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Abstract
Extreme events such as natural and economic disasters leave lasting impacts on society
and motivate the analysis of extremes from data. While classical statistical tools based
on Gaussian distributions focus on average behaviour and can lead to persistent biases
when estimating extremes, extreme value theory (EVT) provides the mathematical
foundations to accurately characterise extremes. This motivates the development of
extreme value models for extreme event forecasting. In this paper, a dynamic extreme
value model is proposed for forecasting volcanic eruptions. This is inspired by one
recently introduced for financial risk forecasting with high-frequency data. Using
a case study of the Piton de la Fournaise volcano, it is shown that the modelling
framework is widely applicable, flexible and holds strong promise for natural haz-
ard forecasting. The value of using EVT-informed thresholds to identify and model
extreme events is shown through forecast performance, and considerations to account
for the range of observed events are discussed.

Keywords Extreme value theory · High-frequency data · Forecasting · Seismic data

1 Introduction

Natural hazards and extreme financial loss can be seen as extreme events (i.e., events
that have low probabilities of occurring under normal circumstances). Because of
their imbalanced number of occurrences, one usually has more data on common,
non-extreme events than on extreme events. However, it can be shown that fitting a
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distribution to all the data via classical statistical methods leads to a reasonable fit
to the bulk of the data at the expense of a poor fit to the tails in which the extremes
lie (Ribatet 2016). Extreme value theory (EVT) and its corresponding models seek
to remedy this disparity by offering guidance on when an extreme regime kicks in
and how it can be modelled. For example, under known conditions, the distribution
of excesses above a fixed threshold can be shown to converge to a generalised Pareto
distribution (GPD) as the threshold increases (Embrechts et al. 2013; Beirlant et al.
2004). By knowing this asymptotic distribution, one can conduct model checks and
generate sensible estimates of extremal behaviour.

EVT is increasingly used in financial applications and has been shown to give
more accurate tail-risk predictions (Danielsson and De Vries 1997; Longin 2000). To
address the fact that there is time dependence in financial returns which goes against
the traditional assumption of independence (Diebold et al. 1998), Bee et al. (2019)
propose a dynamic extreme value model which uses high-frequency realised measures
of the daily asset price variation as covariates to model the probability of exceeding a
high threshold and the size of the excesses. Since the realised variation is time-varying,
the estimates of threshold exceedance and excesses are also time-varying.

The extreme value model developed by Bee et al. (2019) can be adapted to wider
settings. In this paper, this is demonstrated by adapting the model for natural hazard
forecasting, specifically for volcanic eruptions. Just as how extreme loss can be defined
as an exceedance over some financial threshold, extreme volcanic activity can be
defined as the threshold exceedance of some energy index.

The contributions of this model to the eruption forecasting literature are manifold.
In addition to the short overview of existing methods provided in the Supplementary
Information, the key differences and contributions of the proposed model are high-
lighted here. The dynamic extreme value model draws on techniques from time series
analysis, EVT and machine learning, of which full and varied potential for short-term
eruption forecasting has yet to be realised (Malfante et al. 2018; Carniel and Guzmán
2020;Whitehead and Bebbington 2021). To adapt the model from its original financial
context to wider settings, choices need to be made on the following:

(i) a suitable index to compute threshold exceedances;
(ii) the look-ahead window or forecast horizon;
(iii) the auxiliary information or covariates used to inform future behaviour; and
(iv) the time periods to compute these from (i.e., the covariate window).

In the seismic context, threshold exceedance for event detection is synonymouswith
first-arrival picking algorithms such as the classical short-time average over long-time
average (STA/LTA) method and a recently introduced method using trace envelopes
(Withers et al. 1998; Trnkoczy 1999; Al-Mashhor et al. 2019). The trace envelope can
be seen as the instantaneous amplitude of a seismic trace and related to the amount
of energy in the signal (Ktonas and Papp 1980; Taner 2001). It is computed by taking
the square root of the sum of the squared real and imaginary parts of the seismic trace.
In this paper, trace envelopes will be used as eruption indices from which to take
threshold exceedances. These exceedances would hopefully relate to extreme regimes
leading up to volcanic eruptions and can be forecasted using covariates. Note that
the exceedance of an eruption index is modelled rather than a physical monitoring
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signal because the latter does not necessarily have a monotonic relationship with the
hazard. In addition, since different frequency bands within the seismic signal represent
different physical phenomena (Bormann et al. 2013; Salvage et al. 2019), envelopes
of frequency-filtered data will be considered.

While existing techniques like the failure forecast method estimate the eruption
onset time directly, others including event trees define a look-forward window within
which the probability of an eruption occurring is estimated. The latter approach is taken
here. In particular, for illustration, 1-h-ahead forecasts are produced to complement
other longer-term forecasts. Although a longer lead time allows for more time to
make emergency management decisions, notify the public and implement evacuations
(Wild et al. 2021), forecasts are typically more accurate whenmade closer to the actual
eruption time due to temporal divergence at larger lags (see for example, Sugihara and
May 1990).

