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Abstract

Glutenite reservoirs are characterized by strong heterogeneity, large thickness, com-
plex rock fabric, and low maturity in terms of structure and composition, which makes
the division of sedimentary periods an arduous task. This restricts the exploration
and development of oil and gas fields in glutenite reservoirs. Wireline logging sig-
nals, which contain rich geological information and record the sedimentary cycle of
the strata, are sensitive to changes in the lithologic interface. Moreover, the formation
microscanner image (FMI) method provides a complete lithologic profile of the forma-
tion and intuitively identifies sequence boundaries, unlike cores and conventional well
logs. By integrating mathematical tools based on time—frequency analysis technology
of multiscale wavelet transform and FMI as the geological constraint, a sensitive
logging curve was selected to delineate the sedimentary cycles of a glutenite reser-
voir. Optimization of wavelet decomposition parameters was conducted by employing
Morlet as the wavelet base, and the scale factors were screened by the direct power
spectrum method. Taking the glutenite reservoirs of the Baikouquan Formation in the
MAT131 well block of the Mahu Sag as the research object, the sedimentary periods of
the glutenite body of well MA15 were divided under seismic constraints. The results
indicated that the abrupt interface of the wavelet coefficient curve of different scale fac-
tors closely corresponded to the interface of sedimentary cycles at distinct levels. This
demonstrates the effectiveness of the proposed method. Subsequently, the dynamic
time warping algorithm was employed for automatic stratigraphic well correlation. It
is concluded that the proposed technique eliminates the overdependence on traditional
methods, such as geological and well stratification information, as well as possessing
superiority with regard to high precision, better flexibility, and convenient operation.
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1 Introduction

As the exploration and development of unconventional oil and gas reservoirs increases,
countries all over the world have gradually considered unconventional oil and gas
resources as one of the primary objectives of energy utilization (Hosseini et al. 2021;
Wachtmeister et al. 2020; Fangzheng 2019; Yu et al. 2021, 2022). Glutenite is a rela-
tively common type of unconventional tight oil and gas reservoir that is present in a
number of petroliferous basins around the world with abundant oil and gas resources
(Song et al. 2020; Liu et al. 2022a, b; Liu et al. 2022a, b). In addition, glutenite is
generally formed in a sedimentary environment that is characterized by rapid accu-
mulation, causing complex lithology, varying thickness, diverse diagenesis, and low
structural and compositional maturity (Wu et al. 2020; Xi et al. 2021). Currently,
studies on glutenite are mostly focused on sedimentary characteristics, reservoir char-
acteristics, reservoir evaluation, and hydrocarbon accumulation mechanisms (Qin et al.
2020; Li et al. 2020). Moreover, delineating sedimentary periods is the key process in
stratigraphic framework establishment, as well as the foundation for later exploration
and exploitation. The common sets of data employed to detect geological sequence
boundaries include cores, as well as palacontological, palacomagnetic, geochemical,
and geophysical data (Cross et al. 1993). In particular, these datasets play an impor-
tant role in the identification and correlation of stratigraphic units. Over the past few
decades, several approaches have been proposed to detect geological boundaries from
the above dataset. For instance, to improve the ability to identify sequence bound-
aries, MacEachern and Pemberton (2002) employed relict fossil sequences and relict
facies data in the study of genetic strata. Using palaeontological data, the variation in
the degree of magnetic clastic particle concentration caused by climate change and
global sea-level fluctuation was applied to a stratigraphic division of deep marine sed-
imentary carbonate strata (Nio 2005). As the most direct geological data, cores can
be used to determine the sedimentary period interface more intuitively. Nevertheless,
cored wells are generally limited due to the high cost of coring. Furthermore, geo-
physical data, such as seismic and wireline logs, have been implemented by many
researchers for the subdivision of stratigraphic units (Guo et al. 2021; Teixeira et al.
2020; Mianaekere et al. 2020). Despite the significant role of seismic data in the iden-
tification of sequence boundaries, it can be used only to divide low-order sequences
due to its relatively low resolution. Therefore, well logs are preferable data sources
for stratigraphic subdivisions due to their availability. There are excellent cases in the
literature in which sequence divisions are carried out, usually manually, by employing
different wireline logs (Liang et al. 2019; Wang et al. 2020). The results of manual
interpretation depend highly on the experience of the interpreter, which may lead to
multiple detections of sequence boundaries (Rivera Vega 2004; Perez-Mufioz et al.
2013). Moreover, the dynamic time warping (DTW) algorithm has been used in the
past to correlate logs. Baville et al. (2022) proposed an approach that translates sed-
imentary concepts into a correlation cost, which is utilized to populate a cost matrix
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to apply DTW for stratigraphic correlation. Behdad (2019) constructed spectral trend
logs, wherein DTW was subsequently used for automatic stratigraphic correlation.
In addition to the aforementioned methods, other signal processing techniques have
been implemented to analyse well logs, including Fourier transform (Weedon 2003),
principal component analysis (Karimi et al. 2021), and wavelet transform (Behdad
2019). These methods are pure mathematical analyses with no geological constraints.
Due to the paucity of biological fossils, stratification marks in the wireline logging
response are not visible during a sedimentation event of thick glutenite (Qing et al.
2020). Thus, the division of sedimentary periods is quite difficult, and this severely
affects the characterization of the internal reservoir structure of the glutenite body. This
has become one of the bottlenecks restricting the exploration of glutenite reservoirs.

