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Abstract
In decommissioning projects of nuclear facilities, radiological characterisation aims
to estimate the quantity and spatial distribution of different radionuclides. To carry
out the estimation, measurements are performed on site to obtain preliminary infor-
mation. The usual industrial practice consists of applying spatial interpolation tools
(as the ordinary kriging method) on these data to predict the value of interest for
the contamination (radionuclide concentration, radioactivity, etc.) at unobserved posi-
tions. This paper questions the ordinary kriging tool on the well-known problem of
the overoptimistic prediction variances due to not taking into account uncertainties
on the estimation of the kriging parameters (variance and range). To overcome this
issue, the practical use of the Bayesian kriging method, where the model parameters
are considered as random variables, is deepened. The usefulness of Bayesian kriging,
whilst comparing its performance to that of ordinary kriging, is demonstrated in the
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small data context (which is often the case in decommissioning projects). This result is
obtained via several numerical tests on different toy models and using complementary
validation criteria: the predictivity coefficient (Q2), the predictive variance adequacy,
the α confidence interval plot (and its associated mean squared error α), and the pre-
dictive interval adequacy. The latter is a new criterion adapted to Bayesian kriging
results. Finally, the same comparison is performed on a real data set coming from the
decommissioning project of the CEA Marcoule G3 reactor. It illustrates the practical
interest of Bayesian kriging in industrial radiological characterisation.

Keywords Geostatistics · Bayesian kriging · Ordinary kriging · Validation criteria ·
Radiological characterisation

1 Introduction

Radiological characterisation is one of the main challenges encountered in the nuclear
industry for the decommissioning and dismantling (D&D) of old infrastructures such
as buildings (see, e.g., Attiogbe et al. 2014; EPRI 2016; CEA/DEN 2017). Its main
goal is to evaluate the quantity and spatial distribution of radionuclides. As such, mea-
surements are made to constitute a data set and obtain preliminary information. While
measurements aremade, many problems can arise. Radioactivity present on site can be
dangerous for operators and does not allow for many measurements. In some extreme
cases, drones and robots have to be used, making measurements more expensive and
reducing the size of the data sets (see, e.g., Goudeau et al. 2015; CEA/DEN 2017).
It is therefore quite common in nuclear D&D characterisation to have only a small
number of available data: a balance has to be found between data acquisition costs
and information provided from data. Statistical tools make it possible to optimise the
information extracted from the data, within a rigorous mathematical framework and
with associated confidence intervals (in the D&D field; see, e.g., Zaffora et al. 2016;
Blatman et al. 2017; Pérot et al. 2020).

More precisely, as in many other environmental and industrial fields (see, e.g.,
Webster and Oliver 2007; Daya Sagar et al. 2018), spatial statistics and geostatistical
methods are used to predict the variables of interest at an unobserved location (pre-
diction of the expected value), with an indication of the expected error in prediction
(prediction variance). Themethodology is often based on two steps: first, the construc-
tion of a statistical model with estimation of its parameters, followed by prediction
with the statistical model for any unobserved point. The ordinary kriging model (see,
e.g., Chilès and Delfiner 2012; Cressie 1993) is one of the most widely used models in
industrial practice of D&D (see, e.g., Attiogbe et al. 2014; Goudeau et al. 2015; EPRI
2016). However, a common criticism is that its predictions do not take into account
the uncertainty in the estimation of the model parameters. As a result, the variances of
the predictions are often too optimistic, and these neglected uncertainties in the model
parameters can have a significant impact. This problem is made worse for smaller
data sets, which can be common in D&D projects. For radiological characterisation in
D&D projects, the first examples of kriging shown in Desnoyers (2010) and Desnoy-
ers et al. (2011) have studied practical cases based on many measurements and did
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not consider this issue. The more realistic studies by Boden et al. (2013), Lajaunie
et al. (2020) and Desnoyers et al. (2020), carried out on smaller data sets, have instead
highlighted the errors generated by the estimation errors of the kriging parameters.

To overcome this kriging issue, a Bayesian approachwas first proposed byKitanidis
(1986). Its main goal was to take into account the uncertainties in the scale and mean
parameters of the kriging model. The work of Handcock and Stein (1993) then com-
pleted the full Bayesian approach which considers all the parameters of the model as
unknown. More recently, a slightly different approach was presented by Krivoruchko
and Gribov (2019) and is called empirical Bayesian kriging. This methodology dif-
fers slightly from the one used in Kitanidis (1986), since the choice on the prior
distributions of kriging parameters are obtained through unconstrained simulations of
the random field. This approach was adapted to allow for multi-fidelity applications,
where Bayesian theory is used to update the initial data with new, more accurate data
(classically used with cokriging if correlations between old and new data exist). Some
examples can be found in meteorology in Gupta et al. (2017) or for oil extraction in
Al-Mudhafar (2019). Note that a more complete description of Bayesian kriging with
an extension to generalised linear models is presented in Diggle and Ribeiro (2007).

In this framework, our work aims to understand the usefulness of the Bayesian
kriging approach, compared to the ordinary kriging approach, for the radiological
characterisation of contaminated buildings. In particular, the specification of a priori
laws for the parameters in Bayesian kriging, which allows a more robust estimation of
these parameters when only a few observations are available, is studied. The perfor-
mance of ordinary and Bayesian kriging is compared on several numerical examples.
For this, we not only focus on the kriging predictor accuracy but also on the kriging
predictive variance accuracy. Indeed, the kriging variance is often used by practition-
ers to estimate predictive intervals on predicted quantities, to justify their choice of
sampling, or to find locations of new (potentially expensive) measurements (Bech-
ler et al. 2013). To ensure a certain level of confidence in the use of the predictive
variance, the works of Marrel et al. (2012), Bachoc (2013a), Demay et al. (2022) and
Acharki et al. (2023) about kriging model validation have emphasised the usefulness
of several validation criteria, such as the predictive variance adequacy (PVA) and the
α confidence interval (α-CI) plot. In addition to allowing a more accurate comparison
in the case of the Bayesian kriging model, new validation criteria are required and are
proposed in the present work.