Eruption forecasting methods such as event trees, belief networks and pro-
cess/sourcemodels presuppose precursors or associations between sourcemechanisms
and time series signals (Brenguier et al. 2008). In contrast, the proposed methodology
selects combinations of covariates that could represent precursors for any volcano and
type of eruption if the model is trained on corresponding data. Specifically, covariates
inspired by machine learning classification algorithms for seismic signals (Malfante
et al. 2018) are tested. By combining these covariates, different aspects of the seismic
data and relationships across different frequency bands are represented. An objective
stepwise selection procedure is then used to determine which covariates are more
informative for forecasting eruptions.

The rest of this paper is organised as follows. The key components of the dynamic
extreme value model introduced by Bee et al. (2019) are outlined in Sect. 2. In Sect. 3,
the case study, the Piton de la Fournaise volcano, is introduced to illustrate how the
model can be adapted for eruption forecasting. By comparing the effect of different
choices of the threshold on the model fit and training performance, the value of using
EVT to guide threshold choice is highlighted in Sect. 4. In Sect. 5, the broader appli-
cability of the method is evaluated by refitting the model using three training event
sets and testing the calibrated model on both event and non-event sets. In Sect. 6, the
results and future areas for research are discussed. The code used for the analysis is
publicly available at https://github.com/ntu-dasl-sg/dynamic-EV-forecasting.

2 The Dynamic Extreme ValueModel

Following Bee et al. (2019), let {Yt }t=1,...,T denote a time series of an index where
higher values are associated with extreme events. Based on the selected threshold
u ∈ R of the index, exceedances are defined as the binary indicators of whether the
index is higher than the threshold and excesses are defined as the numerical values of
the exceedances. The conditional probability that the index at time t , Yt , exceeds u by
some excess z > 0 given prior information available at time t , Ft−1, can be written
as

P(Yt > u + z|Ft−1) = P(Yt > u|Ft−1)P(Yt − u > z|Yt > u,Ft−1)
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= φt |Ft−1 × GPD(ξt , νt )|Ft−1. (1)

Here, φt |Ft−1 = P(Yt > u|Ft−1) represents a time-varying binomial exceedance
probability which can be modelled with a logit function

φt |Ft−1 = exp(ψ0 + ∑p
i=1 ψi x

(i)
t−1)

1 + exp(ψ0 + ∑p
i=1 ψi x

(i)
t−1)

, (2)

where xt−1 = (x (1)
t−1, . . . , x

(p)
t−1) denotes a vector of p covariates from the previous

time step and is used to project the future probability. The parameters {ψi }i=0,...,p can
be estimated by maximising the likelihood function

L (ψ; It , xt ) =
T∏

t=l+1

(

exp(ψ0 +
p∑

i=1

ψi x
(i)
t−1)

)It

× 1

1 + exp(ψ0 + ∑p
i=1 ψi x

(i)
t−1)

,

(3)

where l is the lag at which the covariates xt become available and It is the indicator
of an exceedance at time t (it is equal to 1 if there is an exceedance and 0 otherwise).
This is equivalent to using logistic regression to model the probability of threshold
exceedance.

In (1), the model for excesses of the threshold is given by a generalised Pareto
distribution (GPD)

P(Yt − u > z|Yt > u,Ft−1) = GPD(ξt , νt )|Ft−1. (4)

The shape parameter ξt = ξ is estimated assuming a non-time-varying GPD distri-
bution for the excesses and kept constant for stability. To account for the time-varying
nature of the excess distribution, the scale parameter is modelled as

νt = exp

(

κ0 +
q∑

i=1

κi x
(i)
t−1

)

. (5)

This involves q covariates, (x (1)
t−1, . . . , x

(q)
t−1) in a log-linear function.

When κi = 0 for i > 0, this means that it is sufficient to model the distribution of
the excesses statically. From the definition of a GPD with a non-zero shape parameter

P(Yt − u > z|Yt > u,Ft−1) =
(

1 + ξ z

exp(κ0 + ∑q
i=1 κi x

(i)
t−1)

)−1/ξ

, (6)

where z = yt − u denotes the excess. If ξ > 0, z ≥ 0 and if ξ < 0, 0 ≤ z ≤
− exp(κ0 +∑q

i=1 κi x
(i)
t−1)/ξ (i.e., the excesses have an upper bound). The parameters
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{κi }i=1,...,q can be estimated by maximising the likelihood function

L (κ, ξ ; zt , xt )

=
T∏

t=l+1

⎛

⎝ 1

exp(κ0 + ∑q
i=1 κi x

(i)
t−1)

×
⎡

⎣

(

1 + ξ zt

exp(κ0 + ∑q
i=1 κi x

(i)
t−1)

)−1/ξ−1
⎤

⎦

+

⎞

⎠

It

,

(7)

where [x]+ = max(0, x), and the time subscript is added to the excesses, z, to denote
their temporal indices. Henceforth, the maximisation of (7) to estimate {κi }i=1,...,q

will be referred to as GPD regression. When the estimated shape parameter ξ̂ is not
significantly different from zero, it is set to zero and an exponential regression is used
instead.

