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Abstract Geological facies modeling is a key component in exploration and charac-
terization of subsurface reservoirs. While traditional geostatistical approaches are still
commonly used nowadays, deep learning is gaining a lot of attention within geosci-
entific community for generating subsurface models, as a result of recent advance of
computing powers and increasing availability of training data sets. This work presents
a deep learning approach for geological facies modeling based on generative adver-
sarial networks (GANs) combined with training-image-based simulation. In a typical
application of learned networks, all neural network parameters are fixed after training,
and the uncertainty in the trained model cannot be analyzed. To address this prob-
lem, a Bayesian GANs (BGANs) approach is proposed to create facies models. In this
approach, a probability distribution is assigned to the neural parameters of the BGANs.
Only neural parameters of the generator in BGANs are assigned with a probability
function, and the ones in the discriminator are treated as fixed. Random samples are
then drawn from the posterior distribution of neural parameters to simulate subsurface
facies models. The proposed approach is applied to the two different geological depo-
sitional scenarios, fluvial channels and carbonate mounds, and the generated models
reasonably capture the variability of the training/testing data. Meanwhile, the model
uncertainty of learned networks is readily accessible. To fully sample the spatial dis-
tribution in the training image set, a large collection of samples of network parameters
is required to be drawn from the posterior distribution, thus significantly increasing
computational cost.
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1 Introduction

Modeling rock types, lithologies, or facies is a crucial step for the prediction and
development of subsurface resources, such as groundwater and hydrocarbons, as well
as for the storage potential of waste carbon dioxide in deep geological formations. The
spatial distribution of facies and their connectivity affects fluid flow simulations (Laloy
et al. 2018; Liu et al. 2019; Conjard and Grana 2021; Loe et al. 2021; Strebelle 2021).
Therefore, accurate prediction of facies and quantification of their spatial distribution
are required for precise flow simulations. Many geostatistical algorithms have been
proposed for the generation of geological facies models (Mariethoz and Caers 2014;
Pyrcz and Deutsch 2014; Grana et al. 2021) including variogram-based simulations
(Chilès and Delfiner 1999), multiple-point statistics (Strebelle 2002), object-based
methods (Michael et al. 2010), and process-based approaches mimicking depositional
processes (Cojan et al. 2005).

In recent years, owing to the increasing availability of large data sets and constantly
improving computing power, deep learning has drawn considerable interest among
geoscientists to automate various modeling tasks, including inversion and classifica-
tion problems. One of the most popular methods is generative adversarial networks
(GANs) (Goodfellow et al. 2014), which can be trained to reproduce complex spatial
patterns. For this reason, GANs have been applied to subsurface modeling to mimic
spatial connectivity in porous rocks, especially in fractured rocks where the frac-
ture network controls fluid flow (Dana et al. 2020; Ushijima-Mwesigwa et al. 2021),
as well as in the depositional processes for the reconstruction of geological bodies
(Dupont et al. 2018; Zhang et al. 2019; Azevedo et al. 2020). In the GANs framework,
two network sub-models of generator and discriminator compete with each other in a
game theory setting, such that new realistic images are stochastically simulated by the
generator from the latent space distribution and are then judged by the discriminator
as “real” or “fake” (Goodfellow et al. 2014). The goal of the generator is to gener-
ate images as realistic as possible, whereas the discriminator is aimed to distinguish
those generated images from the real input. After an iterative training process, only
the generator is used for the simulation. Several applications of GANs to geoscience
problems have been presented in recent years. Mosser et al. (2017) apply GANs to
reconstruct representative samples of porous media for the evaluation of variability in
multiphase flow properties. Chan and Elsheikh (2019) investigate GANs for subsur-
face flow problems and generate multiple realizations of a binary variable representing
channels. Tahmasebi et al. (2020) discuss the most recent advances of GANs and other
machine learning algorithms in earth and environmental sciences. Progressive growing
of GANs has been used for conditional simulation of facies realizations conditioned
to global parameters and sparse pointwise hard data (Song et al. 2021a), as well as
spatially distributed low-resolution soft data (Song et al. 2021b). Such trained GANs
models have also been applied in many other geoscience research areas, including
seismic inversion (Laloy et al. 2019; Mosser et al. 2020), reservoir modeling (Mosser
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et al. 2019; Zhong et al. 2021), and remote sensing (Cui et al. 2019; Rongier et al.
2020).