The following section describes the different studied kriging models, while Sect. 3
develops the associated classical validation criteria before introducing the newly pro-
posed criteria. Section4 presents the results of the model comparison obtained on
several numerical tests. Section5 then illustrates application to a real case study com-
ing from the decommissioning project of theCEAMarcouleG3 reactor. Section6 gives
some conclusions. Finally, two appendices present prior specification and parameter
estimation results, which are not discussed in the main work of this article.
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2 The Ordinary and Bayesian KrigingModels

This section provides reminders on kriging principles, within the framework of Gaus-
sian random field model.

2.1 The Gaussian Random Field Model

The variable of interest is assumed to be a random field {Z(x), x ∈ D}, with D ⊂ R
2.

Z(·) is supposed to be isotropic and stationary, meaning that

∀x ∈ D, E[Z(x)] = β,

∀x, x′ ∈ D,Cov(Z(x), Z(x′)) = σ 2Cφ(|x − x′|),

where Cφ is the correlation function where Cφ(0) = 1, and β, σ 2, φ denote the
mean, variance and range (or correlation length) parameters, respectively. For ease of
notation, the conditioning to parameters will be simplified from Z |β = ̂β to Z |β. The
term Cφ corresponds to a positive semi-definite function. Moreover, by definition of a
Gaussian process, every finite set of Z is a multivariate normal distribution (denoted
N (., .)). Thus, for n observations at positions x1, . . . , xn , we obtain the Gaussian
random vector Z = (Z(x1), . . . , Z(xn))′ with

Z |β, σ 2, φ ∼ N (β1n, σ 2Rφ),

where 1n is the vector (1, . . . , 1)′ of length n, and the covariance matrix is
σ 2Rφ = (

Cov(Z(xi ), Z(x j ))
)

1≤i, j≤n . The observation sample of Z is written

as z = (z(x1), . . . , z(xn))′.
The positive semi-definite function Cφ is often modelled using a common covari-

ance function. In this work, two covariance models will be used (see, e.g., Chilès
and Delfiner 2012 for an extensive list of covariance functions). The first one is the
Gaussian covariance function written as

∀h ∈ R,Cφ(h) = e−h2/φ2
,

while the second one is the Matérn covariance function written as

∀h ∈ R,Cφ,ν(h) = 21−ν

Γ (ν)

(√
2ν

h

φ

)ν

Kν

(√
2ν

h

φ

)

, (1)

with ν a strictly positive parameter, Γ (·) the gamma function and Kν(·) the modified
Bessel function of the second type and order ν. The parameter ν, that drives the
regularity of the process trajectories, is not estimated. It is chosen from a set of possible

values, the most commonly used being ν ∈
{

1
2 ,

3
2 ,

5
2

}

. In addition, we have the nugget

effect, written as

∀h ∈ R,Cτ 2(h) = τ 2δ(h),
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with τ 2 a variance and δ the Dirac function where δ(h) = 1 if h = 0 and δ(h) = 0
otherwise. The nugget effect is often used to model micro-scale variations and mea-
surements uncertainties. In our case studies, it will mainly be used to improve the
conditioning of the matrix Rφ , in order to improve the stability of its numerical inver-
sion (especially in the case of a Gaussian covariance function).

The model is therefore specified by three different parameters: the trend parameter
β ∈ Dβ , the variance parameter σ 2 ∈ Dσ 2 and the range parameter φ ∈ Dφ . In
the case of ordinary kriging and for the covariance functions considered here, the
parameter spaces are

Dβ = R, Dσ 2 =]0,+∞[, Dφ =]0,+∞[.

The first step of the kriging methodology in practice is to estimate these parame-
ters. Two main procedures are commonly used: variographic analysis and maximum
likelihood estimation (MLE). An extensive literature is available about parameter esti-
mation with variographic analysis, such as Chilès and Delfiner (2012) and Webster
and Oliver (2007). In this work, we will use MLE to take advantage of the proba-
bilistic framework and to avoid manual or automatic fitting of variograms, especially
since our numerical tests will require parameter estimation for many simulated data
sets. Moreover, the automatic fitting of variograms is strongly discouraged in most
of the literature (see, e.g., Chilès and Delfiner 2012; Webster and Oliver 2007). Note
that when kriging is used to interpolate and predict numerical experiments with a
large number of inputs, a multi-start optimisation procedure is often used for the MLE
to avoid the known pitfall of local extrema and better explore the input parameter
space. However, this procedure will not be used here because preliminary studies have
shown that in our case, it is not necessary due to the small dimension of the problem
(i.e., two-dimensional random field) and the regularity of the likelihood function. This
decision allowed us to reduce computation times without compromising on parameter
estimation.

