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Abstract
To enable proper remediation of accidental groundwater contamination, the contami-
nant plume evolution needs to be accurately estimated. In the estimation, uncertainties
in both the contaminant source and hydrogeological structure should be considered,
especially the temporal release history and hydraulic transmissivity. Although the
release history can be estimated using geostatistical approaches, previous studies use
the deterministic hydraulic property field. Geostatistical approaches can also effec-
tively estimate an unknown heterogeneous transmissivity field via the use of joint
data, such as a combination of hydraulic head and tracer data. However, tracer tests
implemented over a contaminated area necessarily disturb the in situ condition of the
contamination. Conversely, measurements of the transient concentration data over an
area are possible and can preserve the conditions. Accordingly, this study develops a
geostatistical method for the joint clarification of contaminant plume and transmissiv-
ity distributions using both head and contaminant concentration data. The applicability
and effectiveness of the proposed method are demonstrated through two numerical
experiments assuming a two-dimensional heterogeneous confined aquifer. The use of
contaminant concentration data is key to accurate estimation of the transmissivity. The
accuracy of the proposed method using both head and concentration data was verified
achieving a high linear correlation coefficient of 0.97 between the true and estimated
concentrations for both experiments, which was 0.67 or more than the results using
only the head data. Furthermore, the uncertainty of the contaminant plume evolution
was successfully evaluated by considering the uncertainties of both the initial plume
and the transmissivity distributions, based on their conditional realizations.
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1 Introduction

Groundwater contamination is a serious environmental issue that has been occur-
ring in various areas worldwide for many years. Contamination is caused by various
contaminants such as anthropogenic chemicals and radioactive and microbiologi-
cal substances. Contamination by soluble and mobile contaminants tends to spread
inconspicuously into extensive areas because its extension is not noticed unless the
water quality is systematically monitored. To suppress the extension of contamination
and form a proper remediation plan via pumping and chemical processing, correct
estimations of the contaminant plume evolution and its uncertainty given the water
quality data at wells are essential. To achieve this, the construction of an accurate
hydrogeological model to simulate the groundwater flow and contaminant transport
is indispensable.

A contaminant source (i.e., the source location or release history) and hydraulic
properties are two predominant uncertain factors in the estimation of the contami-
nant plume distribution. Uncertainty in the contaminant source arises in accidental
contamination events, because the source is not identified or recorded except labora-
tory experiments. In real-world events, release history records are particularly rare,
as in past cases of underground contamination at nuclear facilities (OECD 2014);
although source locations have been detected by preliminary surveys or historical site
assessments in drain lines, sumps, pipes, and tanks, the temporal release histories
have not been traced in all cases. Among the relevant hydraulic properties, the perme-
ability expressed by the hydraulic conductivity or transmissivity is the most essential
parameter for simulating groundwater flow and contaminant transport. Despite the
significance and heterogeneity of the spatial distribution, the amount and location of
the measured permeability data at wells are usually limited by practical constraints
such as time and cost. Therefore, there are large uncertainties in permeability distribu-
tions estimated by simply interpolating and extrapolating the measured permeability
or indirectly using hydraulic head or other data. The correctness and uncertainty of
the estimated permeability distribution necessarily control the estimation accuracy of
the contaminant plume evolution.

The joint identification of the contaminant release history and hydraulic properties
has been studied using several approaches. Examples of hydraulic property identifi-
cation approaches include non-linear maximum likelihood estimation (Wagner 1992)
and trained artificial neutral network (Singh and Datta 2004) for homogeneous fields
and restart normal-score ensemble Kalman filter (EnKF) (Sanchez-Leon et al. 2016;
Chen et al. 2018; Xu and Gomez-Hernandez 2018) and ensemble smoother (ES) with
multiple data assimilation (Xu et al. 2021) for heterogeneous fields. The high accuracy
of EnKF methods has been confirmed in a sandbox experiment (Chen et al. 2021).
However, there are two problems with the above studies:
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1. The release patterns of contaminants are assumed to be known. Typically, the
contaminant source parameters, such as the source location, initial release time,
release duration, and mass-loading rate, are determined by assuming constant
release (e.g., Xu et al. 2021). However, the release pattern in actual contamination
events is usually unknown and uncertain. Therefore, a random function should be
applied to the release pattern (Snodgrass and Kitanidis 1997).

2. Although EnKF methods have the advantage of enabling production of non-
Gaussian distributions without considering the spatial correlation of the hydraulic
conductivity, they require an impractically large amount of spatiotemporal mea-
surement data of the head and concentration for usual contaminant cases.

To overcome the first issue, the quasi-linear geostatistical approach (GA; e.g., Snod-
grass and Kitanidis 1997; Gyzl et al. 2004; Shlomi and Michalak 2007) is applicable
by introducing the prior information of release history with geostatistical trend and
covariance. The applicability of GA has been verified at real-world sites contaminated
by water-soluble contaminants: 1,4-dioxane (Woodbury et al. 1998; Michalak and
Kitanidis 2002), tetrachloroethene and trichloroethne (Michalak and Kitanidis 2003),
and hexachlorocyclohexane (Gyzl et al. 2014). However, most of these studies only
incorporated the uncertainty of the contaminant source using a deterministic hydraulic
property model.