3 Case Study: Piton de la Fournaise Volcano

3.1 Data

The dynamic extreme value model is used to forecast eruptions at the Piton de la Four-
naise volcano. Situated on La Réunion Island, Piton de la Fournaise is one of the most
active basaltic volcanoes, with an average of one eruption every 10 months (Roult
et al. 2012). In addition to the existing seismic monitoring stations, 15 broadband
stations were installed on the volcano as part of the Understanding Volcanic Processes
(UnderVolc) project in 2009–2010 (Taisne et al. 2011). Figure1 shows their locations
together with other stations of the UnderVolc project and Station Sismologique de
Riviere de l’Est (RER) of the Geoscope seismic network. The data collected are avail-
able at https://www.fdsn.org/networks/detail/YA_2009/ and cover the years 2009 to
2011. Between 2009 and 2011, five eruptions were recorded at Piton de la Fournaise.

To avoid issues arising from varying energy indexmagnitudes at different recording
stations due to their respective distances from the eruption centres, data from one
station were used to train the model. This is the UV05 station, which was the closest
available station to the January 2010 eruptive centre (Journeau et al. 2020) and which
is approximately 571m from the recorded starting point of the first fissure (Roult et al.
2012).

Data from four out of the five recorded eruptions were used in the analysis. Data
from the December 9, 2010 eruption were not used for training or testing because
the location of the eruption (Flank N) is relatively far away from the rest of the event
locations and hence could skew the results.

Table 1 shows the key characteristics of the four eruption events as outlined byRoult
et al. (2012). To evaluate the forecast performance in Sect. 5, three of the events will
be used for training the model, and the other event will be used for testing. Three non-
events are used for further validation. The non-event dates were chosen to be roughly
halfway between the selected four events and represent quiet periods for which one
should not expect threshold exceedances of the eruption indices.
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Fig. 1 Map of the Piton de la Fournaise volcano, corresponding to Fig. 2 of Seydoux et al. (2016). The
locations of the Understanding Volcanic Processes stations are represented by red triangles, and that of
Station Sismologique de Riviere de l’Est (RER) of the Geoscope seismic network is represented by the blue
triangle

3.2 Illustration of Method

To illustrate the use of the dynamic extreme value model for eruption forecasting, the
method is first be applied to the January 2010 event data (training event 3) since it is
best documented out of the chosen events. Figure2a shows the raw seismic signal for
the 1–5Hz frequency-filtered data. This is given in counts which corresponds to the
number read off the seismometer (i.e., the voltage read from a sensor). To scale it to
physical units (e.g., m/s), a number of factors including the frequency of motion being
measured and the calibrated zero-point of the instrument would need to be considered.
Since only a scaling factor is involved, the same modelling results would be obtained
when the raw seismic signal is used in counts or in physical units.

Figure2b focuses on January 2 when the eruption occurred, and the dotted, dashed
and bold blue vertical lines denote the start and end times of the seismic crisis, swarm
and eruption onset, respectively. As documented by Roult et al. (2012), a seismic
crisis took place from 07:50 local time. This means that there is an increase in seismic
events such that this exceeds background seismicity. Between 08:10 and 09:02, a
seismic swarm was recorded. This corresponds to when seismic events overlap and
become hard to differentiate (McNutt and Roman 2015) and is reflected in the seismic
signal as larger fluctuations in the readings between the dashed blue vertical lines. The
swarm was followed by a relatively quiet phase that directly preceded the onset of the
eruption at about 10:20 (the eruption is indicated by the continuous seismic tremor in
the figure). The whole eruption was estimated to have lasted 9.6 days, ending at 00:05
on January 12, 2010.
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Fig. 2 a Seismic signal for the 1–5Hz frequency band for the January 2010 eruption event with b a close-up
look at the period near the time of eruption on January 2. c The corresponding envelope index in decibels
(dB), with d a zoom into the same time period on January 2. The dotted, dashed and bold blue vertical
lines denote the start of the seismic crisis, the start and end of the seismic swarm and the eruption onset
respectively. Note that the time series are downsampled such that every 5,183th reading and every 402nd
reading are shown for the top and bottom plots, respectively
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3.2.1 Trace Envelope as an Eruption Index

Before fitting the dynamic extreme value model for eruption forecasting, the eruption
index from which to consider threshold exceedances needs to be chosen. Here, the
trace envelope et for t = 1, . . . , T is used. This can be seen as the instantaneous
amplitude of the seismic trace s = (s1, . . . , sT ), and can be computed as follows:

1. First, the discrete Fourier transform (DFT) of s is computed for t ∈ {1, . . . , T }
(this is implemented by the R function ‘fft’)

ft = DFT(s)T =
T∑

k=1

sk exp(−2π i(k − 1)(t − 1)/T ), (8)

where T is the length of the seismic trace. Set f = ( f1, . . . , fT ).
2. Next, the complex Hilbert fast Fourier transform (FFT) of s is computed as

Ht = IFT(fh)/T , (9)

where the length-T seriesh = (1, 2, 2, . . . , 2, 2, 1) if T is even and (1, 2, 2, . . . , 2,
2, 2) if T is odd and the inverse Fourier transform (IFT) is defined as

IFT(fh)t =
T∑

k=1

fkhk exp(2π i(k − 1)(t − 1)/T ), (10)

for t ∈ {1, . . . , T }.
3. For t ∈ {1, . . . , T }, the trace envelope of the seismic trace s is defined as

et =
√

Re2(Ht ) + Im2(Ht ) = Mod(Ht ). (11)

The above steps are in line with those used within the R function ‘envelope’ in the
IRISSeismic package.