2.2 KrigingModel Principles

The kriging predictor is a linear interpolator whose expressions are derived from
supplementary conditions, such as minimising the prediction variance. For a detailed
description of kriging and its construction, the reader can refer to the reference books
of Chilès and Delfiner (2012) and Cressie (1993) for geostatistics, but also Rasmussen
and Williams (2006) for the Gaussian process regression point of view. Let x0 be an
unobserved position at which we wish to predict the expected value and the variance
of Z(x0)|σ 2, φ, Z = z (the mean is considered unknown). The ordinary kriging
equations are then

E[Z(x0)|σ 2, φ, Z = z] =
(

r + 1n
1 − 1′

nR
−1
φ r

1′
nR

−1
φ 1n

)′
R−1

φ Z,
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Var[Z(x0)|σ 2, φ, Z = z] = σ 2

⎛

⎝1 − r ′R−1
φ r + (1 − 1′

nR
−1
φ r)

2

1′
nR

−1
φ 1n

⎞

⎠ ,

with r ∈ R
n the correlation vector defined as σ 2r = (Cov(Z(x0), Z(x j ))1≤ j≤n .

A major concern for applications of these equations is that they are conditional
on the knowledge of the variance and range parameters, which is mostly unrealistic
since they are estimated. This assumption yields overoptimistic prediction variances
and narrower predictive intervals. This problem is made worse in the case of a small
data set where parameter estimation is sensitive to each observation. To address this
issue, Bachoc (2013b) uses a cross-validation procedure instead of MLE to estimate
the model parameters in a more robust way, especially in the case of model misspec-
ification. However, this approach always results in a single set of parameter values,
tainted by an estimation error that is not taken into account. To remedy this, another
solution is to consider the parameters as random variables, and then to quantify and
finally propagate their uncertainties on the kriging model. The Bayesian approach
therefore appears natural for this and leads to Bayesian kriging.

2.3 Bayesian Kriging Principles

Bayesian kriging deals simultaneously with estimation and predictions by considering
the parameters as randomvariables thatmust be predicted conditionally to the observed
data (Diggle and Ribeiro 2002). Bayesian kriging predictions are derived from the
predictive distribution as

pZ(x0)(Z(x0)|Z = z) =
∫

Dβ×D
σ2×Dφ

pZ(x0),β,σ 2,φ(Z(x0), β, σ 2, φ|Z = z)dβdσ 2dφ

=
∫

Dβ×D
σ2×Dφ

pZ(x0)(Z(x0)|β, σ 2, φ, Z = z)

pβ,σ 2,φ(β, σ 2, φ|Z = z)dβdσ 2dφ.

The density pZ(x0)(Z(x0)|β, σ 2, φ, Z = z) is known to be a Student’s t-density
under the assumption that the prior is of the same family as the one presented at the
end of this section (as demonstrated in Le and Zidek 1992), but the integral is usually
intractable. In practice, it must therefore be estimated numerically by Markov chain
Monte Carlo (MCMC) methods. One solution is to sample from the target distribution
using a Monte Carlo approach. One such method is given in Tanner (1993), and used
in the geoR package (Ribeiro and Diggle 2001) of R software. A slightly different
approach considers a Markov chain for its Monte Carlo algorithm as described in
Gaudard et al. (1999) and Carlin and Louis (2013). Thus, the algorithm described by
Algorithm 1 is the one used in the geoR package and will be used in the following to
estimate the Bayesian prediction.

M is chosen so that the predictive distribution is sufficiently sampled to be approx-
imated. For our application cases, M = 1000. Finally, a joint prior distribution is
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Algorithm 1Monte Carlo approximation for Bayesian kriging
Choose a prior specification and a position x0
Estimate pβ,σ2,φ

(

β, σ 2, φ|Z = z
)

by a MCMC method

i ← 0
while i ≤ M do

{̂βi , σ̂ 2
i , ̂φi } ← sample from pβ,σ2,φ

(

β, σ 2, φ|Z = z
)

ẑ0,i ← sample from pZ(x0)

(

Z(x0)
∣

∣

∣

̂βi , σ̂
2
i , ̂φi , Z = z

)

i ← i + 1
end while
Compute the empirical mean and variance

̂E[Z(x0)|Z = z)] ← 1
M

∑M
i=1 ẑ0,i

̂Var[Z(x0)|Z = z)] ← 1
M−1

∑M
i=1

(

ẑ0,i − ̂E[Z(x0)|Z = z)])2
Return {̂z0,i }i∈�1,M�,

̂E[Z(x0)|Z = z)], ̂Var[Z(x0)|Z = z)].

chosen for β, σ 2, φ that is

π(β, σ 2, φ) ∝ 1

σ 2 .

The resulting parameter space is

Dβ = R, Dσ 2 =]0,+∞[, Dφ =]0,+∞[.

Note that a sensitivity analysis is presented in the Appendix (Sect.A) to explain our
choice of priors.

3 Validation Criteria

Choosing an “optimal” covariance model for geostatistical predictions is a classical
issue in geostatistics (Chilès and Delfiner 2012).

This topic has been recently studied in depth in Demay et al. (2022), where different
validation criteria are investigated to assess the quality of both the model predictions,
the reliability of the associated prediction variances and more generally the accuracy
of the whole predictive law. Depending on the number of observations available, these
criteria can be computed either on a test sample separate from the training sample
or, as here, by cross-validation. Their expressions, with some new adaptations, are
given in this section in their leave-one-out cross-validation form. Extension to K -fold
cross-validation or to test set cases are immediate.

3.1 Predictivity Coefficient (Q2)

The main goal of this coefficient, often called the Nash–Sutcliffe criterion (Nash and
Sutcliffe 1970), is to evaluate the predictive accuracy of the model by normalising
the errors, allowing a direct interpretation in terms of explained variance. Its practical
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definition (Marrel et al. 2008) is

Q2 = 1 −
∑n

i=1(z(xi ) − ẑ−i )
2

∑n
i=1(z(xi ) − μ̂)2

,

where ẑ−i is the value predicted at location xi by the model built without the i th
observation (the one located at xi ), and μ̂ is the empirical mean of the data set. Its
theoretical definition can be found in Fekhari et al. (2023).

