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Abstract
Geophysical data inversion typically involves the numerical solution of high-
dimensional ill-posed problems. To reduce the non-uniqueness, prior information in
the form of appropriate regularization schemes, together with a proper representation
of the quantities of interest, is helpful. To this end, methods are recommended that
take into account a low-dimensional formulation of the inverse problem, a suitable
representation for the quantities of interest, and a helpful numerical procedure. Struc-
tural aspects of the objects of interest, such as the dimensions of structures, are often
available as prior knowledge in archaeological magnetic surveys. However, they are
not easily exploited by classical geophysical data inversion applications; for example,
a typical representation together with Tikhonov-like regularization schemes or total
variation, which promote smoothness in the solutions, occlude underlying structural
information or retrieve fuzzy boundaries. In this work, a three-dimensional inversion
of magnetic data is developed based on an evolution strategy. It is adapted to a numer-
ical representation that easily incorporates aspects achievable at archaeological sites.
Synthetic test cases and a magnetic dataset corresponding to an archaeological site are
used to report the results.
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1 Introduction

Classicalmethods of geophysical data inversion rely on solving optimization problems
in a regularized least-squares setting (Vogel 2002; Tarantola 2005). These formulations
use a study domain discretized by rectangular prisms (Plouff 1976), which leads to
large-scale computational inverse problems since a physical propertymust be retrieved
on each prism. In other cases, irregular meshes with finite-difference methods are
preferred (Jahandari and Bihlo 2021). In these scenarios, the role of both the regu-
larizing scheme and the computational procedure are fundamental for dealing with
the non-uniqueness on solutions (Smith 1961) within an achievable time. Moreover,
the correct values of regularizing parameters are not known; this leads to methods
such as the generalized cross-validation presented in Haber and Oldenburg (2000) to
estimate the regularization parameter globally, or methods such as in Utsugi (2019),
where the L-curve method is used to balance the effect of a combined L1-L2 norm-
based regularizing term. See also Reichel and Rodriguez (2013) for an interesting
paper regarding ill-posedness in discrete inverse problems. In the worst cases, manual
parameter tuning is used. Applications with different constraints (Grandis and Dahrin
2014; Lu and Qian 2015) or regularizing schemes appear in the literature. In Buccini
and deAlba (2021) a variational formulation is used, andDeidda et al. (2020b) propose
a sparsity-promoting regularizing term, both in electromagnetic induction in the fre-
quency domain. See for example Deidda et al. (2020a) for aMATLAB implementation
of inversion of electromagnetic induction in the frequency domain using a nonlinear
least-squares setting with a regularization scheme based on truncated singular value
decomposition on the Jacobian matrix.

In another way, some authors adopt a solve-then-discretize approach, formulating
the geophysical inversion problem in a theoretical framework and then computing
derivatives (as in Chaumont-Frelet et al. 2019 for an inverse geophysical resistivity
problem) using the adjoint method. These contributions are engaging from a math-
ematical point of view, but in some applications, the corresponding adjoint operator
may be difficult to compute.

Bayesian formulations of geophysical inverse problems are attracting growing
attention. See Sambridge and Mosegaard (2002) for a summary. In this approach,
the quantities of interest are treated as random variables, and therefore the inversion
results would be described by a probability distribution (i.e., the posterior distribu-
tion). The numerical inspection of the posterior distribution is performed usingMarkov
chain Monte Carlo (MCMC) methods, where the governing geophysical model equa-
tions should be evaluated a large number of times. MCMC methods can be limited
by the high dimensionality and nonlinearity of the models, and by multimodality on
the corresponding posterior distributions, as described in Mosegaard and Tarantola
(1995) and Oh and Kwon (2001). Thus, MCMC implementations are hardly feasible,
in terms of computational cost, unless a low-scale surrogate model representation is
proposed, as discussed in Fregoso et al. (2020).

Artificial intelligence and heuristic methods are becoming ubiquitous in scientific
applications, and their use in geophysical inversion problems is growing steadily.
These methods may be preferable to MCMC or local optimization methods because
they do not require linearization assumptions and derivative computations, and they
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avoid numerical instabilities due to matrix inversion (Gallagher and Sambridge 1994).
Within this framework, some contributions rely on specific representations for target-
ing source bodies and develop a genetic algorithm (GA) to retrieve them (see for
example de Vasconcelos Lopes and Assumpção 2011; Chen et al. 2006). This is also
the focus of the current work. Namely, a numerical representation for the target source
bodies is given, and a GA is used to explore a particular space of solutions.

Geophysical natural field methods (gravity and magnetic fields) have been used
in archaeological studies, before or during excavations, because they are helpful in
accurately delineating sites in a noninvasiveway. SeeGaffney et al. (2002) andGaffney
(2008) for reviews of geophysical techniques in archaeology.Archaeologicalmagnetic
prospecting has been applied to the three-dimensional modeling and inversion of
buried structures, taking into account specific aspects of targeting structures (Piro et al.
2007; Cardarelli et al. 2008). Also, in Schettino et al. (2019) and Lodge and Holme
(2009), archaeological anomalies are separated from geological source contributions
to improve the identification of archaeological features. Assumptions such as the
particular shape of the structures and a constant magnetization value to enclose the
domain beyond a certain depth are naturally employed.

In this work, the main concerns are focused on presenting a numerical repre-
sentation for target structures as a surrogate model, which allows one to propose a
low-dimensional magnetic inversion problem, overcoming the misleading boundary
problem appearing in the estimates obtained from classical regularization schemes. In
addition, a suitable numerical procedure based on an evolution strategy is introduced
to handle such a representation within the inversion methodology.

The paper is organized as follows: In Sect. 2, the main aspects of the magnetic field
equations are reviewed. The proposed representation, model assumptions, and the
resulting statement of problems are described in Sect. 3. The evolution strategy steps
corresponding to the numerical procedure designed for the proposed representation are
described in Sect. 4. Thismethodology demonstrates capabilities for the reconstruction
of sharp structures, such as walls, in the challenging test cases described in Sect. 5.
The results and conclusions are discussed in Sect. 6.

2 Physical Model

The equation describing the local surface magnetic field is given by

A(r) = C
∫∫∫

J (r ′) · ∇
(

1

|�r |
)
dr ′, (1)

where r is the radius vector from the origin (fixed on a reference point of coordinates
(x0, y0, z0) on the surface) to the point of analysis, r ′ is the radius vector from the origin
to the differential element dr ′ of the body, constantC = μ0

4π (μ0 = 4π×10−7N/A2) is
themagnetic constant,�r is the difference vector r−r ′, and J (r ′) is themagnetization
vector of the differential element of the body.