However, the aforementioned works on GANs only draw random samples from
the target distribution of the training data, and do not include a rigorous analysis
of the model uncertainty, as neural parameters are fixed after training, and thus the
model uncertainty cannot be assessed. Uncertainty analysis is often required for deci-
sion making and risk reduction (Caers 2018). To obtain an uncertainty quantification
in the context of geological modeling using GANs, the inversion and/or modeling
problems can be probabilistically formulated. A probability distribution of the model
parameters of interest is then defined, according to the classical Bayesian inference
(Mosegaard and Tarantola 1995). By combining the prior information with the likeli-
hood of measured data, the conditional posterior distribution of the model parameters
is then derived, although analytical solutions are not always available for multimodal
variables and non-linear problems. In some special cases, for example, when the
forward model can be linearized, and the prior and model error are assumed to be
Gaussian, then an analytical formulation of the posterior distribution can be derived
with explicit expressions for means and covariance matrices, as discussed by Buland
and Omre (2003), and Grana (2016). Otherwise, sampling algorithms such as Markov
chain Monte Carlo (McMC) can be applied to draw random samples from the desired
target distribution (Sambridge andMosegaard 2002). The variational inferencemethod
can also be used to approximate those intractable posterior distributions as well, in
which a Gaussian function is typically assumed for its simplicity (Blei et al. 2017).

Alternatively, aBayesian interpretation of deep learning canbeproposed to combine
deep learning and probabilistic formulations (Ghahramani 2015). Rather than treat-
ing neural variables as fixed values, the estimation of model parameters in Bayesian
networks amounts to the calculation of the posterior distribution of variables given
observed or training data, assuming probability distribution of the neural parameters.
According to this approach, the uncertainty analysis of the designedmodel is then built
within the architecture of deep learning. The representation power of hierarchical net-
works is therefore leveraged to solve complex tasks, while the multimodal posterior
distribution of model parameters can be inferred as well (Kendall et al. 2015). Many
strategies have been developed to analyze uncertainty in the learned neural models.
For example, Gal et al. (2017) propose the so-called concrete dropout approach, an
extension of theMonte Carlo dropout strategy, requiring no hyper-parameter tuning of
the associated dropout probabilities. Deep ensembles (Lakshminarayanan et al. 2017)
is another approach for estimating model uncertainty by combining predictions from
an ensemble of separately trained deep networks. A variational scheme is adopted by
Feng et al. (2021a, b) to approximate the intractable posterior distribution of neural
parameters, and the Bayesian learning is then formulated as an optimization process.
McMC techniques have also been applied in Bayesian deep learning to draw samples
from the space of parameters of interest. Saatchi and Wilson (2017) present Bayesian
GANs (BGANs) to address themode collapse problem in order to stabilize the training
of GANs by allowing the network to learn parameter distribution over possible val-
ues. Metropolis–Hastings GANs (MH-GANs) are introduced by Turner et al. (2019)
for sampling from the distribution implicitly defined by the network pair of discrim-
inator and generator in GANs. In this research, a BGANs approach is proposed for
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the simulation of subsurface models, in which samples are drawn from the posterior
distribution of the generator neural parameters, while the neural parameters in the
discriminator are fixed. The trained generator with posterior samples can then be used
to generate model realizations.

First the theory of BGANs is described; then the proposed method is applied to
two case studies for different geological environments, namely channels and mounds.
The simulated results are compared to traditional GANs where neural parameters are
fixed without assigning any distribution.

2 Methodology

2.1 Traditional GANs

GANs represent a family of deep learning algorithm where the network architecture is
made of twodistinct components: a generator (G) and a discriminator (D) (Goodfellow
et al. 2014), as schematically shown in Fig. 1. The generator and the discriminator
are themselves deep neural networks with various architectures. The generator aims
to generate realistic models from the random input or latent vector, which is a set of
random samples drawn from a predefined distribution (Fig. 1). These models are then
tested by the discriminator, which determines whether these models are consistent
with the training data or a random model from the generator. This is equivalent to the
approaches used in image recognition for the discriminationof real and fake images.By
adopting this adversarial approach, the generator anddiscriminator can improve in their
individual tasks incrementally. After the learning procedure, the target distribution of
the models of interest is implicitly approximated (Goodfellow et al. 2014). In facies
modeling (Fig. 1), the generator aims to learn the knowledge about the geological
structures and distribution patterns, and the discriminator tries to distinguish fake
images from real models in the training process (Song et al. 2021a). Generally, a large
number of training data is required to trainGANs, to include all the available geological

Fig. 1 Schematic high-level architecture of GANs model in which the generator and the discriminator are
trained in a competitive formulation
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information in the study area. In this application, the training data are composed of
subsurface facies models that are generated using geostatistical methods (Fig. 1).