The Q2 coefficient measures the quality of the predictions and how near they are
to the observed values. Its formula is similar to the coefficient of determination used
for regression (with independent observations), but estimated here in prediction (by
using cross-validation residuals). The closer its value is to 1, the better the predictions
are (relative to the observations).

3.2 Predictive Variance Adequacy (PVA)

This second criterion aims to quantify the quality of the prediction variances given by
the kriging model. Finely studied in Bachoc (2013a, b) and Demay et al. (2022), it is
defined by

PVA =
∣

∣

∣

∣

∣

log

(

1

n

n
∑

i=1

(z(xi ) − ẑ−i )
2

ŝ2−i

)∣

∣

∣

∣

∣

,

where ŝ2−i is the prediction variance (at location xi ) of the model built without the i th
observation (the one located at xi ).

This coefficient estimates the average ratio between the squared observed prediction
error and the prediction variance. It therefore gives an indication of how much a
prediction variance is larger or smaller than the one expected. The closer the PVA is
to 0, the better the prediction variances are. For example, a PVA close to 0.7 indicates
prediction variances that are on average two times larger or smaller than the squared
errors.

3.3 Predictive Interval Adequacy (PIA)

The PVA is a criterion of variance adequacy but does not take into account a possible
skewness in the predictive distribution. In the Gaussian case (like ordinary kriging),
mean and variance completely characterise the distribution. But in the case of Bayesian
krigingwhere the predictive distribution is no longerGaussian, the Q2 and PVAare not
sufficient to evaluate the quality of the model and its prediction. As such, we propose
a new complementary geometrical criterion called the predictive interval adequacy
(PIA) and defined as

PIA =
∣

∣

∣

∣

∣

log

(

1

n

n
∑

i=1

(z(xi ) − ẑ−i )
2

(

q̂0.31,−i − q̂0.69,−i
)2

)∣

∣

∣

∣

∣

,
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where q̂0.31,−i (respectively q̂0.69,−i ) is the estimation of the quantile of order 0.31
(respectively 0.69) of the predictive distribution (at location xi ) without the i th obser-
vation.

The PIA has been defined to be identical to the PVA for a Gaussian distribution.
However, rather than comparing squared errors to the predictive variance, it compares
the width of predictive intervals with the squared errors. Another main difference is
that the intervals considered by the PIA are centred on the median, while those of the
PVA are centred around the mean. Finally, an estimation of the predictive distribution
is necessary to compute in practice this criterion, whereas the PVA only requires the
computation of predictive mean and variance.

3.4 ˛-CI Plot

The Gaussian process model allows us to build predictive intervals of any level α ∈
]0, 1[ written as

CIα(z(xi )) =
[

ẑ−i − ŝ−i q
N
(1+α)/2; ẑ−i + ŝ−i q

N
(1+α)/2]

]

,

where qN(1+α)/2 is the quantile of order (1 + α)/2 of the standard normal distribution.
This expression is only valid if all parameters are known. For example, if the variance
parameter is poorly estimated, the width of the predicted confidence intervals will not
reflect what we might observe. But how can we validate a predictive interval without
prior knowledge of the model parameters? The idea behind this criterion (see Marrel
et al. 2012; Demay et al. 2022) is to evaluate empirically the number of observations
falling into the predictive intervals and to compare this empirical estimation to the
theoretical ones expected, with

Δα = 1

n

n
∑

i=1

φi where δi =
{

1 if z(xi ) ∈ C Iα(z(xi ))
0 else.

This value can be computed for varying α, and can then be visualised against the
theoretical values, yielding what Demay et al. (2022) calls the α-CI plot, with an
example given in Fig. 1.

Similarly to the PIA, the α-CI plot must be adapted to the Bayesian kriging since
the posterior distribution is not Gaussian. We therefore introduce a slightly different
criterion based on the quantiles of the predictive distribution. More precisely, this
modified α-CI plot relies now on credible intervals defined as

˜CIα(z(xi )) =
[

q̂ 1−α
2

; q̂ 1+α
2

]

,

where q̂ 1−α
2

(respectively q̂ 1+α
2
) is the estimation of the quantile of order 1−α

2 (respec-

tively 1+α
2 ) of the predictive distribution (at location xi ) of the model built without the

i th observation. Once again, we obtain a criterion that is identical for both methods
when the predictive distribution is Gaussian.
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Fig. 1 Example of two α-CI plots and corresponding values of MSEα

3.5 Mean Squared Error˛ (MSE˛)

Finally, to summarise the α-CI plot, we also introduce a quantitative criterion called
“mean squared error α” and defined as

MSEα = 1

nα

nα
∑

j=1

(Δα j − α j )
2,

where the considered levels α are discretized over ]0, 1[ in nα possible values. In
practice, a regular discretisation will be considered to compute MSEα. The closer
this criterion is to 0, the better the predictive/credible intervals are on average. To
illustrate the values taken by the criterion, Fig. 1 gives the α-CI plot corresponding
to a “good” and “bad” model fitting. In this graph, the bad model yields a MSEα

of 0.0101 against 0.0013 for a model with more accurate predictive intervals. In the
context of dismantling and decommissioning of nuclear sites, a MSEα of 0.01 will be
considered to correspond to a model with wrong predictive intervals, while a model
with a MSEα of 0.001 will be deemed to have correct predictive intervals. Similarly
to the PVA, the MSEα does not explain if the poorly fitted predictive intervals are due
to badly centred predictive intervals or if the predictive variance was badly estimated
(and whether or not this variance was underestimated or overestimated). This criterion
must therefore be used in conjunction with the previous criteria to better assert the
model qualities and weaknesses. Finally, this criterion also offers a quantitative tool
for comparing different models if the α-CI plots do not allow us to clearly distinguish
the performances of competing models. This will be illustrated in particular in the
numerical tests in Sect. 4.2 (Fig. 8).
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The different aforementioned criteria provide complementary information to eval-
uate the prediction quality of the kriging model, either in terms of mean, variance
or predictive/credible intervals. They will be used in the following to compare the
performance of ordinary and Bayesian kriging.

