log-nickel
concentrations (see Fig. 7), using the hybrid Cauchy–Matérn model. The interpolated
spatial map, which is obtained through simple kriging, is exhibited on a spatial grid
of approximately 1m (7, 500 locations). This kriged surface could be useful in small-
scale mining processes, as it is a crucial step for industrial exploration and quantifying
mineral reserves. More precisely, it could play a pivotal role in directingmining opera-
tions, optimizing resource allocation, and ensuring the efficient extraction of minerals,
thus making a substantial contribution to the overall success of the mining process.
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Fig. 7 Log-nickel concentrations (left), with the kriged surface (middle) and the corresponding variance
(right)

Table 3 Scores for the leave-one-out cross-validation study of log-nickel concentrations

Model MSE MAE LSCORE CRPS

Hybrid Cauchy–Matérn 0.0428 0.1431 −0.1840 0.4113

Generalized Cauchy 0.0443 0.1462 −0.1677 0.4159

5 Conclusions and Perspectives

We introduced a simple formalism to build sophisticated parametric families of covari-
ance functions.We focused on a combination of theMatérn andCauchymodels, where
local (mean square differentiability) and global (long memory) properties coexist in a
single family. We have also illustrated the use of our methodology by constructing a
model that behaves as theMatérn class at short distances and obtains negative values at
large distances. Simulation studies show that a parsimonious hybrid Cauchy–Matérn
model has statistically identifiable parameters. Also, this model provides improve-
ments in terms of predictive performance relative to existing models, when a hybrid
inherent dependence structure is present. We reach similar conclusions when we
apply this methodology to a mining dataset. While similar numerical studies could be
performed for the hybrid hole-effect–Matérn model, we avoid them for the sake of
simplicity and brevity. Additional interesting extensions of this work can be tackled in
future investigations. We now provide two concrete research lines that could emerge
from this work.

In many practical situations, two or more variables are simultaneously recorded.
Thus, our findings can be generalized to the case of multivariate fields {Z(s) =
(Z1(s), . . . , Z p(s))	, s ∈ R

d}, having an isotropicmatrix-valued covariance function
Φ : [0,∞) → R

p×p, that is, cov[Zi (s), Z j (s′)] = Φi j (h), h ≥ 0, where h = ‖s−s′‖
and i, j = 1, . . . , p. We propose the hybrid model

Φ̃(h;λ,ω, ξ) = ω1

∫ ξ1

0
exp(−uh2)G1(u;λ1)du + ω2

∫ ∞

ξ2

exp(−uh2)G2(u;λ2)du,
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which generalizes (3.1), where the vectors of parameters λi must be chosen in such a
way that the p× p matricesGi (u;λi ) are positive semi-definite for every fixed u ≥ 0.
Hence, a straight application of Proposition 4 in Porcu and Zastavnyi (2011) would
ensure that Φ̃ is positive semi-definite. A multivariate version of the hybrid Cauchy–
Matérn covariance function is a natural candidate. The works of Gneiting et al. (2010)
and Moreva and Schlather (2022) are relevant to tackle this challenge. A multivariate
version of the formulation (3.3) could be similarly deduced.

For random fields that are indexed by the d-dimensional unit sphere, Sd , which is
a useful framework when analyzing global data (S2 is used as an approximation of
the Earth), the isotropy assumption is given by cov[Z(s), Z(s′)] = ψ(θ), s, s′ ∈ S

d ,
where ψ : [0, π ] → R is a continuous mapping and θ = arccos(s	s′) ∈ [0, π ] is
the geodesic distance. Schoenberg’s characterization (Schoenberg 1942) establishes
that a parametric isotropic covariance function ψ(;λ) is valid in any dimension d if
and only if it can be written as ψ(θ;λ) = ∑∞

�=0 β�(λ)(cos θ)�, θ ∈ [0, π ], for some
nonnegative and summable parametric sequence {β�(λ)}∞�=0. Thus, the hybrid models
can be adapted to the spherical context by considering a modified sequence of the
form

β̃�(λ,ω, ξ) = ω1 β
(1)
� (λ1)1[0,�ξ1�)(�) + ω2 β

(2)
� (λ2)1[�ξ2�,∞)(�), � = 0, 1, . . . ,

where �ξi� ≥ 0 for i = 1, 2, with �·� standing for the floor function and β
(i)
� being

a nonnegative and summable sequence. The local properties of spherically indexed
random fields and their connections with the covariance function have been studied in
past works (Bingham 1973; Guinness and Fuentes 2016). However, global properties
such as long memory are less intuitive in this scenario, as the spatial domain is a
compact set. Covariance functions with the hole effect for low-dimensional spheres
could be obtained by adapting formulation (3.3).
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