The tight conglomerate reservoirs in the Mahu oilfield were deposited in a fluvial
fan delta sedimentary system, with rapid accumulation near the provenance. Although
there are many appraisal wells in the MA131 well block, the drilling and well test
results have shown low economic efficiency because of the strong heterogeneity of
the reservoirs. The sediments feature the superposition of multiple sedimentary cycles,
which are recorded in the wireline logging sequence obtained from a single well.

The purpose of this paper is to provide a novel method for dividing sedimen-
tary periods and well correlations that incorporates mathematical tools and geological
knowledge. First, the identification of sequence boundaries was performed using wire-
line logs via continuous wavelet transform under the constraints of three-dimensional
seismic data, while the formation microscanner image (FMI) was employed to vali-
date the effectiveness of the method. Afterwards, DTW was applied to correlate wells
to lay a foundation for subsequent well deployment and efficient development of the
glutenite reservoir in the study area.

2 Methodology and Workflow
2.1 Continuous Wavelet Transform

The concept of wavelet transform is to combine a cluster of mother wavelets ¥ (f) to
approximate the signal f(¢) via translations and dilatations (Fig. 1). In comparison with
the Fourier transform and short-time Fourier transform (STFT), the wavelet transform
has better time—frequency locality. It overcomes the limitation of a fixed window of
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Fig. 1 Schematic diagram of a continuous wavelet transform
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STFT and achieves rapport in the time—frequency domain through the scaling and
translation of the wavelet function, ultimately achieving the corresponding accuracy
at different positions of the signal (Shi et al. 2022). The continuous wavelet transform
function WTy(a, b) is defined as

1
az?

WTy(a,b) =

T t—>b
/f(f)lﬂ(7>df a#0, (H

where WTy(a, b)is the function of parameters a and b. The steps to obtain the function
are as follows:

(1) Select the wavelet with fixed wavelength a; and compare it with the beginning
of the original signal f(¢).

(2) Calculate WTy(a, b), as shown in Fig. 1a. It represents the correlation degree
between the starting segment of signal f(¢) and the selected mother wavelet. The
larger WT(a, b) is, the more similar they are. The result depends on the shape
of the selected mother wavelet.

(3) Shift the mother wavelet to the right and repeat steps 1 and 2, as shown in Fig. 1b,
until all signals are processed.

(4) Stretch the mother wavelet from a; to a, and repeat steps 1 to 3, as shown in
Fig. lc.

(5) Repeat steps 1 to 4 for all wavelet transform scales to obtain all the WT(a, b).