GA can also solve the second issue if extended to hydraulic tomography studies
(e.g., Li et al. 2007, 2008; Cardiff et al. 2009; Cardiff and Barrash 2011; Pouladi
et al. 2021), and its applicability using head data has been verified by field tests (e.g.,
Illuman et al. 2009; Wang et al. 2017; Zha et al. 2018; Luo et al. 2022). However,
GA tends to generate a spatially smoother best estimate than the true distribution,
which is its main drawback. This smoothing effect is caused bymodeling the hydraulic
conductivity as a multivariate Gaussian, which is usually inadequate for the estimation
of heterogeneous fields such as aquifers in fluvial deposits, where several strata with
highly different permeabilities coexist (Mo et al. 2020). However, the assumption of
a Gaussian field is applicable to cases of groundwater contamination that occur in a
single aquifer. The smoothing effect has been improved via joint inversion of the head
and temperature data (Jiang and Woodbury 2006) and the head and tracer data (e.g.,
Harvey and Gorelick 1995; Cirpka and Kitanidis 2000; Xu and Kitanidis 2014), as
well as in combination with a convolution neural network (Vu and Jardani 2022).

Although the tracer test data can indeed improve the performance and accuracy
of GA, the implementation of many tests over a contaminated area necessarily dis-
turbs the contamination situation, renders situation assessments difficult, and possibly
further extends the contamination. In contrast to such impractical testing, measuring
the transient concentration data in groundwater at wells over an area is possible and
preserves the situation. Therefore, through the joint use of head and transient concen-
tration data, the estimation accuracies of both the contaminant plume distribution and
the hydraulic conductivity are expected to be effectively improved. To achieve this,
an estimation of the unknown initial plume distribution is indispensable.

Given the above background, this study aims to accurately estimate the contami-
nant plume evolution by considering uncertainties in both the temporal release history
and the heterogeneous transmissivity fields. Accordingly, the GA method is further
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developed for a joint clarification of the contaminant plume and transmissivity distri-
butions using both the head and contaminant concentration data. The joint clarification
is achieved by combining previous estimationmethods for each component: a contam-
inant plume with an unknown release history is estimated using the method of Shlomi
and Michalak (2007) and the hydraulic transmissivity is estimated using the method
of Kitanidis and Lee (2014). This paper begins with a review of the previous esti-
mation methods and then, proposes a combined method. This method consists of the
following three steps: separate initial estimations of the transmissivity and the initial
plume distributions using the head and concentration data, respectively; an iterative
update of their distributions via joint use of the data; and an estimation of the con-
taminant plume evolution and its uncertainties based on their conditional realizations.
The proposedmethod is verified by two numerical experiments assuming groundwater
contamination in a two-dimensional aquifer and the results are discussed finally.

2 Methods

2.1 Iterative Estimation of Contaminant Plume and Hydraulic Transmissivity

Previous geostatistical approaches for contaminant plume estimation with unknown
release histories (e.g., Shlomi and Michalak 2007) cannot consider the uncertainty
of the hydraulic transmissivity. To address this problem, this study developed a GA
method to estimate the contaminant plume evolution z(x,t) (x: space and t: time) and
its uncertainty by combining previous estimation methods for the contaminant plume
and transmissivity, reviewed in Sects. 2.2 and 2.3, for the uncertainties of the release
history s(t) and log-transmissivity r(x), respectively.Because both z and r are necessary
for each estimation, an iterative approach using both the head and concentration data
is proposed as shown in Fig. 1.

The first step is the initial estimation of r and the initial contaminant plume z0
= z(t0) (t0: initial measurement time), using the head ϕ and initial concentration
data z0*, separately. The next step is to update r based on the estimated z0 using
both ϕ and the transient concentration data z*(t). The posterior pdfs of r and z0 are
iteratively calculated until the posterior pdf of r reaches its maximum. In this step,
the mutual uncertainties of r and z0 are not considered (i.e., the uncertainty of r is not
considered in the z0 estimation, and vice versa). Finally, the best estimate of z(t) is
obtained using the best estimates of r and the corresponding z0. To consider both the
uncertainties of r and z0, the estimation method for the uncertainty of z(t) based on
Nr ×Nz0 conditional realizations of r and z0 (N : number of realizations) is developed
as described in Sect. 2.4.

2.2 Geostatistical Inversion for Initial Contaminant Plume Estimation

This section reviews preceding studies of the quasi-linear GA for the estimation of
the contaminant plume distribution from a known source with an unknown release
history (e.g., Kitanidis 1995; Snodgrass and Kitanidis 1997; Shlomi and Michalak
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Fig. 1 Flowchart of the iterative estimation of the contaminant plume and the hydraulic transmissivity
distributions, z(x,t) and r(x), respectively

2007). Under a steady state flow, z∗0 ∈ R
nz×1 (nz-dimensional real space) is related

linearly to the release history s ∈ R
mt×1 at each time t j ( j = 1, . . . ,mt ) such that

z∗0 = H∗
s s + vz, (1)

where H∗
s ∈ R

nz×mt and vz ∈ R
nz×1 stand for the Jacobian matrix and the model

mismatch error at the measurement points, respectively. H∗
s expresses the sensitivity

of the concentrations at each measurement point and time and can be calculated in
advance by a flow and transport simulation for the release of a unit concentration pulse.
Therefore, the unknown s can be obtained by solving Eq. (1) inversely.

The geostatistical inversion incorporates the temporal correlation of s and assumes
that s and vz are random vectors following the multivariate Gaussian distributions
s ∼ N

(
Xsβs, Qs(θs)

)
and vz ∼ N (0, Rz), where Xs ∈ R

mt×ps is a known matrix
of basis functions; βs ∈ R

ps×1 are ps unknown drift coefficients; Qs(θs) ∈ R
mt×mt

is the generalized covariance matrix of s; θs is the structural parameter of Qs; and
Rz is the error covariance matrix of z∗0. This study assumes an uncorrelated error of
Rz = σ 2

Rz
I , where σ 2

Rz
is the variance of the error and I ∈ R

nz×nz is the identity
matrix. The unknown s can be estimated from z∗0 by maximizing the posterior pdf
p′′(s,βs

)
obtained via Bayes’ rule as

−lnp′′(s,βs
) = 1

2

(
z∗0 − H∗

s s
)T R−1

z

(
z∗0 − H∗

s s
) + 1

2

(
s − Xsβs

)T Q−1
s

(
s − Xsβs

)
.