The loss function J (D, G) is an energy-like function and in GANs (Goodfellow
et al. 2014) it is given by

min
G

max
D

J (D, G) �
L1:true given images
︷ ︸︸ ︷

Ex
[

log D(x)
]

+

L2:generated fake images
︷ ︸︸ ︷

Ez
[

log(1 − D(G(z)))
]

, (1)

in which D(x) outputs the probability of a sample x being from the training data (the
training image set); G(z) represents the function performed by the generator to map
the latent vector z to the data space of interest with z being sampled from a predefined
distribution. As G tries to learn the distribution of the training data, D(G(z)) is the
probability that the image generated by G is deemed "real", and therefore consistent
with the training data. Hence, in Eq. (1), a two-player minimax game is played by
D and G, where D aims to maximize L1 so that it can correctly classify real images
as authentic, and G aims to minimize L2 by increasing D(G(z)) such that D fails to
predict fake images (Goodfellow et al. 2014).

2.2 Bayesian GANs

The neural parameters in GANs are commonly fixed after training, and there is no
information about the model uncertainty (Fig. 2a). Instead, a probability distribution
over neural parameters can be introduced according to theBayesian theory (Mosegaard
and Sambridge 2002). In this context, BGANs can be regarded as a probabilisticmodel
(Fig. 2b). The distributions of neural parameters of BGANs are learned from the
training data, and the uncertainty in the learned model can be analyzed, extending the
formulation of the traditional GANs to the Bayesian framework (Saatchi and Wilson
2017).

In Bayesian deep learning, the probability of new prediction y is computed, given
the unseen sample z and training data X . A general probabilistic formulation for the
network prediction is defined as

Fig. 2 a Transposed-convolutional process with fixed weight values in the kernel; b Bayesian networks
with independent probability distribution assigned over neural parameters in the transposed-convolutional
kernel
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Fig. 3 Schematic view for the
posterior distribution of neural
parameters p(θ |X ), given the
training data X . Each sample
drawn from p(θ |X ) could
generate different plausible
subsurface models in the
generative applications by
BGANs

p(y|z, X) �
∫

p(y|z, θ)p(θ |X )dθ , (2)

by integrating over all possible values of θ (Gal et al. 2017; Feng et al. 2021a), where
p(θ |X ) is the posterior distribution of neural parameter θ of interest, given X (Fig. 3).
Under the BGANs framework for the generation problems, z is a set of samples drawn
from the latent space distribution, and y is a predicted sample from the distribution
of the training data X , or more specifically p(y|z, X) ∼ p(X). Furthermore, BGANs
can also be used for classification applications where only the discriminator is kept
after training, with z being the input features from unseen data.

In GANs, there are two parameter sets, θg and θd, with pointwise estimates, corre-
sponding to the generator and discriminator networks, respectively. In BGANs, these
parameters are assigned with distribution functions and are predicted in the learning
process. Let p(θg|X ) and p(θd|X ) denote the posterior distribution of generator and
discriminator parameters, given the training data X , respectively. In practice, as pro-
posed by Saatchi andWilson (2017), the conditional posterior distribution of the neural
parameters θg and θd can be iteratively sampled from the following distributions

p
(

θg|Z , θd
) ∝

ng
∏

i�1

D
(

G
(

zi ; θg
)

; θd
) × p0

(

θg
)

, (3)

p
(

θd|Z , X , θg
) ∝

nd
∏

i�1

D(xi ; θd) ×
ng
∏

i�1

(

1 − D
(

G
(

zi ; θg
)

; θd
)) × p0(θd), (4)

where p0
(

θg
)

and p0(θd) are the prior distributions of θg and θd, respectively; ng and nd
are the number of minibatches in the generator and discriminator; X � {xi }nd1 consists
of the training data; zi is the ith latent vector drawn from a predefined distribution.

Equations (3) and (4) can be intuitively interpreted as Bayesian posterior distribu-
tions. InEq. (3), the generator attempts to outperform the discriminator, and the product
of the output probabilities of the discriminator ismaximized, leading to increasing pos-
terior probability p

(

θg|Z , θd
)

(Saatchi and Wilson 2017). A similar scenario can be
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observed for the discriminator inEq. (4):when D(xi ; θd) � 1, a true sample is correctly
recognized by the discriminator, whereas if D

(

G
(

zi ; θg
)

; θd
) � 0, the discriminator

successfully catches the generator.
In addition, the update of GANs is implicitly conditioned on a set of latent samples

from random noise Z , for the generation of model realizations (Goodfellow et al.
2014; Saatchi and Wilson 2017). In BGANs, the random noise Z can be further
marginalized from the posterior updates of generator and discriminator, using Monte
Carlo integration as follows

p
(

θg|θd
) �

∫

p
(

θg, Z |θd
)

dZ �
∫

p
(

θg|Z , θd
)

p(Z |θd)dZ ≈ 1

Jg

Jg
∑

j�1

p
(

θg|z j , θd
)