By assuming the volume discretization as a three-dimensional set of rectangular
prisms, each with constant magnetization, Eq. (1) is consequently discretized and can
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be solved analytically for each surface reference point. Then, Eq. (1) leads to a linear
system of the form

Am = d, (2)

where A is known as the sensitivity matrix, and its entries are computed from the
discretization of A(r). The vector m is a column vector (unknown) containing the
magnetization value of each single prism of the domain discretization, and d is a
vector containing the observation data or anomaly measured on the surface. More
details regarding the construction of the linear system (2) can be found in Blakely
(1995).

Solutions to Eq. (2) are typically obtained by defining a regularized least-squares
optimization problem

m∗ = argmin
m

‖d − Am‖2 + αR(m), (3)

where R(m) represents a regularization term, and α is a regularization parameter.
The regularization term in Eq. (3) is also called prior knowledge in the literature, or

prior distribution in the Bayesian approach to inverse problems (see Stuart (2010) for
a very complete paper on Bayesian inverse problems). This term models information
about the in-volume distribution of magnetization values and is independent of the
data, as a guess or an estimate. A twice continuously differentiable operator used as
a regularization scheme (which is the case of Laplacian or Tikhonov type schemes)
implies that m∗ should also be twice continuously differentiable, not as a vector
but as a three-dimensional magnetization distribution. This translates into a smooth
variation of the magnetization values inm∗, even around the boundaries of the source
body. It is noted in some papers (e.g. Li and Oldenburg 1996; Fregoso et al. 2015)
that source bodies are well located in their reconstructions, but the corresponding
boundaries are fuzzy. In the context of archaeological studies, source bodies are sharply
defined structures, so the smoothness imposed by the regularization scheme can lead
to misleading reconstructions. Therefore, the goal of this work is to obtain estimation
results using a regularization strategy that preserves the boundaries of the source
bodies. The research hypothesis of this work is that such a goal can be achieved by
focusing on the numerical representation instead of a smoothing term.

3 Problem Statement

Archaeological sites are composed of regular structures such as walls, pillars, or tiles.
The goal of usingmagnetic data inversion in archaeological studies is to obtain both the
localization and a non-smooth estimation of the shape of these underlying structures.

Partial excavations of archaeological sites are often carried out as part of prelimi-
nary studies. During these excavations, information is obtained about epoch, culture,
material composition, and depth, among others. This particular scenario, where some
information about the site is known but further details are needed before extending
the excavation area, motivates the present work.
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Fig. 1 Panel (a) depicts an archaeological site. Panel (b) shows a representation consisting of walls (green
and blue), columns (red), and a base ground (yellow)

Information coming from partial excavations of archaeological sites should be
incorporated into the optimization problem to reduce the ill-posedness of the inverse
problem. However, this information may not be easily encoded in a regularization
term.With this in mind, a representation for source bodies that is able to reproduce the
walls and/or the columns is proposed. In other words, the methodology of this work
is designed to recover rectangular structures instead of full volumetric magnetization
maps. Details are described below.

Figure 1a shows a three-dimensional scene corresponding to an archaeological site.
It is noted that the explored area of a site is mainly composed of several walls with
similar structural characteristics, and it is therefore assumed that similar structures are
present within the unexplored areas. In addition, the depth of such a site is approxi-
mately constant. Figure 1b illustrates the proposed representation. First, it is assumed
that each structure is located directly above a base ground (yellow in Fig. 1b). The
depth of this base ground is assumed to be known from the excavation data and is not
being estimated since it acts as a boundary for the depth of the domain. Next, in this
context, wall-like structures (represented as cyan, green, and red rectangular prisms
in Fig. 1b) are defined by their corresponding corners. Thus, a possible representation
for the scenario of Fig. 1 consists of a set of independent rectangular prisms {Pi }ni=1,
one for each structure, defined by the coordinates of their respective corners. Then,
each prism Pi will have a constant magnetization response J i and will be modified
within a numerical process. Note that the three structures in Fig. 1b are equivalent
under translation and scaling operations. For example, by moving the green rectangle
to the right, reducing its length and increasing its height, the red structure is obtained.
This fact becomes advantageous for the numerical process because no assumptions
about specific positions, dimensions, number of structures, or intersections between
them are needed.

Since the scenario ofFig. 1a canbe reproduced as a combinationof several structures
like those shown in Fig. 1b, it is assumed that an archaeological site is composed of
the geometric union of prisms such that
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Fig. 2 A single prism Pi defined
by corresponding upper and
lower vertices qui , qli is the basis
of the representation

n⋃
i=1

Pi , (4)

where Pi is defined by its corresponding vertices qui , qli as shown in Fig. 2. Starting
from an arbitrary prism Pi , different structures such as north–south-oriented walls,
east–west-oriented walls, or columns with different widths and heights can be gener-
ated by moving individual positions of qui and qli . This is the basic idea behind the
numerical method described in Sect. 4.

The targeting optimization problem is formulated from the representation (4) as

m∗ = arg min
{Pi }ni=1

‖d − Am({Pi }ni=1)‖2, (5)

subject to

Z = qli z < qui z < 0, for all i = 1, . . . , n, (6)

0 ≤ qli x , q
u
i x ≤ X , for all i = 1, . . . , n, (7)

0 ≤ qli y, q
u
i y ≤ Y , for all i = 1, . . . , n, (8)

area(Pi ) ≥ 0, for all i = 1, . . . , n, (9)

where constraint (6) states that each Pi is located just above a base ground (at a known
depth Z ), and it is not higher than the surface level. The constraints (7) and (8) are
used to keep the prisms Pi inside the study domain. A bounded domain is assumed,
such as x ∈ [0, X ], y ∈ [0,Y ], and z ∈ [0, Z ], where x, y, and z denote the coor-
dinates axis. The constraint (9) avoids physically infeasible structures. Furthermore,
A is the sensitivity matrix of Eq. (2), and the term m({Pi }ni=1) corresponds to map-
ping the associated constant magnetization response of every prism in {Pi }ni=1 onto
a single vector m. That is, given a volume discretization in rectangular prisms r ′s ,
s = 1, . . . , M , each prism Pi has an associated vector vi = (vi1, . . . , v

i
M ), with

vis =
{

0 , for r ′s /∈ Pi ,
J i , for r ′s ∈ Pi ,

(10)
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where J i is the magnetization response associated to the prism Pi . That is, Eq. (10)
returns a vector vi , of the same size asm, filled with the J i value at prisms r ′ enclosed
by the prism Pi , and zeros elsewhere.