(2)
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The structural parameters θ = (
θs, σRz

)T can be iteratively estimated using a
restricted maximum likelihood approach that minimizes the objective function L(θ)

(Kitanidis 1995)

L(θ) = 1
2 ln|Σ s | + 1

2 ln
∣∣XT

s H
∗T
s Σ−1

s H∗
s Xs

∣∣ + 1
2 z

∗T
0 Ξ−1

s z∗0, (3)

Σ s = H∗
s QsH

∗T
s + Rz, (4)

Ξ s = Σ−1
s − Σ−1

s H∗
s Xs

(
XT
s H

∗T
s Σ−1

s H∗
s Xs

)−1
XT
s H

∗T
s Σ−1

s . (5)

Then, the best estimate ŝ and its posterior covariance V ŝ are derived by solving the
following equation system

(
Σ s H∗

s Xs(
H∗

s Xs
)T 0

)(
ΛT

s
Ms

)
=

(
H∗

s Qs

XT
s

)
, (6)

ŝ = Λs z∗0, (7)

V ŝ = Qs − QsH
∗T
s ΛT

s − XsMs, (8)

where Λs ∈ R
mt×nz and Ms ∈ R

ps×mt are the weight matrix and the Lagrange mul-
tiplier, respectively. To enforce concentration non-negativity, a power transformation
(Box and Cox 1964) is applied, such that

s̃ = α
(
s1/α − 1

)
, (9)

where α is a positive number. Because Eq. (1) is not linear in the transformed space, s̃
and θ are solved iteratively using the quasi-linear approach (Snodgrass and Kitanidis
1997) in which α is chosen to be as small as possible while ensuring that s̃ > α. After
obtaining the best estimate and its covariance, the solutions are back-transformed into
the original space by

s =
(
s̃+α
α

)α

. (10)

Once ŝ and V ŝ are determined, the best estimate of ẑ0 ∈ R
m×1 and its posterior

covariance V ẑ can be solved as

ẑ0 = Hs ŝ, (11)

V ẑ = HsV ŝH
T
s , (12)

where m is the number of estimation points and Hs ∈ R
m×mt is the Jacobian matrix

at all estimation points.
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2.3 Principle Component Geostatistical Approach for Hydraulic Transmissivity
Estimation

This study adopts the principal component geostatistical approach (PCGA: Kitanidis
and Lee 2014; Lee and Kitanidis 2014), as reviewed below, to estimate the hydraulic
transmissivity distribution. The observation y ∈ R

n×1 can be expressed by the forward
model h with r ∈ R

m×1 and the observation error v ∈ R
n×1 as

y = h(r) + v. (13)

For the present case, y corresponds to only head data or to head and concentra-
tion data. r and v are assumed to follow the multivariate Gaussian distributions
r ∼ N (Xβ, Q(θr )) and v ∼ N (0, R), where X ∈ R

m×p is a known matrix of
basis functions; β ∈ R

p×1 represents p unknown drift coefficients; Q(θr ) ∈ R
m×m

is a generalized covariance matrix of r; θ r is the structural parameter of Q; and R is
the error covariance matrix of y. As in the above release history, the best estimate r̂
is obtained by maximizing p′′(r,β). Because Eq. (13) is not linear, the quasi-linear
approach (Kitanidis 1995) is applied to approximate the true r̂ with the latest estimate
r , such that

h
(
r̂
) = h(r) + H

(
r̂ − r

)
, H = ∂h

∂ r

∣∣
r=r . (14)

The following equation system is solved to update r until it converges

(
Σ HX

(HX)T 0

)(
ξ

β

)
=

(
y − h(r) + Hr

0

)
, (15)

Σ = H QHT + R, (16)

r = Xβ + QHT ξ . (17)

Once the optimal solution r̂ is obtained, its posterior covariance V r̂ can be calculated
in the same way as in Eqs. (6) and (8).

PCGAwas proposed to obtain r̂ efficiently with small computation cost by improv-
ing the conventionalGA through twoapproaches. Thefirst approach is the use ofTaylor
expansion for the indirect expression of H

Ha ≈ 1
δr
[h(a + δr a) − h(a)], (18)

where a is the target vector, such as r , and δr is a finite difference interval that can be
optimized as (Lee et al. 2016)

δ̂r =
√

εr

a22
max

(∣∣rT a
∣∣, |r|T |a|)sign(rT a), (19)
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where εr is the relative machine precision depending on the precision of the forward
model; |a| = (|a1|, . . . , |am |)T ; and sign() indicates the sign of a value. The second
approach is a low-rank approximation of Q as

Q ≈ ZQZT
Q =

K∑

i=1
ζ iζ

T
i , ζ i = √

λiV i , (20)

where λi and V i ∈ R
m×1 are the ith eigenvalue and eigenvector of Q in the descending

order. TheorderK canbedefined such that the relative error of the low-rank approxima-
tion, λK+1/λ1, is sufficiently small. All of the above calculations are implemented by
normalizing the drift and covariance of the prior model, as explained in the Appendix,
following Kitanidis and Lee (2014).