,

(5)

where p(Z |θd) � pZ (z), since randomsamples are not dependent on the discriminator,
and z j ∼ pZ (z), by performing random sampling from the predefined marginal dis-
tribution of the latent vector, typically standard normal distribution N (0, 1) (Saatchi
and Wilson 2017; You et al. 2018). The Monte Carlo method in Eq. (5) is used to
approximate the expectation of random variable p

(

θg|Z , θd
)

, with respect to a given
density function of p(Z |θd). According to the same approach

p
(

θd|θg
) ≈ 1

Jd

Jd
∑

j�1

p
(

θd|z j , X , θg
)

. (6)

In Eqs. (5) and (6), Jg and Jd are the number of noise samples in the integra-
tion process. Each sample in the Monte Carlo sum contributes to the estimate of the
marginal posterior realizations. If uniform priors are assumed for θg and θd, the pro-
posed approach in Eqs. (3) and (4) then reduces to the classical GANs described by
Goodfellow et al. (2014). By sampling from the distribution in Eq. (5), the posterior
distribution of generator neural parameters is approximated, and a collection of multi-
modal generators is acquired. All these generators can simulate plausible models that
are consistent with the training data. Similar to GANs, the loss function in Eq. (1) is
used in BGANs as well, since the posterior neural parameters of θg and θd have the
same role as those in GANs. Equation (2) is the general formulation of the trained
BGANs for the model simulation. The posterior distribution of neural parameters
p(θ |X ) is derived explicitly in Eqs. (3)–(5). For classification problems, Eq. (6) can
be used, but this application is beyond the scope of the current work.

In practical applications, the training data set and latent samples are split into small
subsets of equal size (minibatches) over which the error gradient is calculated, and
model parameters are updated iteratively [Eqs. (3) and (4)] (Sra et al. 2011). In the
context of Bayesian training, the Hamiltonian Monte Carlo method, or more specif-
ically, its stochastic gradient approach for the efficiency of big data computation,
namely stochastic gradient Hamiltonian Monte Carlo (SGHMC), is used for sampling
and generating realizations of neural parameters frommarginalized posterior distribu-
tions. SGHMC is closely related to the momentum-based stochastic gradient descent
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(SGD) that is often used for training GANs. The parameter settings of SGD with
momentum can also be used in SGHMC as shown by Chen et al. (2014).

2.3 Network Structures

The design of network architecture is critical for a successful application of deep learn-
ing. As shown in Radford et al. (2015), deep convolutional GANs, a direct extension
of GANs, provide a suitable network architecture for generating facies models in this
study. Figure 4 shows the architecture of the GANs with transposed-convolutional
(Deconv) and convolutional (Conv) layers in both the generator and discriminator.
The same padding is used in the transposed-convolutional and convolutional layers,
and the stride is equal to 2 for shifting the filters over the input volume. Each layer
is followed by the rectified linear unit (ReLU) activation, and the output layers in the
generator and discriminator apply the hyperbolic tangent (tanh) and sigmoid functions,
respectively. The same network structure is used in the proposed BGANs as well. All
other hyper-parameters such as learning rate and training epochs are kept the same for
GANs and BGANs. However, in BGANs, only the generator neural parameters are
assigned with a probability distribution, while the neural parameters in the discrimi-
nator are treated as point estimates. The prior distribution of the neural parameters is
assumed to be Gaussian with zero mean and unit variance.

Fig. 4 Network architecture for the generator (a) and discriminator (b). The neural parameters of θg and θd
are composed of weights and biases in the transposed-convolutional and convolutional filters, respectively
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3 Application

In this section, the results of two case studies are presented, for the generation of facies
realizations under different geological environments, namely channels and mounds.
A comparison between BGANs and GANs is also presented using statistical criteria,
spatial distribution plots and quality assessment metrics described in the Appendix.

3.1 Channel Model

The first application refers to a geological environment with a meandering channel
system where the dynamic behavior of fluid flow strongly depends on the channel
connectivity and shape. The SNESIM multiple-point statistics method is adopted to
generate a set of 1,000 binary-facies models (channel sand and non-channel shale)
from a conceptual model (Strebelle 2002; Hansen et al. 2018). These facies models
are used in the following as training data. Furthermore, 1,000 additional models are
generated by SNESIM as well, which are statistically similar to the training image set
and are regarded as the testing data. These testing models are not used for training
the neural parameters and are only used for a comparison of the generated images by
trained networks. Figure 5 shows a subset of training and testing facies models.