The vector m({Pi }ni=1) is then defined as

m = m({Pi }ni=1) = (m({Pi }ni=1)1, . . . ,m({Pi }ni=1)M ), (11)

where m({Pi }ni=1)s = max{vis}ni=1, for s = 1, . . . , M . This provides a configuration
of magnetic response values in the entire domain generated by all the rectangular
prisms {Pi }ni=1. In other words, the mapping on Eq. (11) assigns a magnetization
value different from zero to the rectangular prisms of the discretized domain that are
enclosed by any of the rectangular prisms Pi , and the larger magnetization response
value J i is chosen whenever two or more rectangular prisms Pi intersect between
them. Note that the magnetization response value does not sum at the intersection of
two or more prisms Pi . The resulting vectorm contains constant value J (r ′) on small
prisms r ′ contained in the cyan, red, and green rectangular prisms shown in Fig. 1b.
Note that the effect of the base volume (shown as a yellow rectangle in Fig. 1b) is
neglected.

Note that Eq. (5) does not explicitly establish a regularization term in comparison
with Eq. (3), but this does not mean that (5) has no regularization. On the contrary,
since the representation of the unknowns is modified, it follows that the search space
for solutions changes. In this case, this space corresponds to the volume that can be
covered by themap (11), built from a set of rectangular prisms {Pi }ni=1, restricted to the
domain � = [0, X ] × [0,Y ] × [0, Z ] ⊂ R

3. Now, observe that a set {Pi }ni=1 covering
thewhole domain� is always admissible, so there is no a priori preferred configuration
of prisms {Pi }ni=1. Then, they are uniform within�, and the regularization term in Eq.
(5), if any, should be a constant that depends only on the domain dimensions and thus
does not affect the solutionm∗. In this sense, the representation plays the same role as
a regularization scheme and is a key aspect of the formulation presented herein, since,
unlike traditional methods, no smoothness is imposed on the solutions.

4 Evolution Strategy

The inversion of geophysical data using stochastic methods is a very active research
area (Jamasb et al. 2019; Fernández Álvarez et al. 2008; Pace et al. 2022, 2021;
Nava-Flores et al. 2023; Nagihara and Hall 2001; Chen et al. 2006). They are used
to treat various geophysical data, not only magnetic data, mainly because stochastic
methods make it possible to generate several possible inversion models and to convey
a quantitative sense of uncertainty (Caumon 2010; Athens and Caers 2022).

The optimization problem (5)–(9) cannot be solved by gradient descent methods
(likeNewton’smethod), because themapping (10) is discontinuous.Alternatives could
be based on derivative-free methods such as heuristics (see interesting works based
on meta-heuristics methods in Balkaya et al. 2017; Nava-Flores et al. 2023), Bayesian
methods (see for example Wang et al. 2017; Sambridge and Mosegaard 2002; Oh and
Kwon 2001), or evolution strategies. For this aim, evolution strategies (ES) are chosen
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Fig. 3 General scheme of an ES algorithm. The population evolves through the ES operations to search for
best-fitted individuals

because the design of the evolution steps can be done straightforwardly and naturally
(Beyer 2001; Beyer and Schwefel 2002).

Figure 3 illustrates the general scheme of ES algorithms. They are inspired by
biological natural selection (or evolution). The initial set of individuals, or the initial
population (in the blue step), is evaluated in a fitness function. This process character-
izes individuals according to their fitness level, such that individuals with the highest
fitness levels are selected. Selected individuals are crossed and mutated (in the red
step) to produce new individuals (red arrow). The similarity between natural selection
and ES is driven by the crossover and mutation steps. The goal is to generate new indi-
viduals that are sufficiently different from their parents to maintain high fitness across
generations. Thus, the new population is composed (in the purple step) of crossed and
mutated individuals and their parents (selected best-fit individuals in the white arrow).
Now the ES design for the purpose of this work is presented. The algorithm is referred
to in the following as the restricted prisms evolution strategy (RP-ES).

Let Pk denote the population in generation k as a set of N individuals

Pk =
{
Pk

j

}N

j=1
,

where each individualPk
j is composed of a set of n rectangular prisms that are referred

to in the following as RP-ES structures

Pk
j = (Pk

j1 , . . . , P
k
jn ), (12)

recalling that Pk
ji

= (quji
k, qlji

k
) for i = {1, . . . , n}, and k indicates the corresponding

generation. Then, a mapping is defined as

f (Pk
j ) = m(Pk

j ) = m({Pk
ji }ni=1), (13)
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wherem({Pk
ji
}ni=1) is the map defined in Eqs. (10) and (11). The corresponding RP-ES

steps are described as follows:

1. Initialization. Each individualP0
j at initial populationP

0 is randomly generated
as

P0
j = (P0

1 , . . . , P0
n ), where P0

ji = (quji
0
, qlji

0
),

and quji
0 = (quji x , q

u
ji y

, quji z)
0,

qlji
0 = (qlji x , q

l
ji y

, qlji z)
0, with

qlji x , q
u
ji x

∼ U [xmin , xmax ],
qlji x ≤ quji x ,

qlji y, q
u
ji y

∼ U [ymin , ymax ],
qlji y ≤ quji y,

quji z ∼ U [zmin , zmax ],
qlji z = zmax .

Here, xmin, ymin, zmin, xmax, ymax, and zmax indicate the bounds of the study
volume, and U corresponds to a uniform probability distribution. Note that the
initial population is generated according to the constraints (6)–(9).

2. Evaluation. The evaluation step is performed by evaluating each individual in the
population on the fitness function. According to the equations (5)–(9), the fitness
function is defined as

F(Pk
j ) = −‖d − A f (Pk

j )‖2, (14)

for the generation k, where f is defined as in Eq. (13). The fitness value of each
individual is the result of evaluating that individual in F . Note that the function F
is defined as negative because ES algorithms encourage the individuals with the
highest fitness to be taken. That is, the ES algorithmmaximizes the fitness function.
Thus F(Pk

j ) is negative for allP
k
j , and the highest fitness value is reached when

F(Pk
j ) = 0.