2.4 Conditional Realizations of the Transmissivity and Initial Plume Distributions

The uncertainty of z(x,t) is assessed considering the uncertainties of both the initial
contaminant plume and the transmissivity distributions by generating their conditional
realizations. The conditional realization can be drawn from the posterior pdf using
either the Cholesky decomposition of the posterior covariance (Harvey and Gorelick
1995; Nowak 2009; Troldborg et al. 2012) or the parametric bootstrapping sampling
method (Kitanidis 1995; Kitanidis and Lee 2014). Because of its simplicity and small-
ness of calculation, the Cholesky approach is adopted here where the ith conditional
realization of the transmissivity distribution r̂ci is

r̂ci = r̂ui + (H Q)TΣ−1( y − h(r̂ui ) + vi ), (21)

where r̂ui ∼ N
(
r̂, Vr̂

)
is the ith unconditional realization of the transmissivity

randomly sampled from the posterior pdf and vi ∼ N (0, R) is the ith random mea-
surement error of the head and concentration. In the same way, the ith realization of
the initial contaminant plume distribution ẑ0ci can be written as

ẑ0ci = Hs ŝci , ŝci = ŝui + (
H∗

s Qs

)T
Σ−1

s

(
z∗0 − H∗

s ŝui + vzi
)
, (22)

where ŝui is the ith unconditional realization of the release history and vzi ∼ N (0, Rz)

is the ith random measurement error of the initial concentration. ŝui can be inversely
calculated from the ith realization of the release history in the transformed space,
̂̃sui ∼ N

(
̂̃s, V̂s̃

)
.

3 Numerical Experiment

3.1 Physical Model

The above proposed geostatistical approach was tested via numerical experiments
of two-dimensional steady state groundwater flow and contaminant transport in the
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steady state. Let a transmissivity field T in a confined aquifer be spatially variable but
locally isotropic. The governing equation for groundwater flow in a saturated porous
media is expressed as

∇ · u = Q f δ
(
x − x f

)
, u = −T∇ϕ, (23)

where u is the groundwater flow velocity; T is the transmissivity; ϕ is the hydraulic
head; δ(x) is the Dirac delta function; andQf is the pumping rate at a well location xf .
Under this state, the contaminant transport is expressed by the advection–dispersion
equation as

∇ · (D∇c − Vc) = R f
∂c

∂t
+ λ f c, (24)

where c is the dimensionless concentration; V = u/ε is the actual groundwater
velocity; D is the dispersion tensor; ε is the porosity; Rf is the retardation factor; and
λf is the radioactive or first-order biochemical decay constant. Each component of D
is formulated as

Di j = αT |V |δi j + (αL − αT )
Vi Vj
|V | + Dmτδi j (i, j = 1, 2), (25)

where αL and αT are the longitudinal and transverse dispersivities, respectively; Dm

is the molecular diffusion coefficient; and τ is the tortuosity.

3.2 Settings of Two Cases

On the basis of reviews of groundwater contamination events caused by water-soluble
pollutants, the contamination extent generally ranges from scales of 100 m to 1 km
(e.g., for over 2000 sites in California, the median plume length was 270 m for 1,4-
dioxane, 115 m for 1,1,1-trichloroethne, 95 m for trichloroethene, and 123 m for
1,1-dichloroethene; Adamson et al. 2014). At such a scale, contaminated water can be
pumped from wells set at several locations. To simplify the present experiment, only
one pumping well was set at (x, y) = (25, 0) m in a model domain of 100 m along the
x-axis (the flow direction) × 50 m along the y-axis (Fig. 2).

Two cases of transmissivity fields with different degrees of heterogeneity were
prepared by referring to the experimental model of Lee and Kitanidis (2014): case 1
had a smooth spatial change in the transmissivity and case 2 had a highly heterogeneous
field with local changes in the transmissivity. The mean log-transmissivities (m2/d) of
2.4 were the same for both cases; this is the product of the assigned aquifer thickness,
10 m, with a typical hydraulic conductivity for porous sand, 10−5 m/s (Zanini and
Kitanidis 2009). The difference between the two cases is expressed by the spatial
correlation range of the field, case 1 is long and case 2 is short, as shown by the
covariance function in Table 1. The covariance functions defined were a generalized
cubic covariance with a linear drift following Zanini and Kitanidis (2009), which
is continuously differentiable and smooth (Kitanidis and Lee 2014), for case 1 and
an isotropic exponential covariance with a constant drift for case 2. Constant-head
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Fig. 2 True value distributions of (a) the log-transmissivity and (b) the initial contaminant plume for cases
1 (left) and 2 (right)

Table 1 Parameter settings for
the two cases with smooth and
heterogeneous transmissivity
fields (case 1 and 2, respectively)

Case 1 Case 2

Geometric parameters

Domain length and
width (m)

100, 50

Cell size (m) 1

Pumping rates
(m2/d)

25

Porosity (–) 0.25

Dispersivity (m) 5.0 (longitudinal),
0.5 (transverse)

Diffusion coefficient
(m2/s)

1 × 10−9

Geostatistical parameters

Mean
log-transmissivity
(ln m2/d)

2.4

Covariance kernel θ r |x −x′ |3, θ r = 8.0
× 10−6

exp(−|x – x′ |/θ r ),
θ r = 15

Drift [1 × y] [1]

Measurement error (standard deviation)

Head (m) 0.05

Concentration (–) or
travel time (month)