2.2 Dynamic Time Warping

There are many distance functions in time series data, with the most prominent being
DTW (Hungetal. 2022). Since DTW was first proposed by Itakura (1975) in the 1970s,
it has been widely applied in many fields. The time warping function W (n) satisfying
certain conditions is employed to describe the temporal correspondence between the
test template and the reference template for the solution of the minimum cumulative
distance given two matched templates. The test series shares i frame vectors, while the
reference template has j frame vectors (i # j). The time warping function j = W (i),
which nonlinearly maps the time axis i of the test vector to the time axis j of the
template, remains to be solved such that the function W (i) meets the minimum total
distance between all the frame vectors. The implementation of DTW is described as
follows (Fig. 2): given two time series Q and C, with lengths n and m, respectively, a
matrix grid of n=m is constructed to align the two sequences. The matrix element (i,
J) represents the distance d(g;, ¢;) between g; and c; (that is, the similarity between
each point of sequence Q and each point of C; the smaller the distance, the higher
the similarity). The algorithm can be summed to determine a minimum path through
several grid points. The minimum path through which the curve passes consists of the
aligned points of the two sequences.
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Fig. 2 Schematic diagram of dynamic time warping. W is the warping path. The kth element of W is defined
as Wy = (i, j), which defines the mapping of sequences Q and C

2.3 Description of the Implemented Approach

As one of the most popular time—frequency analysis methods, wavelet transform can
convert logging curves into a depth—frequency domain. In this paper, wavelet trans-
form is utilized to help divide stratigraphic sequences by using wireline logs, which
contain stratigraphic information, including the lithology, thickness and location of
the sequence boundary. Afterwards, the DTW algorithm, in which the standard well
is selected as the reference well and other wells are considered observation wells,
was proposed to perform the well-to-well correlation process. Wireline log data are
the primary input data required for the experiment. Moreover, depths of geological
boundaries in the reference well must be available to enable the DTW algorithm to
detect similar boundary information in other wells.

First, a stratigraphy forwards model is established to validate the effectiveness of the
proposed method. Then, the reference well that contains FMI images is determined
by accurately dividing the sedimentary periods under seismic constraints through
micro-resistivity scanning images and well logs. The selection of the wavelet base
is predominantly determined by applying time—frequency analysis in the simulated
cycle signal with different mother wavelets. Afterwards, the scale factors are screened
by the direct power spectrum method. Thus, the sedimentary period can be divided by
extracting the corresponding coefficient curves at different scales, while the interfaces
of strata can be identified as abrupt points. Finally, the DTW algorithm was employed
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for automatic well correlation under the fifth-order sequence (sand group) boundary
constraint.

3 Results and Discussion
3.1 Verification of Ideal Sequence Stratigraphic Model

Following the characteristics of grain size successions in sedimentary rocks, the strati-
graphic sequence can be classified into the following three basic types: retrogradation,
progradation, and aggradation. Thus, three ideal stratigraphic sequence models were
established (Fig. 3a, d and g). A retrogradation model is a positive cycle, where the
thickness of the conglomerate thickens as the burial depth increases, and the ratio of
gravel to mud increases downwards. This indicates that from deep to shallow loca-
tions in the sequence, the sediment particle size varies from coarse to fine, and the
hydrodynamic force gradually decreases. In contrast, a progradation model is a reverse
cycle, which has the opposite characteristic as that of the retrogradation model. The
third model is the aggradation model, in which the conglomerate thickness remains
unchanged within the burial depth, as well as the ratio of gravel to mud. This result
reflects a relatively stable sedimentary environment and hydrodynamic conditions.
These three models represent three basic parasequence sets: retrogradational, progra-
dational, and aggradational. The forward model used a Morlet wavelet with a sampling
rate of 1,024 Hz.