In Al-Mashhor et al. (2019), the first arrival travel time picking algorithmwas based
on the envelope in decibels. Similarly, the trace envelope et is converted to decibels via
Yt = 20 log10(et ) (Moore 1995, p. 11) and Yt is used as the eruption index. Figure2c
shows the trace envelope time series computed from the 1–5Hz frequency-filtered data
for the January 2010 event. The 1–5Hz frequency band is used because it is strongly
associated with volcanic/magmatic activity and fluid resonances (Salvage et al. 2019).
Results for the 5–15Hz frequency band are given in the Supplementary Information.
In Fig. 2c, it is seen that although there are some spikes at the start of January 1, the
envelope index remains relatively low around 50 dB until the recorded seismic crisis
on January 2 (represented by the dotted blue vertical line in the bottom plot). In Fig. 2d,
the index increases from the time of the seismic crisis to a first peak during the seismic
swarm before waning slightly. About 10:00, the index increases steadily to plateau
slightly above 80 dB, the timing of which coincides with the recorded eruption onset
(represented by the bold blue vertical line in the bottomplot). The relationship between
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Fig. 3 a Model conceptual diagram for forecasting exceedances of the 1–5Hz envelope index. At time
t − 1, the covariates are computed from signals across multiple frequency bands within a past time window
(step 1). These are then used to forecast threshold exceedances at time t (step 2). b p values from the
Anderson–Darling (AD) and Cramér–vonMises (CVM) tests for goodness of fit of the excesses to the GPD
distribution. The lowest threshold for which the p value exceeds the 10% significance level is chosen

the increases in the index and the seismic events enables its threshold exceedances to
be used to forecast eruptions.

3.2.2 Forecast Horizon and Covariate Window

In addition to computing the index from which to take exceedances, choices need to
be made on the following:

(i) The forecast horizon δt : the time period between the time window where the
covariates are computed and the forecast time.

(ii) The time window within which past observations contribute to the covariates, W .

For illustration, 1-h-ahead forecasts are made with 1 h of past data to inform the
covariates in the model (δt = W = 1h). This mimics the settings used by Brenguier
et al. (2008), Malfante et al. (2018) and Ren et al. (2020). Their analyses involved
the classification of 1-h-long signals or the generation of the covariates by scanning a
moving window of length 1h across the seismic signals. This framework is pictured
in Fig. 3a, where the time period between t − 1 and t is δt = 1h, and the covariate
window W = 1h.

Although the covariates were computed from the original high-frequency (100Hz)
data, forecastswere only produced every 10s to reduce any unnecessary computational
burden. For a practically useful workflow, this should be longer than the time required
to compute the covariates from the past hour and use the fitted model to generate the
forecast.

3.2.3 Threshold Selection

Next, the threshold to define the extreme regime is selected. This will be associated
with the covariates to forecast extreme behaviour (i.e., exceedance). Based on the
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Anderson–Darling (AD) and Cramér–von Mises (CVM) tests for goodness of fit of
the excesses to the GPD distribution (Barder et al. 2018), Fig. 3b suggests that under
a significance level of 10%, a threshold of 85 dB is reasonable, since this is the lowest
value from the right for which the p-value exceeds the significance level. At this
threshold, the null hypothesis of the excesses coming from a GPD distribution is not
rejected.

3.2.4 Covariates

To forecast threshold exceedances of the eruption index, the covariates suggested
by Malfante et al. (2018) are computed for the frequency-filtered data (0.1–1Hz, 1–
5Hz, 5–15Hz, 0.1–20Hz and high pass 0.01Hz) and their associated trace envelopes.
Malfante et al. (2018) introduce three domains of representation of the seismic time
series which could be useful: the original temporal domain, the frequency domain
where spectral content is obtained via a Fourier transform, and the cepstral domain
where the Fourier transform is computed twice to highlight the harmonic properties
of a given signal.

For each of these three representations of the seismic traces and their trace
envelopes, statistical, entropy and shape descriptor features are computed. These are
listed together with their definitions in Table 2. Each covariate or feature tries to cap-
ture a particular aspect of the signal within the covariate window. For example, while
kurtosis captures the transition between two signals, Shannon entropy describes the
distribution of the amplitude levels of a given signal.

A covariate can also take on different meanings depending on the domain it is
computed on. For example, the feature ‘i of Central Energy’ which is the time around
which the signal energy is centred or the time centroid in the temporal domain, can be
interpreted as the fundamental frequency in the frequency domain and the harmonic
frequency in the cepstral domain. In addition, while the ratio of the maximum value
over the mean value can describe the contrast and relate to the cause of the event in the
original temporal domain, in the frequency domain, it describes the spectral richness
of the signature and in the cepstral domain, the harmonic content of an observation.

To ensure that the model is not too sensitive towards extreme covariate values,
the covariates were transformed before use. Box–Cox analyses were used to select
which power or log-transformation was required to make their distributions more
similar to Gaussian distributions. After transformation, the covariates were standard-
ised using their mean and standard deviations to be on similar scales. To account
for multicollinearity, the covariates were ordered according to the increasing Akaike
information criterion (AIC) of their univariate models (for threshold exceedance and
excesses separately). Then, the pool of covariates was reduced by removing covariates
that had more than 0.6 in absolute correlation to covariates that were deemed more
informative than themselves.