10%

“–” stands for unitless
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Fig. 3 Setting of the boundary conditions and well locations in the model domain. Open circles and asterisks
indicate the monitoring wells of the hydraulic head (all 35 wells) and the contamination (18 wells), respec-
tively. The cross mark indicates the location of the pumping well and contaminant source. The meaning of
the circles and the cross mark are the same in Figs. 5, 6, 10, 11, and 13

boundaries were set at x = 0 (inflow) and 100 m (outflow) with a head difference of
0.2 m, and impermeable boundary conditions were set at both y edges (y = ± 25 m)
(Fig. 3). The contaminant concentration at x = 0 m and the dispersive flux at x =
100 m were both zero. The longitudinal and transverse dispersivities were defined
as 5.0 and 0.5, respectively, considering that αL ∼ 0.1L p (Lallemand-Barres and
Peaudecerf 1978; Pickens and Grisak 1981; Spitz and Moreno 1996) or αL = 0.83
[log10(Lp)]2.414, where Lp is the plume length from the source [m] (Xu and Eckstein
1995) and αT is approximately 0.1αL (Gelhar et al. 1992; Wiedemeier et al. 1999). Rf

and λf were not considered, and τ was set to 1.
The contaminant plume distribution originated from a known source at (x, y)= (25,

0) m. The release of the contaminant starts at t = −300 days (case 1) and −150 days
(case 2) before the initial measurement time (t = 0) and ends at t = 0. The source
intensity was assumed to increase linearly from 0 to 1. Hydraulic heads weremeasured
at 35 monitoring wells under steady state for one pumping well at the source location
(Fig. 4), and contaminant concentrations were measured monthly over 1 year (t = 0
to 1 year) at 18 monitoring wells located uniformly on the downstream side. In the
calculation, the mean travel time was used instead of the transient concentration data,
as suggested for tracer data (Harvey and Gorelick 1995; Ezzedine and Rubin 1996;
Cirpka and Kitanidis 2000; Lee and Kitanidis 2014)

txi =
∑tend

t=t0
t z(xi ,t)�t

∑tend
t=t0

z(xi ,t)�t
, (26)

where txi is the mean travel time at position xi; t = (t0, . . . , tend) is the measurement
time; and �t is the measurement interval.
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Fig. 4 Hydraulic head distribution under steady state when pumping at one well for cases 1 (left) and 2
(right). The location of the pumping well is shown in Fig. 3

Using the 35 head and 18 travel time data, the log-transmissivities at the 5,000 (100
× 50) cells at intervals of 1 m along the x- and y-axes were estimated. Assuming that
the transmissivities at the 35 wells were known, the unknown structural parameters θ r
were estimated to be2.0×10−5 for case 1 and12.5 for case 2. In the contaminant plume
estimation, the optimal values of both σR and θ s were determined simultaneously. The
standard deviation of the measurement errors of the head and concentration (or the
mean travel time as mentioned above) were set to 0.05 m (approximately 5% of the
maximum head change as a result of pumping) and 10%, respectively, following Lee
and Kitanidis (2014). A Gaussian random error with zero mean and a corresponding
standard deviation was added to all of the measurement data. The unknown release
histories were recovered at ten-day intervals over the 1,350 days prior to the start
of measurement, which is sufficiently long to express the Jacobian matrix for the
contaminant plume evolution from the source to the model boundary.

3.3 Calculation Execution Conditions

The forward simulation of the groundwater flow and transport was executed using
3D-SEEP (Kimura and Muraoka 1986), based on the three-dimensional Garlerkin
finite elementmethod. Singular value decompositions for the low-rank approximations
were computed in parallel using the ScaLAPACK package (Blackford et al. 1997).
The linear systems of Eqs. (6) and (15) were solved using the generalized minimal
residual method with a criterion for the relative residual error of ≤ 1 × 10−8. A PC
with an Intel Core i9-11900 K (3.50 GHz) CPU and 64-GB memory was used for the
numerical experiments.

For both cases, the initial transmissivity field was set to be uniform with a log
mean of −9.0 m2/s. Following Lee and Kitanidis (2014), the optimum number of the
low-rank approximation of Q was set to K = 96, in which the relative error of the
approximation λK+1/λ1 was 3.1 × 10−4% for case 1 and 1.2% for case 2. Only for
the joint inversion of case 2, which is a strongly nonlinear problem, was K changed to
350 with λK+1/λ1 = 0.18%. To ensure the monotonic convergence of the nonlinear
transmissivity estimation problem [Eq. (13)], the optimal solution was identified using
a line search (Zanini and Kitanidis 2009)

r̂ = r iδls + r i+1(1 − δls), (27)
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where ri is the previous estimate and ri+1 is the updated estimate found using the
Gauss–Newton procedure [Eq. (17)] and δls is a scalar. The range of δls was set to −
0.1 ≤ δls ≤ 1.1 following Zanini and Kitanidis (2009). Finally, the calculations of the
transmissivity estimation converged entirely within 18 iterations for all cases with εr
= 5 × 10−6.

To obtain the final solution, the estimated transmissivity distributions were updated
two and three times for cases 1 and 2, respectively. The uncertainty of the contaminant
plume distributions was evaluated using the results of 10,000 (Nr = 100×Nz0 = 100)
realizations. Because of rounding errors, the eigenvalues of the posterior covariance
included small negative values (approximately −10−7); all the negative eigenvalues
were therefore changed to 1 × 10−10.

4 Results

4.1 Hydraulic Transmissivity

The best estimates and estimation variances of the log-transmissivity distributions
are shown in Figs. 5 and 6, respectively. Even for the results using only the head
data, sufficient accuracy of the best estimates can be confirmed by the near agreement
between the simulated and measured heads having small root mean square errors
(RMSE) of 0.047 (case 1) and 0.054 (case 2) (Fig. 7a). However, because of the
measurement error, the results are spatially much smoother than the true fields in both
cases. In particular, large underestimates occurred at the relatively high transmissivity
portions; these are continuously distributed from the upstream to the downstream (case

Fig. 5 True (top) and best estimates of the log-transmissivity distributions for cases 1 and 2 using only the
head data (middle) and using both the head and concentration data (bottom)
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Fig. 6 Estimation variances of the log-transmissivity distributions for cases 1 and 2 using only the head data
(top) and using both the head and concentration data (bottom)

Fig. 7 Simulated versus measured values for (a) the head and (b) the mean travel time using only the head
data (closed circle) and using both the head and concentration data (open circles)

1) and are heterogeneously distributedon the downstreamside (case 2). This smoothing
effect was remarkable in case 2 with the highly heterogeneous field; furthermore, the
estimation uncertainty significantly increased with distance from the pumping well.