On the time—frequency spectrum map (Fig. 3b, e, h), the local energy gobbet of the
retrogradation formation model gradually weakens with increasing depth and moves
towards a small scale (high frequency), while the progradation formation model grad-
ually increases and moves towards a large scale (low frequency). The local energy
gobbet of the aggradation formation model does not change significantly with depth
and is relatively stable. With regard to the wavelet coefficient diagram (Fig. 3c, f, i), the
amplitude and frequency of the retrogradation model gradually decrease as burial depth
increases, whereas the amplitude and frequency of the progradation model show an
increasing trend. The amplitude and frequency of the aggradation model do not change
with depth. The peak and trough of each wavelet coefficient curve correspond to mud-
stone and conglomerate intervals, respectively. Furthermore, the lithologic mutation
interface corresponds to the peak and trough conversion points. The following prin-
ciples can be summarized based on the aforementioned analysis: The movement of
the local energy gobbet with depth reflects the rthythmic characteristics of sediment
particle size and hydrodynamic conditions. It can be further employed to analyse for-
mation cyclicity. The crest or trough of the corresponding wavelet coefficient curve
can be considered a stratigraphic abrupt boundary, corresponding to the sedimentary
intermittent surface or denudation interface of the geological body. Therefore, it can
reflect a change in the sedimentary environment.
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Fig.3 A forward stratigraphic model used to verify the effectiveness of the proposed method. a, d, and
g represent the retrogradational, progradational, and aggradational stratigraphic model, respectively; b, e,
and h exhibit the time—frequency map of the related stratigraphic model; ¢, f, and i are the wavelet coefficient
curves extracted after wavelet transform
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3.2 Optimization of Wavelet Decomposition Parameters
3.2.1 Selection of an Optimum Mother Wavelet

There are numerous mother wavelet functions that can be employed for continuous
wavelet transforms. In addition to Morlet, Mexh, Shan, Gauss, and other wavelets pro-
vided by MATLAB (Higham et al. 2016), there are many wavelets built by researchers
in processing actual data. Wavelet transform is greatly affected by the original signal
and mother wavelet function. The more similar the wavelet is to the signal, the higher
the accuracy of compression, denoising, and frequency division. Hence, a thorough
examination of the time—frequency focusing property of different mother wavelets,
such as vanishing moment and orthogonality, is required when performing wavelet
analysis on real data, thus allowing the selection of the best mother wavelet. More-
over, a reasonable criterion for choosing a mother wavelet basically consists of two
aspects: the first is its time—frequency locality, that is, the quality of time—frequency
accuracy; the second is the resemblance between the mother wavelet and the original
signal, where the higher the resemblance, the more accurate the result of the analysis.

Therefore, we intend to use a composite cosine signal to simulate the logging curve
and its periodic characteristics with the following formula: () = cos(2nt) + cos(8mt)
+ cos(207tt) + cos(407tt). The waveform diagram of the signal and its components are
depicted in Fig. 4. The signal is made up of four components with respective dominant
frequencies of 1 Hz, 4 Hz, 10 Hz, and 20 Hz.

Figure 5 illustrates the time—frequency spectrum and the reconstructed primary
scale (1 Hz component) after wavelet transform of analogue signals with different
mother wavelets. By comparing the diagrams, it is obvious that the wavelet transform
using the Mexh wavelet possesses inadequate time—frequency accuracy, owing to the
confusing reconstruction of the primary scale. Moreover, the Shan wavelet and the
Cgau wavelet have considerable high-frequency jitter in the time—frequency spectrum.
The Morlet wavelet has superior time—frequency precision, and the reconstructed
main scale is closer to 1 Hz. Thus, the Morlet mother wavelet is chosen for future
investigation.

3.2.2 Finding Proper Wavelet Transform Decomposition Levels

Consider a nonstationary signal z (#) = sin (2n¢) + sin (8w#(r < 1 or ¢t > 4)) + sin
(20mt(1.5 < t < 3.5)) + sin(40m¢), with dominant frequencies of 1 Hz, 4 Hz, 10 Hz
and 20 Hz. Moreover, noticeable sedimentary discontinuities are encountered at t =
I's,1.5s,3.5s,and 4 s (as shown in Fig. 6). Morlet wavelet transform is performed
on the above signal, and the time—frequency spectrum is presented in Fig. 7.