4 Numerical Tests and Results

Our goal is to compare Bayesian and ordinary kriging (the latter being the more
commonly used kriging method) (The R code corresponding to these tests is given
in https://gitlab.com/biooss/r-code-for-wieskotten-et-al-2023-paper). To do so, the
different criteria mentioned in Sect. 3 will be computed on data sets (i.e., samples of
observations), coming from different models, of different sizes. Parameter estimation
results are not discussed further here, but an analysis is given in Appendix B.

4.1 Data Sets fromTwo-Dimensional Gaussian Process Simulations

First, we consider samples simulated from an analytical Gaussian process model with
known parameters. More precisely, the samples are simulated in the input space
[0, 10]2 from a Gaussian process with an exponential covariance (i.e., the Matérn
covariance of Eq. (1) with ν = 0.5) and the parameters

β = 0.5, σ 2 = 0.1, φ = 4.5.

We simulate data sets of different sizes, varying from 16 to 81 observations, sam-
pled on a square grid in the input space. Here, the sampling designs will be regular
squared grids. This choice is made to comply with the application purpose which
deals with D&D constraints of buildings. Indeed, most of the times, the radiological
measurements inside buildings are made regularly (equidistant location) along lines of
investigations (see, e.g., Attiogbe et al. 2014; EPRI 2016). For each size, the process
is repeated 100 times with independent random Gaussian process simulations.

For each data set, Bayesian and ordinary kriging models are estimated, and the
different validation criteria are computed by cross-validation. Every kriging prediction
(Bayesian and ordinary) is made with the R package geoR (Ribeiro and Diggle 2001).
Results are given in Fig. 2 with box plots (corresponding to the 100 random replicates)
with respect to the data set sizes.

The results for the validation criteria indicate that Bayesian kriging performs better
in terms of both mean and prediction variance for small sample sizes. More precisely,
Bayesian kriging outperforms ordinary kriging on most criteria for data sets with
less than 40 observations (with the exception of the PIA, where for 36 observations,
ordinary kriging outperforms Bayesian kriging).

More precisely, if we first look at themedian values of Q2 estimation, these increase
from −0.07 to 0.64, according to the data size, for ordinary kriging. Bayesian kriging
gives better Q2 for smaller data sets, starting from a median value of 0.10 up to 0.64.
For a fixed sample size, the dispersion of Q2 is quite similar between the two kriging
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Fig. 2 Distribution of validation criteria (Q2, PVA, PIA and MSEα) with respect to the size of data sets,
for Gaussian process simulation data sets

methods (for example, we have a standard deviation of 0.21 for both methods for 36
observations).

Regarding the median of PVA, the values range from 0.25 to 0.04 for ordinary
kriging, compared to 0.14 to 0.06 for Bayesian kriging. For the PIA, the results are
identical for ordinary kriging, but Bayesian kriging performs slightly worse, starting
at 0.21 up to 0.05. We can also see that the dispersion of PIA and PVA estimates is
different for small data sets between the two kriging methods. This is explained by
the fact that PVA and PIA are sensitive to the parameter estimation process. Since
the number of observations is low, maximum likelihood estimations are not robust,
yielding large variations in parameter estimations, and therefore in PVA and PIA
estimations. Finally, we observe that for data sets larger than or equal to 49, Bayesian
kriging seems to perform slightly worse than ordinary kriging.

The MSEα graph shares similarities with the other graphs, since predictive and
credible intervals both depend on prediction mean and variance. For the ordinary
kriging, the median MSEα ranges from 0.0072 to 0.0012, while for Bayesian kriging,
the values are lower, from 0.0063 to 0.0015. The evolution observed is similar between
the PVA and PIA, with Bayesian kriging yielding better results for smaller data sets.
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Fig. 3 Illustration of the deterministic function f (Iooss et al. 2010)

It can also be noted that for larger data sets, Bayesian kriging yields slightly worse
results. It can therefore be argued that Bayesian kriging becomes less advantageous
and relevant for data sets with more than 40 observations. Note that Q2 values are also
extremely low for 49 or fewer observations, but again this is to be expected for very
small data sets.

4.2 Data Sets from aTwo-Dimensional Deterministic Function

In order to test the kriging models on cases that do not fall within the theoretical
framework of the Gaussian process hypothesis, we consider a sample coming from
the following two-dimensional deterministic function (Iooss et al. 2010)

f (x, y) = ex

5
− y

5
+ y6

3
+ 4y4 − 4y2 + 7x2

10
+ x4 + 3

4x2 + 4y2 + 1
, (2)

where (x, y) are the function inputs. Figure3 shows this function over the D =
[−1, 1]2 input space.

We consider two steps for studying this test function. First, the validation criteria
are used to compare the results obtained by using different covariance functions in
order to identify the most appropriate one for the data set (as done in Demay et al.
2022).