3.2.5 Regression Models

As outlined in Sect. 2, a logistic regression and aGPD regressionwere fitted for thresh-
old exceedances and threshold excesses, respectively. The shape parameter of theGPD
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Table 2 Covariates considered for the dynamic extreme value models

Covariate Definition

Mean μs = 1
n

∑n
i=1 si

Standard deviation σs =
√

1
n−1

∑n
i=1(si − μs )2

Skewness 1
n

∑n
i=1

(
si−μs

σs

)3

Kurtosis 1
n

∑n
i=1

(
si−μs

σs

)4

Energy E = ∑n
i=1 s

2
i

i of central energy ī = 1
E

∑n
i=1 i · Ei

Root mean square bandwidth B =
√

1
E

∑n
i=1 i

2 · Ei − ī2

Mean skewness

√∑n
i=1(i−ī)3·Ei

E ·B3

Mean kurtosis

√∑n
i=1(i−ī)4·Ei

E ·B4
Shannon entropy −∑n

i=1 p(si ) log2(p(si ))

Rate of attack (ROA) maxi
(
si−si−1

n

)

Maximum maxi si
Minimum mini si

Ratio of maximum over mean maxi si
μs

Each is computed for the frequency-filtered time series and their associated trace envelopes in the temporal,
frequency and cepstral domains, so that a total of 14 × 5 × 2 × 3 = 420 covariates are considered for
covariate selection. In the definitions, {si : i = 1, . . . , n} refers to the signal within the covariate window,
Ei = s2i denotes the energy at index i , and p(si ) is the empirical probability of amplitude level si within
the covariate window

is fixed to the value of the estimate obtained using maximum likelihood estimation
for a constant GPD. For the January 2010 training event, this has an asymptotically
normal 95% confidence interval of (− 0.300,− 0.160) which does not include 0. The
negative shape parameter implies that the distribution of the excesses is Pareto type
II and lies within the Weibull domain of attraction which contains distributions with
short tails (i.e., finite endpoints).

The covariates in themodelswere chosen by stepwise selection based onAIC.There
are three options for stepwise variable selection: forward, backward and bidirectional.
The default configuration of the ‘stepAIC’ function in the R package ‘MASS’ is
bidirectional (Venables and Ripley 2002). For the logistic regression, a backward
search is conducted before considering forward selection. The backward direction is
often preferred over the forward direction because the full model and the effect of
all candidate variables are considered (Steyerberg 2009; Harrell 2015; Chowdhury
and Turin 2020). For the GPD regression, a forward search is used before backward
selection to avoid singularity issues that arise from having large numbers of covariates
and excess uninformative covariates in the model.

The five steps outlined in Sect. 3.2.1–3.2.5 can be repeated to model threshold
exceedances and excesses for the other frequency-filtered envelopes.
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3.3 Results

The black line in Fig. 4a shows the 1-h ahead probabilistic forecasts for threshold
exceedances of the 1–5Hz envelope. The forecasts are highest for January 2, the day
the eruption started. Focusing on January 2 in Fig. 4b, the exceedance probability
jumps about 1h before the recorded eruption onset at 10:20. This means that the fitted
forecast model is able to give a warning about 1h ahead of the eruption.

Similar to Bee et al. (2019), the goodness of fit of the logistic regression is checked
using a deviance chi-squared test. The p-value was e−1,113.53, indicating that the fit-
ted model is significantly different from a null model (a logistic regression with an
intercept term but no covariates). The usefulness of the covariates for explaining the
temporal dependence in the occurrence of the threshold exceedances can also be seen
through the reduction in the autocorrelation of the Pearson residuals in Fig. S1a of the
Supplementary Information. In contrast, little temporal dependence was observed for
the excess residuals in Fig. S1b. Hence, there was no real benefit of using covariates
to inform a dynamic GPD and a constant GPD would have sufficed. As will be seen
later, this is threshold-specific: when multiple events are used to train the model in
Sect. 5 and the lowest EVT-informed threshold is selected among the training events,
there will be autocorrelation in the excess residuals and hence benefits of modelling
with a dynamic GPD.

4 Value of Extreme Value Theory

EVT was used to select the threshold which defined the exceedances and excesses
being forecasted by the dynamic extreme value model. Figure5a shows the goodness-
of-fit plots comparing the modelled and empirical probabilities and return levels when
50% and 100% of the threshold informed by EVT were used. The latter provided a
better fit to the model assumptions.

The threshold choice is also important for determining what kind of phenomena
is being modelled and what covariates are chosen to best explain it. Figure5b shows
that for the exceedance forecasting of the 1–5Hz, 0.1–20Hz and high pass 0.01Hz
envelope indices, the forecast performance, as measured via the area under the curve
(AUC), generally improves as the threshold is increased towards that informed by
EVT. Hence, EVT has benefits for modelling in terms of both goodness of fit to the
data and forecast performance.