Figure 6 shows a subset of facies models generated by the trained BGANs (Fig. 3),
in which five samples are drawn from the posterior distribution of neural parameters
[Eqs. (3) and (5)], as represented by θ ig (i � 1, . . . , 5). For each posterior sample of
BGANs, 1,000 latent vectors are randomly drawn from a standard normal distribution
and are used as inputs for the simulation. By sampling different parameters of the
generator, BGANs aim to explore different values of the distribution inferred from
the training data, including configurations of parameters associated to higher-order

Fig. 5 Subset of the training (a) and testing (b) data of dimension 80 × 80 cells. The white color represents
the channel sand, and the background black is the non-channel shale
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Fig. 6 Subset of channel models generated by BGANs. Random vectors drawn from a standard Gaussian
distribution (zi , i � 1, . . . , 5) are used as inputs for the simulation

statistics that describe the length, width, stacking and azimuthal direction of channels.
For example, in Fig. 6, each posterior sample in BGANs is able to generate channels
that have a similar azimuthal direction, given random input vectors.

Unlike BGANs, five classical GANs are trained independently, where the neural
weights are initialized differently according to a standard normal distributionN (0, 1),
based on the same training data (Fig. 5a). The trained generator in GANs is used to
generate realizations of the channel models (Fig. 7), based on 1,000 randomly sampled
latent vectors. However, the neural parameters in GANs are fixed as point estimates
after training, and the model uncertainty of learned networks is not accessible. The
generated channel models by each trained GANs are quite similar with each other
(Fig. 7), for example, there is no difference in the azimuthal direction as seen in Fig. 6.
It is noted that the input latent vectors are different for each simulation by GANs and
BGANs, as they are randomly sampled from a standard normal distribution.

The univariate distributions of neural parameters in BGANs are displayed in Fig. 8.
Specifically, the histograms in Fig. 8a–e show the weights (w) of the second trans-
pose layer of the Bayesian generator (Deconv_2 in Fig. 4a) in terms of five chart
features. The uncertainty of the weight values in the five samples drawn from the pos-
terior distribution strongly reduces (Fig. 8a–e), compared to the prior Gaussian model
(Fig. 8f). Instead of showing the posterior samples for each neural weight, the five sets
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Fig. 7 Subset of channel models generated by GANs that have been trained independently with different
sets of parameters (θgi , i � 1, . . . , 5)

of samples for all the weights at the transpose layer are displayed individually, for the
uncertainty analysis in the trained network system.

Figure 9 shows the MDS plot with pairwise Euclidean distances (Appendix), in
which the testing data set (Fig. 5b) and generated models (1,000 for each posterior
sample) by trained generator in BGANs are plotted in the reduced-dimensional space
for a similarity assessment. The results indicate a good similarity between the testing
and generated data sets, as the transformed data points are scattered within the same
region of the MDS space (Zhang et al. 2021). However, the models generated by the
posterior samples of trained networks cannot fully cover the MDS space of the testing
data, because only a fraction of the full variability of the training data is explored by
each sample of the posterior distribution of generator parameters in BGANs.

Figure 10a shows the MDS plot of the ensemble simulation by BGANs, in which
200 generatedmodels are randomly selected from each of the five sets of 1,000models
by BGANs and then merged together to make a new set of 1,000 realizations. The
results (Fig. 10a) are generally consistent with the MDS plot obtained from one of
the trained GANs; however, the latter one with neural parameters as point estimates
shows a better variability with a wider coverage in the reduced data space (Fig. 10b).

The binary facies proportions for channel and non-channel are shown in Fig. 11.
The generated models by GANs and BGANs can successfully reproduce the facies
histogram of the testing data. Figure 12 shows the semi-variogram, and the two-point
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Fig. 8 Histograms of neural weights at the transpose layer of BGANs for five samples drawn from the
posterior distribution (a–e), and the Gaussian prior of the neural weights (f)

relation in the testing data is reproduced by the trained networks aswell, although these
metrics are generally considered not enough to guarantee a pattern reproduction.

The SSIM metrics (Appendix) are computed between each pair of generated mod-
els, and then averaged to obtain a scalar index (black circles in Fig. 13), for a
quantitative evaluation of the variability. SSIM values between each pair of testing
data sets are also calculated to benchmark the performance of trained networks. The
mean SSIM value for testing facies models (TD in Fig. 13) is around 0.2, which indi-
cates that facies models in the testing data are different from each other. Generally, the
mean SSIM values by BGANs are larger than that of testing data (Fig. 13a), suggesting
that the generated models by each posterior sample from BGANs are less variable.
The mean SSIM values of GANs are smaller than that of BGANs (Fig. 13), as the
former one tends to cover better than BGANs in the MDS space (Fig. 10). However,
some of the SSIM values are quite high, for example, the maximum values shown as
top gray caps in Fig. 13, since a random pair from the facies models could be similar
to each other.