Then, a regular squared grid is considered to sample the input space, composed of
144 observations. On this data set, the ordinary kriging model is fitted with different
covariance functions, namely three Matérn covariances and the Gaussian covariance
with a nugget effect for the latter of 10−6 (to improve the numerical stability of the
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Table 1 Validation criteria for
the ordinary kriging with
different covariance functions,
on the sample of n = 144
observations of function f

Covariance Q2 PVA PIA MSEα

Matérn 1/2 0.95 0.99 0.98 0.056

Matérn 3/2 0.99 0.91 0.90 0.073

Matérn 5/2 1.00 0.65 0.63 0.073

Gaussian 1.00 0.05 0.07 0.011

Table 2 Validation criteria for
the Bayesian kriging with
different covariance functions,
on the sample of n = 144
observations of function f

Covariance Q2 PVA PIA MSEα

Matérn 1/2 0.95 1.09 1.06 0.061

Matérn 3/2 0.99 1.62 1.60 0.106

Matérn 5/2 1.00 1.58 1.55 0.106

Gaussian 1.00 0.13 0.16 0.002

Fig. 4 α-CI plots for the ordinary and Bayesian kriging with different covariances functions, on the sample
of n = 144 observations of function f

covariance matrix inversion). For each of these covariances, the validation criteria
are estimated by a cross-validation process. The results are presented in Table 1 for
ordinary kriging, in Table 2 for Bayesian kriging and in Fig. 4.

The main goal of this procedure is to better identify the covariance, so that this
choice has no concern for the rest of our study. Therefore, a data set of 144 observations
is used to ensure a good analysis of the covariance function through the use of the
aforementioned validation criteria.

The results show that, in this case, a Gaussian covariance function is the most
appropriate covariance function with respect to the different criteria. This result is
not surprising since the test function is smooth and shows large correlations between
observations. Although the differences between Q2 are very small between the Gaus-
sian and Matérn models (except for the Matérn 1/2 model), significant differences
appear for the PVA and PIA. These differences become smaller for the MSEα. This
shows the importance of using simultaneously various criteria for a better assessment
of the model performance and accuracy.

Once our covariancemodel is chosen (the Gaussian one in this case), we can apply a
similar test protocol as that inSect. 4.1. In order to generate data sets,wehave to slightly
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Fig. 5 Distribution of validation criteria (Q2, PVA, PIA and MSEα) with respect to the size of data sets,
for the deterministic function f

modify the protocol. Since the function is deterministic, choosing a specific geometry
for a fixed data set size will not allow us to generate different data sets. Therefore, we
discard here the regular grid and choose to sample random positions in the input space.
It allows us to generate different data sets while considering the same deterministic
function, even though such random sampling would not be recommended in practice.
The observed dispersion in the results of this section is affected by that choice. This
sampling is repeated 100 times for each data set size, up to 150 observations.

The results are presented in Fig. 5. The values of the Q2 criterion lead to the same
conclusions as for the data from Gaussian process trajectories in the previous section.
We again find better performance with Bayesian kriging, especially for small sample
sizes. Note that we have higher Q2 values than for the previous test case due to the
high regularity of the function f .
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Fig. 6 Mapping of G3 observations

Significant differences arise with the PVA, PIA and MSEα criteria. Indeed, these
criteria do not decrease steadily and monotonically with the number of observations.
Moreover, they behave differently depending on the type of kriging. More precisely,
for Bayesian kriging, the PVA, PIA and MSEα increase between 20 observations and
50 observations, before decreasing, whereas they keep increasing for ordinary kriging.
For data setsmade of 50 observations or less, Bayesian kriging seems to under-perform
when compared to ordinary kriging but outperform ordinary kriging for more than 50
observations. Still, once the size of the data sets exceed 80 observations, we observe
similar results to those obtained with the simulated data sets.

To explain these results, we recall that the initial assumption whereby the function
f is a trajectory of a Gaussian process is not verified here, at least for data sets of 50 or
less observations. It is therefore possible to obtain poorer criteria as the data set size
increases. We still get good prediction accuracy, since the median of the Q2 criterion
stays between 0.7 and 1 for all data set sizes and kriging methods, but the predicted
variances do not seem to be very accurate, yielding poorly estimated predictive and
credible intervals. We can observe that once the data set size exceeds 80 observations,
the evolution of the validation criteria shows that the initial assumption is now valid.

In conclusion, Bayesian kriging outperforms, on average, ordinary kriging in this
case where the initial assumption of a Gaussian random field is not true. Caution
is still advised, since in some cases, ordinary kriging seems to perform better than
Bayesian kriging, as illustrated with the n = 40 or n = 50 observations’ data set. The
conclusion obtained in Sect. 4.1 cannot be made identically here, because for small
data sets, Bayesian kriging does not seem to consistently give better validation criteria.

5 Real Application Case: G3’s Data Set

This data set is made of 70 observations of radioactivity measurements from the
decommissioning project of the CEA Marcoule G3 reactor (CEA 2009). They are
sampled in the input domain [0, 6] × [0, 4]. The data set is mapped in Fig. 6.
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Fig. 7 Predictions for 20 observations sampled from the original data set with ordinary andBayesian kriging

Figure 7 shows the predictions of Bayesian kriging and ordinary kriging for a
given data set of n = 20 observations (randomly sampled from the original data set).
More precisely, the prediction maps obtained with ordinary and Bayesian kriging with
an exponential covariance for both models are given. The figure also highlights the
differences between both predictions. A small difference between predicted standard
deviation appears, since they are much higher for Bayesian kriging. This is explained
by the fact that for a small number of observations, Bayesian kriging takes more
uncertainty into account, resulting in higher prediction variances. In the practice of
D&D projects, this can have a direct impact since the estimates (or more precisely the
upper quantiles ormargins given by the predictive law)will bemore conservative. Note
that as we increase the sample size, the differences between the Bayesian and ordinary
kriging maps are no longer visible. Indeed, the uncertainty of parameter estimation
(only taken into account by the Bayesian kriging) becomes negligible in front of the
interpolation uncertainty (common to the two kriging methods).