5 Evaluating Forecast Performance

5.1 UsingMultiple Training Events

To assess the forecast capability of the dynamic extreme value model more formally,
the model will be fitted to all three training events, and tested on the remaining test
event and the three non-events.
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Fig. 4 a Training 1-h-ahead exceedance forecasts based on the logistic regression for the 1–5Hz envelope
index and the January 2010 eruption; b zoomed into the period of significant volcanic activity (the dotted,
dashed and bold blue vertical lines denote the start and end of the seismic crisis, swarm and eruption onset
respectively). Here, the value of the black line at 09:00, for example, indicates the forecasted probability of
exceedance for 10:00

There are a few ways to determine a suitable threshold based on data from multiple
events. An initial approach might be to simply combine the data across events and
use all exceedances to inform the threshold. However, this led to a relatively high
threshold estimate of 95 with training event 2 dominating the model fit because there
were comparatively more exceedances from event 2 than events 1 and 3 (see Sect. 4
of the Supplementary Information).

An alternative approach, which will be used, would be to estimate thresholds for the
training events separately and use the lowest estimate across events. This will ensure
sufficient exceedances to represent each event. For the 1–5Hz envelope index, the
lowest threshold among the three training events was 85 dB, and the estimated GPD
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Fig. 5 a Improvement in goodness of fitwhen the threshold used increases from50% (top) to 100% (bottom)
of the value chosen by extreme value theory; b improvement in the training performance in terms of area
under the curve (AUC) for the 1–5Hz, 0.1–20Hz and high pass 0.01Hz index exceedance models when
the threshold increases
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Fig. 6 With multiple training events: comparison of goodness of fit in terms of the empirical and theoretical
quantiles of the standardised excesses when a the GPD regression is used for the excess distributions instead
of b treating the excess distribution as static through a constant GPD. Since the extreme quantiles lie closer
to the one-to-one diagonal line for the GPD regression, it fits the data better

shape parameter is ξ̂ = −0.125 with 95% confidence interval (− 0.146,− 0.104).
Tables 1 and 2 of the Supplementary Information show the chosen covariates with their
transformations and parameter estimates for the fitted logistic and GPD regressions,
respectively.

As will be seen in the next section, this threshold choice leads to 1-h-ahead forecast
probabilities which increase before the time of eruption for all three training events
and the test event while remaining low for the three test non-events. By lowering the
threshold to identify extremes across all three training events, there is more benefit of
modelling the threshold excesses dynamically because there is autocorrelation in the
excess residuals, particularly for training event 2 (see Sect. 2 of the Supplementary
Information). In contrast to the initial illustration with just training event 3 in Sect. 3,
modelling the excess distribution dynamically leads to better estimation of extreme
quantiles, though there is still room for improvement. This is illustrated in Fig. 6.

5.2 Training and Test Performance

After fixing the threshold for which to model exceedances, the dynamic extreme value
model is fitted to data from the three training events. Figures7, 8 and 9 shows that apart
from an outlier on the first day of training event 3, the forecast probabilities remain
low (e.g., below 0.3) for all three events until the time of their recorded seismic events.
For training event 1 (referring to Fig. 7b), sustained high forecast probabilities start
during the seismic swarm (between the dashed vertical lines), slightly more than 1h
before the recorded eruption at 17:00. For event 2, 1-h-ahead eruption warnings can
also be made as the forecast probabilities begin to take high values during the seismic
swarm, about 1h before the recorded eruption at 14:40 (see Fig. 8b). For event 3, the
forecast probabilities gradually increase from the time of the seismic swarm around
08:30 before jumping up to a higher plateau about an hour before the recorded eruption
onset at 10:20 as shown in Fig. 9b.
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Fig. 7 Training event 1: 1-h-ahead threshold exceedance forecasts using the lowest threshold estimated
across events. The dotted, dashed and bold blue vertical lines denote the times of the seismic crises, start
and end of the seismic swarms and the eruption onset respectively

The features of the forecast probabilities, namely the sharp jumps from near-zero
for training events 1 and 2, the gradual increase for training event 3, the presence of
outliers and the tendency to increase 1h before the recorded eruption onsets, stem
from the chosen covariates of the logistic regression. As can be inferred from their
high coefficient estimates in Table 1 of the Supplementary Information, the logistic
regression for threshold exceedance has three covariates that contribute to forecast
probabilities more than the others: 0.1–20Hz cepstral kurtosis, 0.1–20Hz cepstral
skewness and high pass 0.01Hz energy.

Figures S12 to S15 in the Supplementary Information show the time series of these
covariates for the training and test events. Unlike the 0.1–20Hz cepstral kurtosis and
skewness, the high pass 0.01Hz energy has more block-like features in its time series.
This influences the sharp jumps from near-zero for training events 1 and 2 during their
seismic swarms. In contrast, the change in high pass 0.01Hz energy during the period
of the seismic events on January 2 of training event 3 was more smooth, resulting in
a smoother increase in forecast probabilities. The block-like features result from one
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Fig. 8 Training event 2: 1-h-ahead threshold exceedance forecasts using the lowest threshold estimated
across events. The dotted, dashed and bold blue vertical lines denote the times of the seismic crises, start
and end of the seismic swarms and the eruption onset respectively

extreme value in the high pass 0.01Hz signal which causes high energy values for the
length of the moving covariate window (1h).