Conversely, through the joint use of the head and concentration data, large improve-
ments in the estimation accuracy were confirmed for both cases, for example, the
relatively high transmissivity portions were well reproduced. Both the measurement
data of the head and the mean travel time were adequately reproduced within their
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95% confidence intervals (Fig. 7b). Even though the estimation accuracy was low in
the portions outside the contaminant plume transport, such as in the vicinity of the
domain boundary, the joint data use obviously decreased the estimation uncertainties
along the contaminant plume evolutions for both cases comparedwith the results using
only the head data (Fig. 6).

The estimation accuracies of the log-transmissivity distributions were assessed in
the measurement area, x = [12, 87] (m), y = [− 15, 15] (m), using the descriptive
statistics: the coefficient of determination (R2) between the estimated and true values
(Fig. 8), mean (μ0) and variance (ν0) of the log-transmissivity field; and mean (μ2 =
mean

[(
r true − r̂

)2]) and variance (ν2 = var
[(
r true − r̂

)2]) of the square differences
(Table 2). These statistical parameters demonstrate the large improvement of the esti-
mation accuracy via the joint use of the head and concentration data for both cases
(e.g., μ2 was decreased by 76% and 50% for cases 1 and 2, respectively).

Table 2 Summary of statistics of the best estimates of the log-transmissivity distributions (m2/d) for cases
1 and 2

Case μ0 ν0 μ2 ν2

1 True 2.460 0.075 – –

Head 2.170 0.137 0.176 0.034

Head and concentration 2.470 0.037 0.041 0.004

2 True 2.560 0.601 – –

Head 2.250 0.070 0.616 0.560

Head and concentration 2.660 0.362 0.311 0.177

Fig. 8 Estimated versus true log-transmissivities in the measurement area for (a) case 1 and (b) case 2 using
only the head data (closed circles) and both the head and concentration data (open circles)
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Table 3 Optimal values of the structure parameters for the best estimates of the release history in the two
cases

Parameter value Case 1 Case 2

Head Head and concentration Head Head and concentration

θ s 4.2 × 10−7 6.3 × 10−7 1.4 × 10−6 2.5 × 10−6

σRz 1.0 × 10−2 1.0 × 10−2 1.0 × 10−2 1.0 × 10−2

4.2 Contaminant Plume Distribution

Using the optimal values of θ s and σRz (Table 3), the release histories for the best
estimates of the log-transmissivity distributions were estimated for the two cases, as
shown in Fig. 9. When using both the head and concentration data, the recovered
release peaks were slightly closer to the true peaks for both cases compared with the
results when using only the head data. This is due to the improvement in the estimated
transmissivity distribution, in particular the decrease in the underestimation induced
when using only the head data. The magnitude of the estimated variance of the release
history depends on both the concentration measurement error and the heterogeneity
of the transmissivity distribution. As reported by Butera and Tanda (2003), the model
mismatch error of the hydraulic field can increase the estimation variance for twomain
reasons: errors in the flow direction and the magnitude of the dispersion. The large
confidence intervals in Fig. 9 are caused by the former factor in case 1 using only
the head data; and by the latter factor in case 2 because of the large heterogeneous
transmissivity.

Fig. 9 Estimated release histories using only the head data (dashed line) and using both the head and
concentration data (solid line) for cases 1 (left) and 2 (right). The red line indicates the true release history
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The best estimates of the transmissivity distributions were applied to the prediction
of the best estimate of the contaminant plume evolution, as drawn in Figs. 10 and 11
for the results of the plume distribution at t = 0, 1, and 2 years for cases 1 and 2. When
using only the head data, the contaminant transport velocity was underestimated in
both cases. This underestimation resulted in the maximum concentrations at t = 1 and
2 years being 1.4 (case 1) and 1.7 (case 2) times as large as the true concentrations.
In addition, the center of plume distribution differs from the true position. At t =
2 year, the true maximum concentrations are located at 85 m (case 1) and outside
the model domain (case 2). However, the estimated positions when using only the
head data are 69 m (case 1) and 66 m (case 2). Conversely, given the joint use of the

Fig. 10 True (left) and best estimates of the contaminant plume distributions at t = 0 (the initial measurement
time), 1, and 2 years later for case 1, obtained using only the head data (middle) and using both the head
and concentration data (right)

Fig. 11 True (left) and best estimates of contaminant plume distributions at t = 0 (the initial measurement
time), 1, and 2 years later for case 2, obtained using only the head data (middle) and using both the head
and concentration data (right)
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head and concentration data, the plume evolution is well reproduced in both cases.
The advantage of using both forms of data was proved by the significant increases
in the mean of the linear correlation coefficients at one month interval from t = 0
to 2 years between the true and best estimated concentrations at the 18 measurement
points (Fig. 12): the time-averaged correlation coefficient increased from 0.72 to 0.97
for case 1 and from 0.67 to 0.97 for case 2.

The uncertainties in the contaminant plume transport were quantified for the results
through the joint data use (Fig. 13). Obviously, the resultant uncertainties were suffi-
ciently small compared with the best estimate values in Figs. 9 and 10. At t = 0, the
uncertainties were relatively high as a result of the estimated variance of the release
histories (Fig. 9); this was more conspicuous in case 2. However, these fluctuations
decreased with time.