It can be concluded that the wavelet transform can clearly identify four frequency
components in the time—frequency spectrum. The direct power spectrum method,
which is defined as the signal power in a unit frequency band, is used to establish
a strategy to precisely identify the appropriate decomposition level. It depicts the
variation in signal power with frequency, that is, the distribution of signal power in
the frequency domain. As shown in Fig. 8, the scale (frequency) corresponding to
the extremum of the curve is the principal scale component of the original signal.
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Fig. 4 Simulating signal and its components

The 1.011, 4.044, 9.958, and 19.92 Hz signals identified by this method are basically
consistent with 1, 4, 10, and 20 Hz, which confirms the ability of this method to
correctly determine the decomposition levels.

3.3 Division and Correlation of the Sedimentary Cycle

As the most direct geological data, cores are used to intuitively identify lithology,
sedimentary structures, and sequence boundaries, such as typical lithologic mutation
interfaces and scouring surfaces. However, due to the high cost of coring, a thorough
study of the sedimentary stage via core observation is not practical. In contrast to
coring and conventional well logging, the FMI method can provide a complete forma-
tion lithologic profile, as well as more accurate information in revealing sedimentary
sequences (Fan et al. 2021; Teama et al. 2018). Figure 9 shows the FMI image interval
of well MAIS in the research region where sequence boundaries such as scouring
interfaces and lithologic mutation boundaries are recorded. The particle size gradu-
ally decreases upwards until the transition to the mudstone interval with horizontal
bedding at the top, constituting the basic sedimentary cycle unit. Multiple fundamen-
tal sedimentary units of such an ordered combination overlap vertically, forming a
higher-order stratigraphic sequence.
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Fig. 5 Reconstructed component with different mother wavelets after wavelet transform

Based on the examination of well log responses for distinct lithologies, implement-
ing deep resistivity (RT) logs resulted in better prediction of the boundary depth in the
studied wells (Fig. 10). In other words, this log is the most relevant for our investigation
and can provide information about geological boundaries. The time—frequency spec-
trum was obtained using a one-dimensional continuous wavelet transform on the RT
curve of well MA15. Moreover, the decomposition level with the associated sequence
order was determined using the direct power spectrum approach. The wavelet trans-
form scales 376 and 1,018 identified by the power spectrum correspond to the fourth
and fifth sequence orders, respectively (Fig. 9).

Therefore, the sedimentary cycle division can be carried out through the wavelet
transform coefficient curve by integrating the near-well seismic trace and RT time—fre-
quency spectrum. There are two obvious periodic cycle interfaces that can be observed
via FMI. Matching the two wave troughs of the curve with a scale of 1,018 corresponds
well with the fourth-order sequence boundary. Moreover, the wavelet coefficient curve
with a scale of 376 can provide higher-order sequence boundary identification than
seismic data (Fig. 9). The wave crest or trough of the wavelet coefficient curve matched
perfectly with the sequence boundary identified by the FMI and reflected the changing
trend of the local energy gobbet exhibited in the time—frequency spectrum.