Let us now examine the effects of varying sample sizes and covariance models. A
similar test protocol as in Sect. 4 is applied to assess the behaviour of kriging models
according to n. First, let us consider ordinary kriging for different covariance functions,
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Table 3 Validation criteria for
the ordinary kriging with
different covariance functions,
on the G3 sample of n = 70
observations

Covariance Q2 PVA PIA MSEα

Matérn 1/2 (exponential) 0.37 0.06 0.07 0.0015

Matérn 3/2 0.33 0.12 0.14 0.0010

Matérn 5/2 0.31 0.14 0.15 0.0014

Gaussian 0.24 0.16 0.18 0.0021

Table 4 Validation criteria for
the Bayesian kriging with
different covariance functions,
on the G3 sample of n = 70
observations

Covariance Q2 PVA PIA MSEα

Matérn 1/2 (exponential) 0.38 0.12 0.07 0.0013

Matérn 3/2 0.20 0.51 0.55 0.0028

Matérn 5/2 0.16 1.19 1.25 0.0284

Gaussian 0.15 0.36 0.40 0.0015

Fig. 8 α-CI plots for the ordinary and Bayesian kriging with different covariance functions, on the G3
sample of n = 70 observations

applied to the initial set of 70 observations. The validation criteria estimated by cross-
validation are given in Table 3 and Fig. 8. For Bayesian kriging, they are given in
Table 4 and Fig. 8. The results indicate that the Matérn 1/2 model is the best choice in
regards to our different criteria since it maximizes the Q2 criterion while minimising
both PVA and PIA criteria (it also performs well for the MSEα criterion, while not
being the function minimising it overall). Therefore, only the Matérn 1/2 covariance
function is considered.

To generate multiple data sets, we resampled without replacement data sets of
various sizes (n = 20, 30, 40, 50, 60, 70) with the last one being the original data
set. Once again, the process is repeated 100 times for each sample size (except for
70 observations), and for each sample, a cross-validation is applied to estimate the
validation criteria.

The obtained results are summarised in Fig. 9. For the Q2 criterion, the median
values increase from about 0 (n = 10) to 0.38 (n = 70) for both kriging methods.
Slightly higher results are obtained for Bayesian kriging, especially for small sample
sizes. The dispersion of Q2 is similar between the two kriging methods. The obtained
Q2 estimates here are very low, which normally means that the model is not predictive
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Fig. 9 Distribution of validation criteria (Q2, PVA, PIA and MSEα) with respect to the size of data sets,
for the G3 data set

enough. As our objective is only to compare the kriging methods, this problem is not
further investigated here.

Regarding the PVA, the median values decrease from 0.47 to 0.16 for ordinary
kriging, compared to much lower values for Bayesian kriging, namely from 0.19 to
0.06. For the PIA, the values are very close to the ones of the PVA. For the MSEα,
the median values range from 0.011 to 0.0017 for the ordinary kriging, against 0.008
down to 0.0017 for Bayesian kriging. Once again, Bayesian kriging yields better
results, especially for smaller data sets. The results of both methods then become
almost identical for data sets of 40 or more observations. This is especially visible for
the MSEα.

We can also remark that the variance of each validation criterion is reduced as
the data sets size grows. This is both explained by the larger data sets, but also by
our protocol, since observations are randomly drawn without replacement among the
original 70 observations. As a result, the samples differ less and less as the data set
sizes increases.

6 Discussion and Conclusions

In conclusion, the use of Bayesian kriging for spatial interpolation of data sets in
support of decommissioning and dismantling projects shows promising results. Its
main advantage is that it allows us to take into account the uncertainty of the parameters
of the kriging model. The results given in the three application cases show that, on
average, Bayesian kriging outperforms ordinary kriging. Still, the second case (dealing
with a deterministic function) gives a clear and interesting counter-example. Even
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though this result could be explained with the fact that the Gaussian assumption is not
verified, it advocates for cautious use ofBayesian kriging.As the sample size increases,
ordinary kriging, less computationally expensive, is then preferable for large data sets.
Bayesian kriging has also the drawback of requiring a prior specification, which is
often difficult to choose and can strongly influence the predictions. Therefore, the use
of Bayesian kriging should be restricted to smaller data sets or cases in which prior
information on parameters is well known.

Another important advantage of Bayesian kriging is that it allows us to evaluate
the information brought by the data on the parameter characterisation (e.g. by com-
paring their prior and posterior distributions) and can share the prediction uncertainty
between the data interpolation uncertainties and the one coming from the parameters’
uncertainties. It then allows us to judge if the latter uncertainty is negligible compared
to the former in order to bring some confidence in this statistical tool to the user.
Another fruitful perspective is that the evolution of the posterior distribution could be
used for defining a new design of experiments, allowing comparison of the information
brought by new observations.

In our work, we did not use the nugget effect as a modelling tool but only as a reg-
ularisation of the Gaussian covariance function. Future works will aim at adding this
parameter to the model. This could be taken further by considering a heteroscedastic
model (Ng andYin 2012), since the usual nugget effect is formulated as a homoscedas-
ticmodel. This could be extremely useful and show promising results in the framework
of D&D of nuclear sites since radioactive measurements are prone to varying mea-
surement uncertainties, depending on the measuring technique.

The results presented in this paper also show that the main differences between
the two kriging methods are in the prediction variances, which are often larger with
Bayesian kriging. This can lead to predictions with more conservative associated
uncertainties, potentially increasing the difficulty of decision-making. However, this
disadvantage must be put into perspective in the framework of D&D projects, because
in this context, it is preferable, for safety reasons, to overestimate contamination rather
than underestimate it.
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Appendix A: Sensitivity Analysis of the Prior Distribution of Parame-
ters

The choice of prior specifications is a complicated step in Bayesian analysis. We
therefore conduct a sensitivity analysis to justify our use of an improper prior on the
mean and variance parameters. Note that the range will not be described here, since
no usual specification is available.