3. Selection. Once all individuals have been evaluated on the fitness function, they
are sorted according to the corresponding fitness level to produce

P̃k = sort{Pk}.

The selected population SPk is built as the best �ρs N� individuals as

SPk = {P̃k}�ρs N�
j=1 ,

where ρs ∈ [0, 1) is known as the selection rate.
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4. Crossover. The crossed population CPk , consisting of crossed individuals CPk
j ,

j ∈ 1, . . . , �ρs N�, is generated by crossing individuals coming from the selected
population SPk according to the following rule

CPk
j =

{
SPk

j with probability ρc,

C̃Pk
j with probability 1 − ρc,

where C̃Pk
j is obtained as follows.

(i) Randomly choose SPk
v , v 
= j .

(ii) For each component i of the individual (coordinates of the prisms)

C̃Pk
ji =

{
SPk

ji
with probability ρc,

(1 − αi )SPk
ji

+ αi SPk
vi

with probability 1 − ρc,

αi is randomly chosen from {0, 0.5, 1} for each i .
5. Mutation. Individuals from the crossed population CPk are modified to create a

mutated population denoted by MPk . Each individual CPk
j , j ∈ 1, . . . , �ρs N�

is mutated as

MPk
j =

{
CPk

j with probability ρM ,

M̃Pk
j with probability 1 − ρM .

In turn, M̃Pk
j is generated from CPk

j by randomly choosing and applying one
of the following modifications.

– Choose x from {−2�x ,−�x , 0,�x , 2�x }, and y from {−2�y,−�y, 0,�y,

2�y}. For every prism Pk
ji

∈ CPk
j , move its coordinates as

quji
k + (x, y, 0),

qlji
k + (x, y, 0),

with probability ρM .
– Choose z from {−2�z,−�z, 0,�z, 2�z} and a prism Pk

ji
∈ CPk

j . Move its
height as

quji
k + (0, 0, z).

– Choose z from {−2�z,−�z, 0,�z, 2�z}. For every prism Pk
ji

∈ CPk
j , move

its height as

quji
k + (0, 0, z).
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– Select a single element Pk
ji

∈ CPk
j and perform one of the following actions

quji
k + (x, 0, 0), quji

k + (0, y, 0),

qlji
k + (x, 0, 0) or qlji

k + (0, y, 0),

where x is chosen from {−2�x ,−�x , 0,�x , 2�x }, and y is chosen from
{−2�y , −�y, 0,�y, 2�y}.

– Every Pk
ji

∈ CPk
j remains equal with probability ρM or is replaced by a new

one obtained from the initialization rule (step 1).

The values of �x ,�y , and �z correspond to the mesh discretization step along
the x , y, and z directions, respectively.

6. Update. Build a new population as the unionPk+1 = Pk ⋃
MPk . Set k = k+1

and repeat from step 2 until convergence.

Now, some important aspects of theRP-ESalgorithmare noted. First, since eachRP-
ES structure is described by only two points (see (4)), the complexity of the problem
and the computational cost are greatly reduced. Second, the generation of a new
individual P j

0 remains unbiased, as do the elements generated in the ES operations.
The latter guarantees an optimal global search over the solution space.

The convergence study of the RP-ES algorithm is beyond the scope of this paper.
However, due to the stochastic nature of the ES in general, a study in this direction
will reside in Markov chain Monte Carlo theory. This will be explored in future work.

5 Experiments

In this section, the capabilities of the RP-ESmethod are explored in three synthetic test
cases and one real data case. The specific configurations are described in each case.
Since themagnetization values of the structures may be known from partial excavation
information, and the magnetization value of the surrounding material is also directly
observable, it is possible to establish a priori known contrast magnetization values. In
the synthetic experiments, the contrast magnetization value is 1A/m for each structure,
and themagnetization of the surroundingmedium is assumed to be zeroA/m.Gaussian
noise with mean μ = 0 and variance σ 2 = 1% of the maximum anomaly value is also
added.

For a quantitative evaluation of the algorithm performance, the root mean square
error (RMSE) and the relative root mean square error (RRMSE) are calculated accord-
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ing to the following expressions

RMSE =
√√√√1

s

s∑
i=1

(xi − x̂i )2,

RMSE =
√√√√ 1

s

∑s
i=1(xi − x̂i )2∑s

i=1 x̂
2
i

,

where {xi }si=1 is a set of true values and {x̂i }si=1 is a prediction set for those true
values. Thus, the RMSE and RRMSE are computed to evaluate the RP-ES estimation
in two aspects: in the first, the true data {xi }si=1 are the anomaly data, and therefore
the predictions {x̂i }si=1 are obtained by evaluating Eq. (13) for the elite estimates.
This evaluation will be referred to as the anomaly RMSE and the anomaly RRMES,
respectively. The second aspect is the evaluation of the in-volume estimation. Then the
true data corresponds to the vector m of the test case, and the prediction corresponds
to the vectorm obtained from the elite estimation of the algorithm. This is hereinafter
referred to as the structures RMSE. The results corresponding to each test case are
reported in Tables 1, 2, and 3.

5.1 Parameter Tuning

In all the experiments, several runs were performed to choose a good parameter setting
for the RP-ES algorithm. The values of the parameters were chosen on the basis of the
recommendations reported in Balkaya et al. (2017): selection rate ρs = 0.5, crossover
rate ρc = 0.95, and mutation rate ρM = 0.5. Then, the values were changed slightly
one at a time, and a run of 1,000 iterations was performed. The combination of values
that gave the best qualitative result was chosen, and 20 runs of 2,000 iterations were
performed to obtain the statistics reported below.

The number of iterations was chosen by observing the graph of the fitness function.
In all cases it was observed that the negative logarithmof the fitness function drastically
reduces its value before the first 1,000 generations (see for instance Fig. 5). After the
first 1,000 generations, the changes were minor. Thus, after 2,000 iterations, no large
changes in the estimate are expected.