Fig. 12 Time evolution of the correlation coefficients between the true and best estimated concentration at
measurement points for (a) case 1 and (b) case 2 obtained using only the head data (open circles) and using
both the head and concentration data (closed circles)

Fig. 13 Standard deviations of the contaminant plume distributions at t = 0, 1, and 2 years later for cases 1
(left) and 2 (right) using both the head and concentration data
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5 Discussion

The effectiveness and high accuracy of the joint clarification of the initial contaminant
plume and transmissivity distributions using both the head and concentration datawere
demonstrated for the prediction of the contaminant plume evolution. The proposedGA
method is applicable for any water-soluble contaminant with or without retardation
and/or radioactive or biochemical decay. However, the flow and transport simulation
was simply implemented under steady state flow conditions. This assumption cannot
be satisfied for cases that need to consider unsteady flow caused by typically periodic
pumping. The next step is to incorporate the unsteady flow in both unconfined and
confined aquifers.

Asmentioned above, the twomain novel points of this study differing fromprevious
studies were the non-use of tracer data and the consideration of the uncertainty of
the initial contaminant plume distribution. While a smaller model domain (40 m ×
20 m) and a smaller head measurement error (5.0 × 10−4 m) than that used in this
study was targeted, the effectiveness of the joint use of the head and tracer data with
a defined anisotropic exponential covariance of the transmissivity was, in previous
studies, demonstrated to improve the estimation accuracy of log-transmissivity inside
the tracer paths (Cirpka and Kitanidis 2000; Lee and Kitanidis 2014). For a similar
exponential covariance model (case 2), the joint use of the head and tracer data was
demonstrated to improve the estimation accuracy based on the RMSE (

√
μ2) of the

log-transmissivity in the entire domain by 10% compared with that obtained using
only the head data (Cirpka and Kitanidis 2000). Although this study did not use
tracer data, the RMSE in the measurement area was improved by 29% via the joint
use of the head and concentration data. This high accuracy contributes to accurately
reproducing the contaminant plume evolution even if the release history is unknown.
Another noteworthy advantage of the present method is its capability to evaluate the
uncertainty of the contaminant plume evolution, considering the uncertainties of both
the initial contaminant plume and the transmissivity distributions. This feature resulted
in the sufficiently small estimation uncertainty of the contaminant plume evolution
even for the highly heterogeneous transmissivity field (case 2) compared with the best
estimate values.

As an extension of the proposed method to practical applications, the following
three points need to be considered. The first point is the need to estimate the three-
dimensional permeability (i.e., the hydraulic conductivity). Although this is possibly
straightforward given the proposed method, a problem is the large cost of acquiring a
sufficient amount of multi-depth data of the head and contaminant concentration for
the three-dimensional estimation. Therefore, a suitable data amount and the location of
the measurement data should be specified depending on the hydrogeological features
of the target area. The second point is the reduction of the smoothing effect associated
essentiallywith the spatial estimation of geostatisticalmethods.As shown in this study,
even though the estimated transmissivity field is spatially smoother than the true field,
the contaminant plume evolution can be reproduced well because the contaminant
plume spreads over time primarily as a result of mechanical dispersion. However,
reducing the smoothing effect is indispensable when a hotspot-shaped concentration
anomaly much higher than the surroundings needs to be reproduced. This reduction
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may be possible by applying geostatistical simulations to conditional realizations,
typically via sequential Gaussian simulations (e.g., Deutsch and Journel 1998), turning
band simulations (e.g., de Sá et al. 2021a, b), and the incorporation of discontinuous
geological structures such as lithological contacts and unconformities (Fienen et al.
2008, 2009;Koike et al. 2022) and fracture/fault distribution (Zha et al. 2017). The third
point is to incorporate the constraints on release history, except for the non-negativity,
for example, the upper limit of concentration as a result of the contaminant solubility.
This can be achieved via Gibbs sampling (Michalak 2008), a representative Markov
chainMonte Carlo method whose effectiveness for contaminant plume estimation was
demonstrated by Takai et al. (2022) using a set of field data.

6 Conclusions

This study developed a geostatisticalmethod to achieve accurate estimation of contam-
inant plume evolutions via a joint clarification of the contaminant plume and hydraulic
transmissivity distributions. One of the novelties of this method is the use of the con-
taminant concentration data in the consideration of the uncertainty of a contaminant
plume distribution originating from an unknown release history. To verify the effec-
tiveness and accuracy of the proposed method, two transmissivity fields with different
spatial patterns were prepared: a high-contrast smooth field (case 1) and a highly
heterogeneous field (case 2). The main obtained results are summarized as follows.

(1) Even though the contaminant plume distribution was unknown, a higher estima-
tion accuracy of the hydraulic transmissivity distribution was achieved through
the joint use of the head and concentration data than when using only the head
data. For case 2, the estimation accuracy was improved similarly to the previous
study (Cirpka and Kitanidis 2000) using tracer data.

(2) Using both the head and concentration data, the release peaks were recovered
more accurately than when using only the head data. This superiority was due to
the improvement of the estimated transmissivity distribution by decreasing the
smoothing effect.

(3) Large difference between the results through the non-use and use of the concentra-
tion data with the head data was highlighted in the predicted contaminant plume
evolution. Using only the head data, the velocity of the estimated plume transport
was almost half that of the true value. Conversely, using both the head and con-
centration data, the plume evolutions were sufficiently predicted for both cases
with high time-averaged correlation coefficients of 0.97, respectively, between the
true and predicted concentrations. Furthermore, the uncertainties of the predicted
plume distributions based on the conditional realizations of the initial plume and
transmissivity distributions were sufficiently smaller than the magnitudes of the
best estimates.