First, it could be argued that the prior on the parameter β is chosen improper since
this choice is implicitly made in ordinary kriging

π(β) ∝ 1.

Second, for the variance parameter σ 2, several choices for priors can be considered.
To give a quick overview of our test protocol, we used a simulated data set, defined
as random trajectories of the same Gaussian process model as in Sect. 4.1. An initial
data set of 16,641 observations is simulated, on which the parameters βinit and σ 2

init
are estimated. These estimations will be considered as reference values for our prior
specifications. From these 16,641 observations, samples of n = 20 and n = 50
observations are randomly drawn. This sampling is then repeated 100 times, generating
a total of 200 data sets. Then for each data set, Bayesian kriging is applied considering
five different prior specifications:

1. Vague with

π(β, σ 2) ∝ 1

σ 2 ,

2. Correctly centred and informative with

σ 2 ∼ Scaled-Inv-χ2(σ 2
init, n) and β|σ 2 ∼ N

(

βinit,
σ 2

n

)

,

3. Incorrectly centred and informative with

σ 2 ∼ Scaled-Inv-χ2(3σ 2
init, n) and β|σ 2 ∼ N

(

3βinit,
σ 2

n

)

,

4. Correctly centred and non-informative with

σ 2 ∼ Scaled-Inv-χ2(σ 2
init,

n

3
) and β|σ 2 ∼ N

(

βinit,
σ 2

n

)

,

5. Incorrectly centred and non-informative with

σ 2 ∼ Scaled-Inv-χ2(3σ 2
init,

n

3
) and β|σ 2 ∼ N

(

3βinit,
σ 2

n

)

.
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Fig. 10 Distribution of validation criteria (Q2, PVA, PIA and MSEα) with respect to the prior specification

For each prior specification, Bayesian kriging is combined with cross-validation to
estimate validation criteria. The obtained results are given in Fig. 10. First, we observe
that the Q2 criterion is not sensitive to the prior specification. This is expected since
the prediction performances depend mostly on the number of observations and on the
geometry of the data set.Oncontrary, thePVAandPIAcriterion are very sensitive to the
prior specification since prediction variance highly depends on parameter estimation.
A vague prior allows us to mitigate the bias introduced with an incorrectly centred
prior, as case 3 shows a worse result than case 5. We can also see that even with a
correctly centred and informative prior (case 2), the gains in parameter estimation are
small if we compare it to a vague specification (case 1).

In conclusion, the choice of a vague or improper prior is reasonable, as the improve-
ments provided by a correctly specified prior do not seem good enough in comparison
to the pitfall of a bad prior specification. These results are also similar to the one
obtained by Helbert et al. (2009).

Appendix B: Complementary Results on Covariance Parameter Esti-
mates

B.1 Parameter Estimation on Simulated Data Sets with Increasing Sizes

To obtain a better understanding of both krigingmodels, we choose to compare param-
eter estimation of both methods with respect to the number of observations. To do so,
we consider a protocol similar to the one given in Sect. 4.1. We use 100 simulated
data sets for a variable number of observations (between n = 16 and n = 81 obser-
vations). For each of these simulated data sets, we compute on one side the estimated
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Fig. 11 Box plots of maximum likelihood estimated parameters, means and modes of the posterior distri-
bution obtained with the Bayesian approach, as a function of data set size n. The results are obtained from
data sets of 100 independent draws of Gaussian processes

parameters for ordinary kriging by maximum likelihood method. On the other side,
for Bayesian kriging, the a posteriori distribution of parameters is simulated relying on
Bayes’ theorem and Markov chain Monte Carlo methods. The covariance model and
“true” parameter values used to simulated the data sets are identical to those presented
in Sect. 4.1. As the Bayesian approach produces an a posteriori distribution, we have
chosen to represent the results obtained by considering both the mode and the mean
of this distribution. The results are summarized by box plots in Fig. 11.

The estimate of β by both approaches remains close to the true mean, except in the
case of n = 64 observations where the results are slightly worse. The results between
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Fig. 12 Posterior distribution of the correlation length for a random data set of n = 25; 50 and 100
observations

the maximum likelihood and Bayesian estimates (consideringmean or the mode of the
posterior distribution) are similar. In contrast, regarding the variance and correlation
length, we observe that the methods produce significant differences. The maximum
likelihood underestimates the variance, while the mean of the posterior distribution
obtainedwith Bayesian kriging overestimates it; considering themode of this posterior
distribution leads to better results on average, but at the cost of greater variability. The
same observations can be made for the correlation length φ.

B.2 Posterior Distribution of� on Simulated Data Sets of Different Sizes

Another advantage of Bayesian kriging is the estimation of the posterior distribution
for each parameter. This estimation allows us to quantify more precisely the uncer-
tainty associated with parameter estimation. For example, the posterior distribution of
the correlation length φ is estimated with 1,000 samples (Diggle and Ribeiro 2002)
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and with the help of the discretisation of φ’s prior. A posterior density dφ is then
approximated using a Gaussian kernel.

Figure 12 illustrates the evolution of the posterior distribution as a function of the
size of the data set and how the prior information has been updated by the addition
of observations. When the number of available observations is small, the posterior
distribution remains similar to the prior distribution (in this case, a uniform prior):
the observations provide little new information. On the other hand, as the number
of observations increases, the mode of the distribution becomes closer to the true
parameter.
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