The most important concern in the parameters of the algorithm is the number of
individuals and the number of RP-ES structures of the algorithm. Both are tunable
parameters that involve a trade-off between the complexity of the reconstruction and
the computational cost. Thus, one of the main advantages of the presented formulation
is that it is able to provide reasonable estimates even when the number of source
bodies is unknown (as is confirmed by the experiments below). To do this, the RP-
ES algorithm must be set up with a sufficiently large number of RP-ES structures
n. In principle, the number of individuals N can be determined as a factor of the
number of RP-ES structures n. Suppose N = kn with k > 0. Then N should be large
enough. However, since each individual must be evaluated in the fitness function, the
computational cost could grow rapidly as n increases.
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Fig. 4 Single wall column test case. The wall is represented as a rectangular prism in panel (a). The
corresponding noisy anomaly is shown in panel (b)

On the other hand, during the experiments it was observed, first, that a very large
number of RP-ES structures n concerning the number of source bodies leads to a slow
execution of each iteration of the RP-ES algorithm, and second, it turns out that the
RP-ES structures tend to a single mean structure. This is illustrated in the following
example. In a test case with, say, two source bodies, using a value of n ≈ 20, some RP-
ES structures of one individual identify one source body, and some RP-ES structures
of another individual identify the other source body. Then, after the ES steps, the
RP-ES structures are averaged, resulting in RP-ES structures located in the middle of
the two source bodies that are difficult to move toward either source bodies since both
are equally close. This situation becomes more common as n grows or when there are
multiple source bodies close together. This is taken into account when choosing the
number of prisms in each experiment.

5.2 SingleWall Case

Consider a single wall that is represented as a rectangular prism with a length of 10m
in the north direction, a height of 3m, and a thickness of 1m (in the east direction). This
wall is placed at 5m north, 10m east, and 5m depth as shown in blue in Fig. 4a. The
dashed black lines are the corresponding vertical profiles for the wall. The constant
magnetization of this wall is assumed to be 1 A/m. The anomaly generated by this
source body with additive Gaussian noise is shown in Fig. 4b. The location of the
source body is shown in white, and the contour lines of the anomaly are shown in
black.

A north-facing inversion domain with dimensions of 20m × 20m horizontally and
5m vertically is considered for this test case. It is discretized as prisms of 1m × 1m
horizontally and 0.5 m vertically. The magnetic anomaly is assumed to coincide with
the surface of the inversion domain. This is as 20m × 20m with a spacing of 1m in
each direction. This results in 2,000 rectangular prisms and 400 anomaly data points.
The magnetization of the wall is 1 A/m, and it is assumed that the surrounding domain
has magnetization of 0 A/m. It is assumed that the anomaly corresponds to a site
located at geographic coordinates 20.745611◦ N and −104.164944◦ E, altitude 1,450
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Fig. 5 The performance of the elite approximation is shown in blue. Comparison plots of the elite estimation
against the source body are shown in panels (a), (b), and (c)

m above the sea level, and observed in the year 2019. There is no particular reason for
choosing this geographic location and year.

The parameters of the RP-ES algorithm are defined as follows: n = 5 RP-ES
structures, N = 100 individuals, selection rate ρs = 0.5, crossover rate ρc = 0.8, and
mutation rate ρM = 0.8. These parameters of the RP-ES algorithm have been chosen
to promote the search in the space of solutions (ρc and ρM high) (Balkaya et al. 2017).

Tomonitor the performance of the numerical procedure, and to compare the estima-
tion with the ground truth, the plots in Fig. 5 are generated along the RP-ES iterations.
In each plot, the 2,000 prisms r ′ comprising the volume study are arranged on a single
array and formed along the horizontal. The corresponding y-axis indicates the associ-
atedmagnetization value for each prism r ′ (array entry). Bluemarkers with a value of 1
A/m indicate prisms constituting the ground truth (wall in Fig. 4a), while blue markers
with values of 0 A/m correspond to prisms in the surrounding medium. Red markers
correspond to the approximation. Figure 5a, b, and c show the plots corresponding to
the estimation given by the best-fit element (elite), at 500, 1,000, and 5,000 generation
numbers, respectively, in red circular marks. In this sense, the red and blue markers
coincide when the elite estimate and the source body exactly match.

The algorithm is run for 5,000 generations in this test case, and it is observed that
the negative fitness value decreases very rapidly during the first 1,000 generations.
The remaining iterations are presented here to illustrate the numerical convergence
and stability of the RP-ES algorithm near the solution in this test case.
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Fig. 6 Estimation for single wall test case after 5,000 generations is shown in red. The source body is shown
in blue in panel (a) and in white in panel (b)

In Fig. 6, the approximation corresponding to the elite element after 5,000 gener-
ations of the RP-ES algorithm is shown in red for the single wall test case (shown in
blue). Note that because the approximation is very close to the source body, the red
and blue structures are indistinguishable in both perspective and plain views (Fig. 6a
and b, respectively).

Recall that each individual Pk
j of the population in the RP-ES algorithm is com-

posed as the mapping Eqs. (10) to (11) which allows intersection between the RP-ES
structures Pk

ji
, n = 5 for this test case. The fact that this test case is composed of a sin-

gle source body and the number of RP-ES structures is greater than 1 is not a drawback
for the algorithm. As can be seen in the equations from (10) to (13), the mappingPk

j

is defined as the union of its corresponding structures Pk
ji
, so the intersection of such

structures is allowed. As a resulting behavior, in Fig. 6, the n = 5 RP-ES structures
forming the elite element are overlapped on a single coincident red rectangular object.
In other words, this simple test case shows that the RP-ES algorithm can handle more
RP-ES structures than the number of existing source bodies.

To explore the robustness and stability of the algorithm, 20 independent runs of
2,000 generations were performed. The elite elements at the end of each run were
averaged to produce a mean estimate. This average is plotted in Fig. 7. In Fig. 7a, the
vertical profile of the averaged elites in the northern direction is shown. In Fig. 7b,
the vertical profile in the eastern direction is shown, and the in-plant view is shown
in Fig. 7c. In all three panels, the position of the source body is marked by a white
dashed line.

As a complement to the estimates shown in Fig. 7, and with the aim of examin-
ing the uncertainty of these estimates, Fig. 8 shows histograms generated from the
coordinate positions of each RP-ES structure in each elite estimate for the same 20
independent runs of Fig. 7. The histograms correspond to the directions east (Fig. 7a),
north (Fig. 7b), and depth (Fig. 7c), and the position of the source body is indicated by
black dashed lines. For example, in the eastern direction, the source body is located
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Fig. 7 Average approximation obtained from the elite individuals after 2,000 generations in 20 independent
runs. Panel (a) shows the northward profile, panel (b) the eastward profile, and panel (c) the in-plant view.
The color bar indicates the magnetization level in A/m, and the dashed white line indicates the position of
the source body

at 10m and has a width of 1m. Then two vertical lines at 10m and 11m are drawn in
Fig. 7a. Two aspects are observed in the histograms: first, the positions of most of the
estimating prisms within the elite elements are often close to the position of the source
body (see Fig. 7a, b), and as a second aspect, some other RP-ES structures comprising
elite elements are allowed to move uniformly within the region enclosed by the source
body, which corresponds to the space in between the black dashed lines.