Since energy was defined as the sum of the squared signal, this covariate is also
very sensitive to outliers. Future exploration can be done for making the covariates
more robust to outliers. For example, instead of using the mean or average operation
1
n

∑n
i=1 fi on any sequence { fi : i = 1, . . . , n}, the median operation which is less

sensitive to outliers can be used. For covariates involving minimum or maximum
values, the 0.1 or 0.9 quantiles can be considered.

Still focusing on high pass 0.01Hz energy, Figs. S12 to S15 show that the covari-
ate values tend to increase during the seismic swarms. Since the seismic swarms for
training events 1, 2 and 3 occur slightly more than 1h prior to their recorded eruptions,
monitoring the energy values seems to provide good 1-h-ahead forecasts for the erup-
tions. It seems likely that the length of the covariate window and the forecast horizons
can be optimised depending on the expected seismic crisis and swarm durations at
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Fig. 9 Training event 3: 1-h-ahead threshold exceedance forecasts using the lowest threshold estimated
across events. The dotted, dashed and bold blue vertical lines denote the times of the seismic crises, start
and end of the seismic swarms and the eruption onset respectively

Fig. 10 Test event: 1-h-ahead threshold exceedance forecasts using the lowest threshold estimated across
events. The dotted, dashed and bold blue vertical lines denote the times of the seismic crisis, seismic swarm
and the eruption onset
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a volcano. If the seismic swarms precede the eruption by a longer time period, as
in the test event, the one-hour ahead forecast probabilities may not be so temporally
accurate. This is observed in Fig. 10 for the 1-h-ahead forecast probabilities for the
test event. Here, the seismic crisis lasts 5h 30min instead of 1−2.5h for the train-
ing events. Referring to Fig. S15 of the Supplementary Information, the sole forecast
probability outlier on October 13 and the spikes in forecast probabilities in the earlier
part of October 14 are in line with spikes in the high pass 0.01Hz energy covariate.
However, while the largest energy value was recorded during the seismic swarm (see
Fig. S15f), the forecast probability was higher nearer to the actual eruption onset. This
shows the effect of the other covariates, including the 0.1–20Hz cepstral kurtosis and
skewness, which work together to moderate the forecast probabilities. By nature of
the covariates involved, the forecast probabilities are sensitive to different aspects of
seismicity.

In addition to the training and test events, the potential for the dynamic extreme
value model for eruption forecasting is examined by looking at its performance for the
three non-events. In line with expectations, the corresponding threshold exceedance
forecasts remain very low, compared to the magnitudes during the training and test
events (see Fig. S16 of the Supplementary Information). Similar training and test
results were obtained for the 5–15Hz frequency-filtered data. The corresponding plots
are given in Sect. 8 of the Supplementary Information.

6 Discussion and Outlook

In Sect. 3, the dynamic extreme value model was fitted to training event 3, the seismic
time series for the January 2010 eruption at Piton de la Fournaise. Promising results
were obtained with spikes in the probabilistic forecasts about an hour prior to the
eruption onset. This means that in this case, 1h ahead warnings can be made with
the chosen set-up: using the 1–5Hz trace envelope as an eruption index with a 1-h
covariate window and 1h forecast horizon. Similar performance was also seen when
the model was fitted to more data in Sect. 5.

In addition to the good forecast results, it was seen that EVT is useful for choosing
the threshold fromwhich tomodel exceedances. An appropriate threshold is important
because it determines the balance between the number of exceedances used to inform
covariate selection and the adherence of the threshold excesses to the asymptotic
theory. In general, with a higher threshold, there are fewer exceedances to inform the
model which could mean higher estimation uncertainty but the excess distribution
becomes closer to a GPD.

By examining the training performance of the logistic regression for different
threshold values, the analysis in Sect. 3 showed that using EVT to choose the thresh-
old can improve forecast performance. When the threshold was increased towards its
EVT-informed value, the AUC, a measure for how well the model can distinguish
between exceedances and non-exceedances, generally increased for the 1–5Hz, 0.1–
20Hz and high pass 0.01Hz envelope indices. Intuitively, the threshold determines
what it means to be extreme; hence it would affect the covariates selected and thus the
forecast performance.
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A related note to defining what it means to be extremes is that the chosen threshold
and forecast probabilities are volcano-specific. In this paper, the dynamic extreme
value model was fitted for one volcano, Piton de la Fournaise. This was based on its
seismic data and hence the chosen thresholds and the forecast probabilities are specific
to this volcano. If one were to fit similar models for other volcanoes separately, their
forecast probabilities would not be directly comparable since they are specific to each
volcano’s natural characteristics such as eruption frequencies.

In practice, one would aim to train the forecast model with as much relevant data
as possible. Section5 presents some considerations to make when incorporating data
from different events. For example, the p-values of GPD goodness-of-fit tests identify
the threshold beyond which the excesses can be seen to follow a GPD. This procedure
assumes that the same constant GPD applies to all the training events. However, as
observed, different events can suggest different thresholds. Specifically, for training
event 2, a higher threshold was inferred for the energy-related envelope index. This
difference in envelope index values between events could be because some eruptions
occur closer to the measurement station or because the eruption itself has a higher
flux.