3.2 Mounds Model

The second example of the application by BGANs represents a geological scenario
with mounds in subsurface reservoirs. Figure 14a shows a subset of the 1,000 models
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Fig. 9 MDS plot of the testing data and channel models generated by five different posterior samples from
the BGANs

of dimension 80 × 100 cells, which are simulated by using SNESIM (Strebelle 2002;
Hansen et al. 2018). The model assumes two facies: carbonate mounds (the reservoir
facies) in white and background rocks in black (Zhang et al. 2021). This image set is
used as training data for learning the network parameters. A subset of 1,000 testing
images is displayed in Fig. 14b, which have similar statistics as the training data.

A subset of the facies realizations generated by BGANs is shown in Fig. 15. Dif-
ferent sets of realizations by each neural posterior sample reproduce various features
of the training data. For instance, the first two sets (θ1g and θ2g ) replicate the main

geobodies in the upper part, whereas the last two sets (θ4g and θ5g ) replicate the geo-
bodies in the lower part of the interval. For comparison, Fig. 16 shows the facies
models generated by GANs, for five independently trained sets of neural parameters.
These facies models are used for the analysis of MDS plots, SSIM metrics and other
statistics, compared to the testing data displayed in Fig. 14b, for an assessment of the
generalization ability of the trained networks.

The distribution of neural biases (b) at the second deconvolutional layer in BGANs
is shown in Fig. 17, which has a similar feature as observed in Fig. 8. The values of
posterior samples are highly compacted, centering around zero. The reason for this
might be the fact that only five samples are drawn, making them not representative
enough for the full posterior distribution, and only binary facies models are considered
in this research.

The MDS plot of BGANs (Fig. 18) shows that the transformed data points of
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Fig. 10 MDS plot of the ensemble simulation by the five samples of BGANs (a) and generated models by
one of the trained GANs (b)

Fig. 11 Binary facies (channel
and non-channel) proportion of
testing data, GANs (θg3),

BGANs (θ3g ) and ensemble
realizations (θeg )

generated models cannot fully cover the full range of the testing data in the reduced-
dimensional space, and only part of the diverse patterns in the training set is learned
by each sample of the posterior distribution.

Figure 19a shows theMDS plot of the ensemble realizations obtainedwith BGANs,
whereas Fig. 19b shows the MDS plot obtained with GANs. In this case, the GANs
models show a larger variability with wider coverage in the reduced space.

Moreover, the facies histograms of testing data and generated models are shown
in Fig. 20, from which it can be seen that the proportion values in the testing data
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Fig. 12 Semi-variogram of testing data, GANs (θg3), BGANs (θ3g ) and ensemble realizations (θeg )

Fig. 13 Range of SSIM values between each pair of generated models by (a) BGANs and (b) GANs. Gray
caps are the maximum and minimum values of SSIM, and black caps represent the 95th and fifth percentile
of SSIM range. Black circles are the mean SSIM values. SSIM between each pair from the testing data
(TD) is also calculated for comparison

have been correctly represented by the realizations of GANs and BGANs. The semi-
variogram also shows that the two-point statistics in the testing data is well captured
by the generated models (Fig. 21).

Figure 22 displays the mean SSIM values between each pair of simulated models
by BGANs and GANs, respectively, which confirms the results discussed in Fig. 19,
showing smaller mean values for GANs. It is also suggested that there is a less vari-
ability within the generated models by each posterior sample of BGANs, as larger
mean SSIM values are observed, compared to that of testing data (Fig. 22a).
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Fig. 14 Subset of the training (a) and testing (b) data of dimension 80 × 100 cells. White represents the
carbonate mounds and black is the background facies

Fig. 15 Subset of mounds models generated by BGANs. Random vectors drawn from a standard Gaussian
distribution, such as zi , i � 1, . . . , 5, are used as inputs for the simulation

4 Discussion

It is worth reminding that the goal of this work is not to propose an alternative approach
to SNESIM or other traditional geostatistical algorithms. The main purpose of this
paper specifically is focused on testing and validating a systematic Bayesian frame-
work for GANs to assess uncertainty of the trained model parameters, for example,
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Fig. 16 Subset of mounds models generated by GANs with different sets of parameters (θgi , i � 1, . . . ,
5) that are trained independently

the generator weights. SNESIM is used just as a convenient way to generate a plausi-
ble training/testing set. Any other methods could also have been used in its place. In
actual applications there is no need to use GANs if a variogram-based geostatistical
algorithm or a SNESIM-based approach is deemed to be sufficient. However, when
they are not sufficient, then as shown in the literatures (e.g., Zhang et al. 2019, and
others), GANs provide an alternative solution. Moreover, the proposed BGANs can be
regarded as a fully Bayesian method to address the analysis of the model uncertainty
by allowing the network to learn the probability distribution of the network parame-
ters, as opposed to obtaining one generator and one discriminator with fixed estimates
in GANs. The posterior distribution of the neural parameters in BGANs can be highly
multimodal, with each posterior sample corresponding to different generators.