The values of anomalyRMSE, anomalyRRMSE, and structuresRMSEare reported
in the first row of Tables 1, 2, and 3. The first column corresponds to the error values
for the average estimation (see Fig. 7a–c). The remaining columns show the statistics
of the errors for the elite estimates of the 20 independent runs. It can be observed that
the anomaly RMSEs are low, and represent on average less than 20% of the error, as
indicated by the anomaly RRMSE. Moreover, in some runs the structures RMSE error
is 0 nT.

5.3 Two Structures Case

In this test case, two rectangular structures are considered as source bodies. This test
case is inspired by the synthetic test case presented in Balkaya et al. (2017). The
difference between this test case and the test case of Balkaya et al. (2017) is that the
bottom of the source bodies is placed up to 3m for both. The reason for this is to
make this test case suitable for applying the RP-ES method. Namely, the structures
should be placed above a base ground (see the constraint in Eq. (6)). Figure 9 shows
the results for this test case. The first structure is a rectangular prism with lengths of
7m in the east, 3m in the north, and a height of 2m, located at 4m in the east, 6m
in the north, and 1m in the depth. The second structure has lengths of 4m in the east
direction, 4m in the north direction, and 2.4m of height, which is located at 13m in the
east and north directions and 0.6 m of depth. Both structures have a magnetization of
1 A/m, and their corresponding vertical profiles in the eastern and northern directions

123



Mathematical Geosciences (2024) 56:511–539 527

Fig. 8 Histogram of the positions in the coordinate directions of all the RP-ES structures comprising the
elite individuals. The position of the source body is indicated by the dashed black lines

are also drawn in the dashed black line in Fig. 9a. Also in Fig. 9a, the elite estimate
of a single run after 5,000 iterations is shown in red. In Fig. 9b the corresponding
magnetic anomaly is shown, and the locations of the source bodies are indicated by
white lines.

The inversion domain is considered to be a volume of 20m× 20m in the horizontal
and 3m in the vertical. The domain is discretized by rectangular prisms of 1m ×
1m in the horizontal and 0.1 m in the vertical. This is a total of 12,000 rectangular
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Fig. 9 Average approximation obtained from the elite individuals after 2,000 generations in 20 independent
runs for the two structures test case (panel (a)). The synthetic anomaly is shown in panel (b). Panels (c)–(e)
show the average estimation in the in-plant, east, and north views, respectively. The color bar indicates
the magnetization level in A/m, and the dashed white line indicates the position of the source body. The
comparison plot corresponding to the estimation after 5,000 generations (in red in panel (a)) is shown in
panel (f). Histograms for the positions in east, north, and depth positions are shown in panels (g)–(i)

123



Mathematical Geosciences (2024) 56:511–539 529

prisms. The anomaly discretization corresponds to the horizontal discretization of the
inversion domain. This corresponds to 400 anomaly data points (this anomaly is shown
in Fig. 9b). The geographic location and date are the same as in the previous test case.

For the setting of the RP-ES algorithm, a selection rate ρs = 0.5, a crossover rate
ρc = 0.95, and a mutation rate ρM = 0.5 are used. These values were chosen to
be similar to the setting of the methodology of Balkaya et al. (2017). The number
of individuals N is assumed to be N = 200, and are composed of n = 10 RP-ES
structures.

Similar to the previous test case, the robustness of the method is examined. Twenty
independent runs of 2,000 iterations were performed, and the elite estimation of each
run is used to compute an estimation average. The average estimation in plant view is
shown in Fig. 9b. The corresponding vertical profiles in the east and north directions
are shown in Fig. 9d and e, respectively. It can be observed that the estimates succeed
in identifying the horizontal position and height of both source bodies and have small
differences at the base of the bodies. In general, in this test case, some runs present
certain differences between the elite estimation and the source bodies (see the com-
parison plot in Fig. 9f), most of the time near the base of the bodies. However, after
averaging, the discrepancies become insignificant.

Figure 9g, h, and i show the histograms corresponding to the positions in the east,
north, and depth directions, respectively. In these histograms, compared to the previ-
ous test case, it is more obvious that the histograms present multimodal frequencies.
Moreover, the modes in each histogram coincide with the positions where the edges
of the source bodies are located. Even in the depth histogram, the estimates are able
to identify the two different heights.

The ability of the method to retrieve very shallow structures with varying heights
between them is explored in this test case. Since the RP-ES approach requires the
structures to be placed directly above the base ground, a direct fair comparison of the
RP-ES resultwith the result reported inBalkaya et al. (2017) is not possible.However, it
is noticeable that knowing the correct number of structures is not a limitation for theRP-
ES algorithm. That is, n = 10 RP-ES structures are used to estimate only two existing
source bodies. In fact, it turns out that over the iterations of the RP-ES algorithm, one
source body is estimated as a composition of some RP-ES structures, while the other
source body is identified as a composition of the remaining RP-ES structures. This
composition allows overlap and intersection between the RP-ES structures, and this is
the reason for observing that RP-ES structures are estimated at positions in between
themodes in the histograms in Fig. 9g–i. This behavior is an automatic benefit with the
presented formulation, since knowledge of the exact number of existing source bodies
is not mandatory in either the problem formulation (Eqs. (3)–(9)) or the configuration
of the evolutionary algorithm.

The anomaly RMSE, anomaly RRMSE, and structures RMSE are reported in the
second row of Tables 1, 2, and 3. The first column in these tables shows the average
estimation values shown in Fig. 9c–e. The remaining columns show the statistics of the
errors for the elite estimates of the 20 independent runs. It can be seen that the anomaly
RMSE is slightly larger than in the single wall test case. However, in percentage terms,
this test case presents a better estimation, since the anomaly RRMSE is below 7% in all
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the runs, and the standard deviation is extremely low. This behavior is also consistent
with the structure RMSE values in Table 3.