The proposed strategy to deal with the different threshold choices is to take the low-
est identified threshold. The GPD regression component of the dynamic extreme value
model would then model the non-stationarity of the GPD with appropriate covariates.
In fact, modelling the excess distribution dynamicallywas seen to bemore useful when
the model was trained using multiple events and the lower threshold as compared to
previously with just a single training event in Sect. 3. If instead a higher threshold was
used, as suggested when all the training data were combined, only large events would
be forecasted because training event 2 would dominate the model fit, resulting in the
inability to forecast training events 1 and 3 well.

The proposed modelling framework is still far from operational use and can be
extended in various ways. In the analysis, 1h covariate and forecast windows were
used. More work can be done to optimise these durations which are likely to be related
to the seismic crisis and swarm durations. While the training events had seismic crises
which lasted about 1–2h, the test event had amuch longer seismic crisis duration of 5h
30min. This could explain why the training forecasts were more temporally precise
than the test forecasts. One could also experiment with computing the trace envelope
in different ways. For example, different sliding windows to compute the Hilbert
transform can be tested. Non-Hilbert transform methods of estimating amplitudes can
also be used (Rosenblum et al. 2021). In addition, one might investigate the effect of
different significance levels in the goodness-of-fit tests.

The analysis focused on seismic signals in the 1–5Hz frequency range. As noted in
the literature (Bormann et al. 2013) and observed from theAUC comparison in Fig. 5b,
some frequency bands can bemore useful for eruption forecasting than others. By com-
bining information across useful frequency ranges through a joint, multivariate model,
more comprehensive eruption forecast can be provided. Similarly, one can incorpo-
rate different monitoring signals such as gas emissions and ground deformation in the
model. So far, only indices and covariates based on seismic signals have been used
due to the prevalence of seismometers as volcano monitoring tools. Future extensions
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can include different monitoring signals and account for their interdependence and
shared covariates via joint models.

Data from one seismic station (UV05) were used in the analysis. The promising
results indicate that such methods can be useful for volcanoes where there is only one
measuring station. To check that the performance of the modelling approach is not
dependent on the choice of UV05, which is the closest available station to the January
2010 eruptive centre, and a product of hindcasting, additional analyseswere conducted
for two other stations (UV08 and UV11). The results are provided in Section 9 of the
Supplementary Information.

The training and test event results for theUV08 andUV11-fittedmodel indicate that
a model fitted to another station can be used to forecast eruptions that occur closer to
other stations and this can be useful for mitigating the issue of a damaged seismometer.
Nevertheless, it is preferable to use the model fitted to station data which is closest to
the eruptions in the training data and to use the model to forecast at the same station.
This is because when the station is further away from the eruptive centre, the threshold
exceedances of the envelope may be linked with other mechanisms which precede or
occur after the eruption.

With more data, each eruption event can be matched to the nearest station and
this station-specific training data can be used to build station-specific models. Future
work can look into linking these station-specific models in a multivariate framework,
taking into account their spatiotemporal relations. Since the distance from the eruption
location is related to higher detected energies, an additional benefit of extending the
framework tomodel signals from themonitoring network as awholemay be the ability
to inform not just the timing, but also the location of the eruption through the varying
forecast probabilities at different stations. In line with the extreme value approach,
a multivariate generalised Pareto framework, similar to that by Rootzén and Tajvidi
(2006), could be useful for extensions to multivariate and spatial models.

Given that the dynamic extreme value model has worked well for financial fore-
casting (Bee et al. 2019) and can be adapted for volcanic eruption forecasting, it is
postulated to have high potential for wider applications. In particular, high sampling-
rate data were used in both the financial and volcanic contexts. For the former, it was
used to compute realised variations over relatively short horizons while in the latter, it
helped to separate different frequency bands of interest. High sampling rate data rele-
vant to other natural hazards and crises are also beingmade available; however, what is
deemed as a high sampling rate is highly context-specific. For example, for sea levels,
data were previously publicly available only at the monthly or annual scales. Hence,
1–15-min resolution is deemed a high sampling rate. These are increasingly sought
after to study extreme sea levels and coastal flooding (Woodworth et al. 2016; Ozsoy
et al. 2016; Zemunik et al. 2021). Using such data, the dynamic extreme value model
can be adapted to forecast extreme sea levels and their impact on coastal communities.
While high sampling rates are good to have, the framework itself does not depend on
this, and in the absence of such data, one can still forecast, albeit on a coarser scale.

To adapt the dynamic extreme value model to wider settings, there are sev-
eral general considerations, namely, what is a suitable index to compute threshold
exceedances? What are reasonable forecast horizons and covariate windows? What
covariates can be used to inform future behaviour? One might also consider using
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algorithms for selecting the threshold automatically (see for example, Barder et al.
2018).

A general practical consideration that is shared across all contexts, be it finance,
volcanoes or other hazards and crises, is the translation of the forecast probabilities
into decisive action. What forecast probability warrants a warning or more drastic
measures such as evacuation? The optimal strategy may not be straightforward but
may involve many competing priorities and constraints, and should be determined on
a case-by-case basis with multiple stakeholders.

Supplementary Information The online version contains supplementary material available at https://doi.
org/10.1007/s11004-023-10109-2.
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