In this proposed work, BGANs and GANs share the same network architecture
shown in Fig. 4. The training cost of BGANs is more computationally demanding than
that of GANs, as the former one requires stochastic sampling. The GPU (graphics
processing unit) in Google Colab (Bisong 2019) provides a free cloud computing
platform for machine learning, and it is used in this application to run the network
models that are built using TensorFlow, an open-source package in Python. For each
application, the computational time is approximately 5 h for BGANs and 1 h for GANs
with 6,000 epochs, a batch size of 100 and a learning rate of 0.01. After training,
generating 1,000 model realizations takes about 30 s.

One of the limitations in the proposed approach is that the full sampling of the
spatial distribution of the patterns in the training data requires an extremely large
set of posterior network parameter samples, which would significantly increase the
computational cost and demandmore internal memory in GPU. Indeed, theMDS plots
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Fig. 17 Distribution of neural biases in BGANs for five samples drawn from the posterior distribution (a–e),
and the Gaussian prior of the neural biases (f)

for a subset of five samples show that the distribution in the testing data has not been
fully recovered by BGANs especially in the mounds model (Figs. 18 and 19). The
generatedmodels by each posterior sample can then be combined together to represent
the full variability of the training data theoretically. Due to the limitation of computing
memory in GPU, only a few samples are drawn from the posterior distribution. A large
collection of posterior samples could be obtainedwhen a graphics card is availablewith
more storage capacity. Moreover, other cloud computing platforms such as Microsoft
Azure or Amazon EC2 might also be used to train the neural networks, and they are
still under investigation.

Compared to other approximate methods such as variational inference, a full pos-
terior distribution of the neural parameters with many local optima can be explored by
Monte Carlo sampling with explicit representation. Instead, variational inference is
limited by the intractable posterior that must be approximated using Gaussian distri-
butions, which limits the analysis of the uncertainty to only one of the posterior modes.
Moreover, the Kullback–Leibler divergence used in variational approaches generally
provides an overly compact expression of the unimodal distribution,which is caused by
the biases from the distribution-wise asymmetric calculation (Gal et al. 2017; Saatchi
and Wilson 2017). Alternative to the HMC sampling algorithm implemented in this
study, rejection sampling could also be applied for sampling the posterior distribu-
tion. The rejection sampler requires an evaluation of the posterior distribution and an
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Fig. 18 MDS plot of the testing data and mounds models generated by five different posterior samples from
the BGANs

estimation of normalization constant that should be larger than or equal to the maxi-
mum posterior probability, when the uniform distribution is adopted as the proposal
distribution (Hansen 2020). In practice, the rejection sampler is rarely used, since it is
more applicable for low-dimensional problems where few model parameters are to be
determined (Tarantola 2005; Hansen 2020). In total, there are about 4 million trainable
parameters in the generator of GANs, and about 20 million trainable parameters in
BGANs with five samples drawn from the posterior distribution. Furthermore, it is not
trivial to choose the normalization constant as its value greatly influence the sampling
efficiency or the acceptance ratio. For example, if the constant is chosen to be too large,
the acceptance ratio becomes too small, leading to less efficient sampling; while it is
set too low, the rejection algorithm is not sampling the desired posterior distribution
(Hansen 2020).

The model parameter uncertainty is analyzed for the trained models, in which
probability distributions are assigned to the neural parameters. After training, the
posterior samples of the generator parameters can be used to evaluate the uncertainty
in the trainedmodel (Figs. 8 and 17). On the other hand, the variability of the generated
facies models is discussed for the geological patterns within the facies models, and it
is evaluated on the MDS plot (Figs. 10 and 19), as the projected points in the reduced
space should be sparsely distributed, rather than centering to a small cluster, when
there is a diverse pattern in the facies models.