5.4 Four Structures

The next synthetic test case is designed to explore the accuracy of the algorithm in a
challenging and realistic test case. Specifically, since the methodology is intended to
be applicable to archaeological sites, it is expected that the underlying structures will
have thin walls, with intersections, and perhaps different heights. This is intended to
be represented with the test case shown in Fig. 10.

For this test case, the inversion domain is also taken as the single wall test case:
20m× 20m horizontally and 5m vertically. The spacing is 1m in the horizontal, east,
and north directions and 0.5 m in the vertical, for a total of 2,000 rectangular prisms
in the discretization domain. The same values for latitude, longitude, elevation, and
year are used as in the previous test cases.

The four walls that constitute this test case are as follows: first, a wall 1m thick,
10m long in the north direction, and 2m height, located at 5m in the east direction, 5m
in the north direction, and 3m in depth; the second is a wall 1m thick, 10m long in the
north direction, and 2m height, located at 10m in the east direction, 5m in the north
direction, and 3m in depth; the third is a wall 1m thick, 7m long in the north direction,
and 3m height, located at 15m in the east direction, 10m in the north direction, and
2m in depth; and the fourth is a wall 1m thick, with length of 8m in the east direction,
and 3m height, located at 7m in the east direction, 10m in the north direction, and
2m in depth. Each wall has a magnetization of 1 A/m. The regions where the walls
intersect also have magnetization equal to 1 A/m. See blue prisms in Fig. 10a.

For the RP-ES setting, N = 200 individuals are employed, and n = 10 RP-ES
structures are used. The selection, crossover, and mutation rates are also assumed to
be the same as in the previous test cases.

The elite estimate is shown in red in Fig. 10a, and the corresponding anomaly is
shown in Fig. 10b, with the test case structures in white. In Fig. 10a, it can be seen
that in this test case, the estimation of the RP-ES algorithm is not as precise as in
the previous test cases. In particular, the estimated height is not accurate. However, in
the plant view (see Fig. 10c), it is noted that the horizontal estimation is acceptable
considering that the difficulty of this test case lies in the estimation of the wall in
the middle. In general, the horizontal estimation is acceptable and the estimation of
the heights of the source bodies presents opportunity areas (see Fig. 10d and e). The
height and estimate for the central wall correspond to the discrepancies observed in
the comparison plot in Fig. 10f and in Fig. 10g–i.

Although the results for this test case presented in Fig. 10 do not appear to be
accurate, it is observed in the third row of Tables 1 and 2 that the error values are com-
parable to the anomaly RMSE and anomaly RRMSE values obtained in the previous
test cases. Thus, the anomaly reproduced from the RP-ES estimates is comparable to
the data, although the volumetric reconstruction has inaccuracies, as seen in the value
of structures RMSE reported in Table 3.
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Fig. 10 Average approximation obtained from the elite individuals after 2,000 generations in 20 independent
runs for the four structures test case (panel (a)). The synthetic anomaly is shown in panel (b). Panels (c)–(e)
show the average estimation in the in-plant, east, and north views, respectively. The color bar indicates
the magnetization level in A/m, and the dashed white line indicates the position of the source body. The
comparison plot corresponding to the estimation after 5 000 generations (in red in panel (a)) is shown in
panel (f). Histograms for the positions in east, north, and depth positions are shown in panels (g)–(i)
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5.5 Real Data Case

The archaeological site known as Palacio de Ocomo is located in the municipal-
ity of Oconahua in Jalisco, México, with geographic coordinates −104.1670909◦ E,
20.7455698◦ N. This site contains a main structure (the Palacio) which is a sunken
courtyard 130m long with an approximate height of 8m. This settlement belongs to
the Grillo tradition and was inhabited between 450 and 900 BC (Secretaría de Cultura
2019).

This archaeological site has been partially explored in several campaigns since 2008
under the supervision of Professor Montgomery Morales et al. (2020), and in 2015 a
group of researchers and students from the University of Guadalajara went to the site
to take measurements of the magnetic field (see magnetic anomaly data in Fig. 11b).

The main structure remains covered by filling material, and the magnetic field
data were measured over a refilled section of the main structure. A rectangular area
of 17m to the east and 18m to the north with 1m spacing in each direction was
taken in the northernmost part of the third exploration phase. The magnetic anomaly
was pre-processed by substracting the diurnal variation and the local international
geomagnetic reference field (IGRF) (for more details on the location of the site and
exploration phases see Morales et al. (2020)).

An inversion domain consisting of 17× 18 rectangular prisms with a side length of
1m and a height of 0.5 m is considered. This assumes that the structures are found at a
depth of 6m. The number of individuals is N = 700, and each individual is composed
of n = 10RP-ES structures. TheRP-ES parameters are kept as selection rate ρs = 0.5,
crossover rate ρc = 0.95, and mutation rate ρM = 0.5. The magnetization of the
underlying structures is assumed to be 2 A/m.

The results of the RP-ES algorithm for this test case, after 20 independent runs of
2,000 iterations each, are shown in Fig. 11. Figure 11a shows the estimation given by
the best elite at the end of the 20 independent runs. The anomaly data are shown in
Fig. 11b. The mean estimate in plant view and the corresponding vertical profiles in
the east and north directions are shown in Fig. 11c, d, and e, respectively. As in the
previous test cases, the histograms for the positions in east, north, and depth directions
are computed and shown in Fig. 11f, g, and h, respectively.

This test case evaluates the capabilities of the RP-ES algorithm to provide evidence
of the underlying structures when processing real anomaly data. The estimated struc-
tures generated by the algorithm near position 0m in the east and 0m in the north
directions correspond to existing structures that are reported in Morales et al. (2020).
However, the resolution is not accurate due to the resolution of the anomaly data. That
is, the data were observed with a spacing of 1m while the underlying structures have
a thickness of about 30cm. In other words, better results would be obtained with finer
data.

The corresponding values of anomaly RMSE and anomaly RRMSE are shown in
the fourth row of Tables 1 and 2. The structures RMSE cannot be computed in this case
because the correct location andmagnetization values of the source bodies are not fully
available at this moment. In the tables, it is observed that the estimate provided by the
algorithm has opportunity areas, and at least qualitatively it is noted that some of the
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Fig. 11 Average approximation obtained from the elite individuals after 2,000 generations in 20 independent
runs for El Palacio de Ocomo anomaly data (panel (b)). Panel (a) shows the best elite estimation of the 20
runs. Panels (c)–(e) show the average estimation of in-plant, east, and north views, respectively. The color
bar indicates magnetization level in A/m. Histograms for the positions in east, north, and depth directions
are shown in panels (f)–(h)
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estimated RP-ES structures appear close to existing structures in the archaeological
site. The improvement of these results and the acquisition of finer data are planned for
future work.