Consequently, the effectiveness and accuracy of the proposed approach were
demonstrated even if the initial contaminant plume distribution is uncertain. Any
forward modeling methods of the groundwater flow and the contaminant transport
can be incorporated into the method. Accurate predictions of the contaminant plume
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transport are helpful to effectively plan remediation, in particular, when choosing the
number and location of pumping-upwells. Because the applicabilitywas demonstrated
only via numerical experiments in this study, our next step will be a practical appli-
cation to actual contaminated fields using multi-depth head and concentration data,
targeting three-dimensional space and considering an additional uncertainty such as
the uncertainty in the boundary conditions of the flow and transport model.
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Appendix: Normalization of the Prior Model

The geostatistical estimation of the transmissivity was implemented via the normal-
ization of the prior model using the following procedure. More details are given in
Kitanidis and Lee (2014).

List of symbols

Parameter Dimension

All

t Time

x Space m × 1

mt Number of unknowns (source
intensity)

m Number of unknowns (contaminant
plume/transmissivity)

nz Number of observations
(concentration)

nϕ Number of observations (head)

δ(x) Dirac delta function
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List of symbols

Parameter Dimension

Estimation of initial
contaminant plume
distribution

s Discretized unknown source
intensity

mt × 1

z0 Discretized unknown initial
contaminant plume

m × 1

z∗0 Observation (initial concentration) nz × 1

Hs,H∗
s Jacobian matrix (for whole

domain/observations)
m ×mt , nz ×mt

vz Observation error nz × 1

σRz Standard deviation of error

Rz Error covariance matrix nz × nz

Xs Known drift matrix mt × ps

βs Unknown drift coefficients ps × 1

Qs Generalized prior covariance matrix
of unknown function

mt × mt

θ s Structure parameter of covariance Qs

V ŝ Covariance matrix of estimated
source intensity

mt × mt

V ẑ Covariance matrix of estimated
initial contaminant plume

m × m

Estimation of hydraulic
transmissivity
distribution

n Number of observations

r Discretized unknown
log-transmissivity

m × 1

z(t) Discretized unknown contaminant
plume at time t

m × 1

y Observation n × 1

ϕ Observation (head) nϕ × 1

z∗ Observation (transient
concentration)

nz ×
(t0, . . . , tend)
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List of symbols

Parameter Dimension

t Observation (mean travel time) nz × 1

H Jacobian matrix n × m

v Observation error n × 1

σR Standard deviation of error

R Error covariance matrix n × n

X Known drift matrix m × p

β Unknown drift coefficients p × 1

Q Generalized prior covariance matrix
of unknown function

m × m

θ r Structure parameter of covariance Q

K Rank of approximation of Q

V r̂ Covariance matrix of estimated
transmissivity

m × m

δr Finite difference interval

εr relative machine precision

λi ith eigenvalue of Q

V i ith eigenvector of Q m × 1

δls Finite difference interval for line
search

Conditional realization

Nz0 Number of realizations (initial
contaminant plume)

Nr Number of realizations
(transmissivity)

su, sc Unconditional/conditional
realization of s

mt × 1

z0c Conditional realization of z0 m × 1

ru, rc Unconditional/conditional
realization of r

m × 1

Physical model

u Groundwater velocity 2 × 1

T Transmissivity m × 1

Q f Pumping rate
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List of symbols

Parameter Dimension

V Actual groundwater velocity 2 × 1

Rf Retardation factor

λf Decay constant

D Dispersion tensor 2 × 2

ε Porosity

αL , αT Dispersivity (longitudinal and
transverse)

Dm Molecular diffusion coefficient

τ Tortuosity

Lp Plume length

First, the drift matrix X is replaced with its normalized and isomorphic matrix U
such that

U =
{

X/
√
m (p = 1)

USXV T
X (p > 1)

, (28)

where SX ∈ R
p×p is a diagonal matrix of the singular values and the columns of

V X ∈ R
p×p are the orthonormal eigenvectors of XT X . Then, U is used to compute

the detrending matrix P ∈ R
m×m

P = I − UUT . (29)

The next step is to detrend the low-rank covarianceQ [Eq. (20)]. First,ZQ is replaced
with PZQ . Then, the singular value decomposition of ZQ is calculated such that

ZQ = U Z SZV T
Z , (30)

where U Z ∈ R
m×K is the unitary matrix; SZ ∈ R

K×K is a diagonal matrix of the
singular values; and the columns of V Z ∈ R

K×K are the orthonormal eigenvectors of
ZT
QZQ . Using C = UT

Z QU Z ,Q is replaced with its detrended and isomorphic matrix
PQP

P QP ≈ U ZCUT
Z . (31)

Then, HQ and H QHT can be approximated as

H Q ≈ (HU Z )CUT
Z ≡ BCUT

Z , (32)
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H QHT ≈ (HU Z )C(HU Z )T = BCBT . (33)

Finally, r is updated iteratively by the following linear equation system correspond-
ing to Eq. (6)

(
Σ HX

(HX)T 0

)(
ΛT Ap

MAp

)
=

(
H QAp

XT Ap

)
, Ap = (U Z ,U), (34)

r = Ap
(
ΛTU Z

)T
( y − h(r) + Hr). (35)

Once the optimal solution r̂ is obtained, the posterior covariance V r̂ can be approx-
imately calculated as

V r̂ = U ZCUT
Z − X

(
MAp

)
AT
p − QHT

(
ΛT Ap

)
AT
p . (36)
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