To further demonstrate its feasibility and effectiveness, the proposed BGANs
approach can be extended for the simulation of three-dimensional and multi-facies
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Fig. 19 MDS plot of the ensemble simulation by the five samples of BGANs (a) and generated models by
one of the trained GANs (b)

Fig. 20 Binary facies (carbonate
and non-carbonate) proportion
of testing data, GANs (θg3),

BGANs (θ3g ) and ensemble
realizations (θeg )

models where process- or object-based methods are needed to build the training
facies data, but the computational cost of these applications is generally prohibitive.
In particular, three-dimensional modeling by BGANs is computationally extremely
demanding, as the number of trainable neural parameters significantly increases, since
three-dimensional network filters have to be used to account for the dimension expan-
sion in the training data. Additionally, the network structure should also be modified
for the multi-facies modeling, for example, the softmax function is to be implemented
in the generator output layer to normalize and map input vectors into probability
distributions over potential classes.
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Fig. 21 Semi-variogram of testing data and different generated models

Fig. 22 Range of SSIM values between each pair of generated models by a BGANs and b GANs. The
symbols used have the same meaning with the ones shown in Fig. 13

The proposed BGANs approach can also be used for conditional sampling in inter-
polation, classification, and inverse problem settings, using direct observations at the
well locations or indirect measurements such as seismic data. In these cases, the net-
work systems could be post-processed such that the unconditional training is first
performed, then latent vectors associated with models consistent with observed data
are searched and retained using optimization or Markov chain Monte Carlo sampling
(e.g., Nesvold and Mukerji 2019). The conditioning ability can also be implemented
by introducing an extra loss function to account for the dissimilarity between the
input conditioning data and output facies models from the trained network (Song et al.
2021a). Either of these approaches to conditioning can be incorporated in BGANs
theoretically, and will be a focus of the future research.

In this study, the training process of BGANs is supervised, which means that the
generator is forced to learn the spatial distributions and geological patterns from the
training data. After training, the learned generator reproduces realistic facies models
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with random inputs being drawn from a Gaussian distribution. BGANs could also be
used in a semi-supervised approach as well for classification problems where a large
amount of unlabeled data is utilized to train the networks, and the neural parameters of
discriminator could be assigned with probability functions for the uncertainty analysis
of the learned model.

5 Conclusion

This research discusses the capability of deep learning to simulate subsurface models
based on training data. In this context, BGANs are used to generate geological facies
models, in which the neural parameters are assigned with probability distribution,
rather than deterministic values as in classic GANs. A sequence of random samples is
drawn using SGHMC to approximate the target posterior distribution. The expected
values of the target distribution can be estimated from the Monte Carlo samples. The
samples are realizations of the posterior distribution of the network parameters and
can be used to assess the variability of the results. In this research, BGANs and GANs
are applied using a training data set obtained by traditional geostatistical methods and
compared to the geostatistical testing realizations for validation purposes. In practical
applications, outcrop data or conceptual models can be used to build the training data
set for BGANs.

Acknowledgements This research is sponsored by the LOCRETA project. We also acknowledge the
sponsors of SCERF.

Appendix: Quality Evaluation Metrics

To assess the variability and similarity between the generated and testing data, the
technique of multidimensional scaling (MDS) is used to reduce the high-dimensional
problem to a low-dimensional data space while preserving similarity measure for
comparison (Cox and Cox 2008). The MDS-transformed data points are unitless and
can be plotted in the common Cartesian space. The main steps in the classical MDS
algorithm are summarized as follows: (i) setup of the squared proximity matrix with
Euclidean distance and double centering; (ii) determination of the first largest eigen-
values and corresponding eigenvectors of the double-centered matrix; (iii) calculation
of the object coordinates in the new space (Cox and Cox 2008). The variability and
similarity can be evaluated in the reduced dimension for the twomodel sets. For exam-
ple, the projected data points can be sparsely distributed across the Cartesian space
when diverse patterns exist in the original data or distributed in small clusters for
multimodal distributions of patterns. The similarity of the data sets can be quantified
by the range of these two clusters, and it should become indistinguishable when the
two data sets are similar (Zhang et al. 2021).

For a quantitative measure of the variability within the generated models, the
perception-based structural similarity index (SSIM) is introduced, on the basis of
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the definition given by Wang et al. (2004) and Sun (2018)

SSIM
(

y, y∗) � (2μyμy∗ + c1)(2σyy∗ + c2)

(μ2
y + μ2

y∗ + c1)(σ 2
y + σ 2

y∗ + c2)
, (A1)

where y and y∗ represent two random images from the generatedmodels, respectively;
μ is the mean and σ 2 is the variance; c1 and c2 are constant values to stabilize the
denominator, and are taking the values of 0.012 and 0.032, respectively, for the gray
images. The value range of SSIM is between −1 and 1, where 1 means that the two
images are identical, and −1 is reached when the two images are completely different
(Sun 2018). In image recognition, SSIM quantifies image degradation as structural
information change where pixels that are spatially close with each other should have
strong inter-dependencies. The perceptual phenomena, including the masking terms
of luminance and contrast, are also accounted for in the SSIM to ensure that image
distortions are detected as well (Wang et al. 2004). In general, compared to the mean
squared error, SSIM is more indicative of perceived dissimilarity/similarity in the
models.
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