Nevertheless, it is noteworthy that the algorithm produces an estimated structure
near 16m in the east and 14m in the north directions. This particular structure has not
been studied during the exploration stages by the archaeological team. In this sense,
the methodology presented herein is suitable for identifying the location (horizontal
and vertical) and the size of structures, at least to complement preliminary studies.

To the understanding of the authors of this work, the approach in this paper is very
similar to that of (Balkaya et al. 2017). Balkaya et al. (2017) presented a differential
evolution algorithmandprismatic bodies (similar to theRP-ES structures) for inversion
of magnetic anomalies. In the following, the methodology of Balkaya et al. (2017) is
referred to as a prismatic bodies differential evolution (PBDE). The results of thePBDE
algorithm for estimating the magnetization, location, inclination, and declination of
source bodies are excellent whenever it is a matter of reconstructing a few source
bodies. However, the PBDE method requires prior knowledge of the correct number
of source bodies.

In order to perform a comparative analysis of the presented methodology, a Python
version of the PBDEalgorithm is implemented and run on the same test cases described
in Sects. 5.2–5.5. For a fair comparison, the magnetization of the source bodies, incli-
nation, and declination are fixed andwill not be estimated by either of the twomethods.
The parameters for selection, mutation, and crossover rates are the same for both algo-
rithms. The scenario in which this comparison takes place assumes that the number
of existing source bodies is unknown. Therefore, both algorithms PDBE and RP-ES
are run with the same settings. More specifically, 20 independent runs of the PBDE
are performed for 2,000 generations each, using the number of individuals and RP-ES
structures, or prismatic bodies, reported in each test case. Note that prisms outnumber
structures.

Similar to the results reported for the RP-ESmethod, the 20 elite elements obtained
after the 2,000 generations are taken. A single estimation element is constructed as
the average of the 20 elites, and the magnetic anomaly is calculated. The RMSE and
RRMSE of this magnetic anomaly, concerning the anomaly data, are reported in the
seventh column of Tables 1 and 2, respectively. On the other hand, the anomaly is
calculated for each elite individual, and the RMSE and RRMSE are calculated with
respect to the anomaly data. These 20 RMSE and RRMSE values are averaged and
reported in the eighth column of Tables 1 and 2, respectively. Thus, the second column
is compared to the seventh column, and the third column is compared to the eighth
column. It is observed that the performance of the RP-ES algorithm improves as the
number of source bodies increases.

6 Discussion and Conclusions

A computational methodology suitable for archaeological prospecting from magnetic
data inversion is presented. Information assumed to be available in the field, such
as that previously obtained during archaeological excavations, has been used in a
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Table 2 Relative RMSE statistics for the anomalies computed from the elite estimates for the four test cases
presented

Case Anomaly RRMSE RRMSE PBDE

Avg. str Min Max Mean SD Avg. str Mean

Single wall 0.1570 0.0460 0.2888 0.1773 0.0767 0.6426 0.0448

Two structures 0.0595 0.0591 0.0609 0.0599 0.0004 2.5164 0.0590

Four structures 0.1579 0.1093 0.2112 0.1667 0.0238 0.9547 0.9175

Palacio de Ocomo 1.3276 1.2077 1.4392 1.3226 0.0656 0.9288 1.8833

The first column corresponds to the relative RMSE of the structure built as an average of the elite estimates
in 20 independent runs

Table 3 RMSEstatistics for the anomalies computed from the elite estimates for the four test cases presented

Case Structures RMSE (A/m)

Avg. str Min Max Mean SD

Single wall 0.0742 0.0 0.1557 0.0941 0.0495

Two structures 0.0741 0.0769 0.0903 0.0844 0.0032

Four structures 0.1959 0.1897 0.2423 0.2211 0.0114

The first column corresponds to the RMSE of the structure built as an average of the elite estimates in 20
independent runs

straightforward manner within the problem formulation as a numerical representation
and as corresponding constraints.

From the results obtained in the test cases, it is possible to see that the low-
dimensional representation allows the identification of regular structures as columns
or walls, avoiding smoothing or the overestimation effects that would appear when
using traditional regularization schemes. In other words, the presented approach is
capable of searching for solutions to the geophysical inversion problem within a space
of noncontinuous three-dimensional magnetic response maps.

An evolutionary algorithm, namely RP-ES, is attached to the proposed represen-
tation to obtain numerical solutions to the associated inversion problem. The RP-ES
algorithm provides acceptable results using the parameters recommended in the lit-
erature regarding evolution strategies. Only two parameters of the algorithm are free:
the number of iterations and the number of prisms comprising each individual (RP-ES
structures). From experiments on three synthetic test cases and one real data case, it
has been observed that the proposed procedure is able to provide suitable approxima-
tions with relatively few iterations (about only 2,000 iterations) and that slightly better
results are obtained by increasing the number of iterations (up to 5,000 for example).

An advantage of this method is its robustness to the number of RP-ES prisms.
That is, in this formulation, prior knowledge of the exact underlying source bodies
is not a limitation. In particular, a greater number of RP-ES prisms than the number
of underlying source bodies does not produce artifacts such as nonexistent structures.
This is supported by the comparative study of the RP-ES algorithm versus the PDBE
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method in synthetic and real data test cases. As expected, using fewer RP-ES prisms
than objects does not identify all the structures, but this limitation can be overcome by
running the method several times or setting the number or RP-ES prisms high, which
results in a slight increase in computational cost.

Due to the random nature of the method, different structures would be retrieved
each time, but on average, correct estimates of the source bodies are retrieved as an
average of several independent runs, as is supported by the robustness analysis in the
four cases studied.

Increasing or decreasing the number of prisms on individuals at the run-time of
algorithm executions would be interesting to address in future studies using birth-
death processes. The use of different meta-heuristics to reduce the computational cost
would also be desirable.

Finally, the scope of this methodology is not limited to archaeological studies or
synthetic cases. In fact, the presented methodology could be applied to gravimet-
ric data inversion, or to potential data in general, by simply modifying the anomaly
equation. Moreover, it could be applied to larger areas for diverse purposes besides
archaeological.
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