Subsequently, the DTW algorithm was employed for automatic well correlation
between wells MA15 and MA155 (Fig. 11). The most important output of DTW,
the warping path, was employed to connect the two wells (Fig. 12). In addition, we
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Fig. 8 Power spectrum of the
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Fig. 10 Conventional well logging characteristics of distinct lithofacies in the study area
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have addressed the issue when a sand interval is missing. The RT curve of the con-
glomerate interval between 3,160 and 3,170 m was assumed to be missing in well
MA155 (Fig. 13). Then, the DTW algorithm was applied for automatic well correla-
tion between wells MA155 and MA15 (Fig. 14). It was discovered that the warping
path was the same as the output shown in Fig. 12 before the missing interval was
encountered. However, the aligned points were totally different in the subsequent
depth interval. Therefore, the application of DTW needs to be improved in future
work under such circumstances. Herein, the strata of the Baikouquan Formation are
completely preserved, with no sedimentary hiatuses. Theoretically, the reference well
can be correlated with the second well by applying the warping path. However, while
areference table of correlation between the reference well and the corresponding sec-
ond well was employed for high-resolution correlation, there could be more than 50
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possible correlation lines in this research (Fig. 15). The results indicated that the res-
olution of the correlation was noticeably improved and could help correlate not only
the fourth- or fifth-order sequence boundary but also the layering inside the reservoir.
Nonetheless, in the early stage of oilfield exploration, the primary concern is to accu-
rately identify the fifth-order sequence boundary for the establishment of a sequence
framework and the deployment of exploration wells, rather than the layer division for
later exploitation, which is a difficult task that requires much effort if the geology is
complex. Herein, the fifth-order sequence boundary of the reference well MA1S is
calibrated by FMI. Therefore, the corresponding aligned point of the second well can
be located via this approach.

Following this principle, the well correlation under the fifth-order sequence bound-
ary constraint was performed in all the wells along the provenance direction to
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construct the stratigraphic sequence framework (Fig. 16a). The results indicated that
the sequence boundaries are the conversion points of the local energy gobbet on the
time—frequency spectrum maps. Afterwards, the sedimentary microfacies were inter-
preted on the basis of their logging response under the constraint of the stratigraphic
framework. It can be concluded that the fan delta front facies are widely developed
throughout the whole region, predominantly comprising underwater distributary chan-
nels, mouth bars, and sandy debris flows. From T1b; to T1b3, the retrograded fan
deltaic depositional system was created in the process of lake transgression (Fig. 16b,
¢, d). The favourable facies belt in the study area is the underwater distributary channel
in T1by; (Fig. 16¢), where long horizontal wells could be deployed to enhance the
estimated ultimate recovery of a single well for the production development of tight
oil reservoirs.

4 Conclusions

In this study, the division and correlation of glutenite sedimentary cycles are presented
based on wavelet transform and DTW under seismic and FMI constraints. By con-
structing ideal sequence stratigraphic models, the responses of the sequence boundary
on the wavelet coefficient curve and time—frequency spectrum were analysed. To deter-
mine the optimal mother wavelet and decomposition level, a composite cosine signal
was built to simulate the logging curve and its periodic characteristics. The results
showed that the Morlet wavelet, of which the reconstructed principal scale was the
closest to the original signal, had the highest time—frequency accuracy. Moreover, the
power spectrum method was adopted to validate the effectiveness and accuracy for
the determination of the optimal decomposition level.

The analysis of well log responses for different lithologies indicated that RT was
the most appropriate curve for providing the geological boundary information in our
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research. The sedimentary cycle division was carried out through the wavelet transform
coefficient curve and time—frequency spectrum under seismic and FMI constraints. The
wave crest or trough of the wavelet coefficient curve matches well with the sequence
boundary identified by the FMI and reflects the changing trend of the local energy gob-
bet exhibited on the time—frequency spectrum maps. Subsequently, the DTW algorithm
was employed for automatic well correlation. The fifth-order sequence boundary of
reference well MA 15 was calibrated by FMI. Consequently, the well correlation under
the fifth-order sequence boundary constraint was performed throughout all the wells
along the provenance direction to construct the stratigraphic sequence framework.

The method proposed in this paper was applied to a real case study from a Chinese
oilfield. The results demonstrated that the proposed method is capable of sedimentary
cycle division and automated well-to-well correlation. Integrating FMI and logging
curve data with mathematical tools eliminates the overdependence on traditional
methods, such as geological information. Furthermore, a combination of the afore-
mentioned dataset and mathematical tools is superior with regard to high precision,
better flexibility, and convenient operation. Of note, this approach, like other math-
ematical methods, will need to be validated and constrained by other supplementary
data that can provide geological sequence boundary evidence, such as biostratigraphy,
climate stratigraphy, sequence, and seismic stratigraphy.
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