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Abstract Conventional gravity inversion techniques have limited ability to quantify
structural uncertainty in geologic models. In this paper, a stochastic framework is
proposed that directly incorporates fault-related and density-related uncertainty into
the inversion process. The approach uses Monte Carlo simulation to generate model
realizations and the gradual deformation method to further refine models to match
observed data. To guarantee that model realizations are structurally restorable, fault
displacements are generated using a kinematic modeling approach in which fault
model properties such as the number of faults, location, dip, slip, and orientation
are considered uncertain. Using a synthetic case study problem, a reference gravity
field was inverted to generate a suite of posterior model realizations. Analysis of the
posterior models was used to create a fault probability map as well as quantify the
distribution of slip and dip of faults in three zones of deformation. Uncertainty in
density values was found to be greatly reduced in the top 250 m depth, suggesting
limited sensitivity to deeper sources in this example. Following the synthetic case
study problem, the inversion approach was applied to a field-observed gravity profile
in Dixie Valley, Nevada, and the inversion results were compared to a previously
published forward gravity model. By generating a suite of posterior models, structural
uncertainty can be better assessed to make more informed decisions in a host of
subsurface modeling problems.
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1 Introduction

The use of gravity data remains important in a wide array of subsurface modeling
applications including in the exploration for geothermal energy and mineral resources.
There are a couple reasons for this. First, regional gravity data are widely available, and
therefore useful in the early stages of subsurface exploration by providing basic con-
straints on the shape and depth of sedimentary basins (Thakur et al. 2012; Nishijima
and Naritomi 2017). This step is often the starting point for building geologic models
that form the basis of a subsurface study. The second reason gravity data are important
is that it is relatively inexpensive to acquire new data, either by surface-based or air-
borne surveys (Wooldridge 2010; Martelet et al. 2013). Because regional data is often
available in an area of interest, new data can be acquired to target previously identified
gravity anomalies at a higher resolution (denser survey spacing). Depending on the
underlying geology, high-resolution gravity data may be used to infer and constrain
the location of faults, either on its own or in conjunction with other geophysical data
(Athens et al. 2016; Maithya et al. 2020).

However, one of the common problems of interpreting gravity anomalies is non-
uniqueness, meaning that for any given gravity field there are multiple mathematical
solutions to the inverse problem (Sleep and Fujita 1997). Of course, not all mathe-
matical solutions are valid geologic solutions. By using prior geologic knowledge, the
set of possible solutions can be greatly reduced allowing for insightful interpretation
of the subsurface (Saltus and Blakely 2011; Crombez et al. 2020). Nevertheless, the
problem of addressing non-uniqueness, coupled with typically large uncertainties on
rock density values, remains challenging in both the forward modeling and inverse
modeling paradigms (Nabighian et al. 2005), albeit for different reasons. Whereas in
the forward modeling paradigm, it is relatively straightforward to directly incorpo-
rate geologic knowledge in the process of building a model, but it is difficult to then
assess model uncertainty due to often-used manual process of model building (Phelps
2016). In contrast, there is the opposite problem in the inverse modeling paradigm.
Inverse modeling can be easily extended to Bayesian frameworks to quantify model
uncertainty, but it is often challenging to incorporate geologic knowledge into the reg-
ularization process (Giraud et al. 2019). Despite recent progress, inverse solutions still
commonly suffer from a lack of geologic realism due to smoothing of sharp boundaries
(Fullagar and Pears 2007).

Assessing model uncertainty without reducing geologic realism is particularly
important in resource exploration in faulted terranes (Manzocchi et al. 2008). How-
ever, quantifying structural uncertainty is generally not straightforward; there is often
a balance between ensuring that generated models are geologically valid and fully
assessing model uncertainty (Caumon et al. 2007). While aspects of what is consid-
ered geologically valid is open to debate, the concept of structural restoration is widely
used as a starting point for evaluating structural interpretations. If a model cannot be
restored to its initial undeformed state, then it is an unacceptable structural interpreta-
tion (Woodward et al. 1989). This constraint, however, poses a practical challenge for
generating alternative geologic models because grid cells (or finite elements) must be
updated each time a fault is added or removed to maintain consistent bedding across
faults.
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The purpose of this study is to create a framework for gravity inversion that directly
accounts for structural uncertainty. The first intended contribution is to show how
to parameterize structural models for uncertainty quantification using a kinematic
modeling approach that guarantees models are structurally restorable. This approach
will then be applied in the main contribution of inverting gravity data for model
uncertainty. To invert gravity data, Monte Carlo simulation is used to generate an
initial set of prior model realizations that span the solution space. Following Monte
Carlo, model realizations that are close to the solution space are refined using the
gradual deformation method (GDM) (Hu et al. 2001), which perturbs models while
preserving spatial structures specified in the prior model. It will also be shown that
the initial set of prior model realizations can be used to train a surrogate model to
greatly decrease computation time in high dimension models. To organize the paper,
related methods for representing structural uncertainty are reviewed before proceeding
with new contributions using a synthetically generated reference model of faulted
stratigraphy. Finally, inversion results are shown using field-observed data from Dixie
Valley, Nevada.

2 Related Work on Representing Structural Uncertainty

In recent years, there is broad recognition that solving inverse problems for a single
model is insufficient for quantitative analysis and decision making in subsurface appli-
cations (Scheidt et al. 2018). Rather, what is desired is a suite of models that can be
used to quantify the probability of model parameters representing physical properties
in the earth. Stochastic inverse modeling approaches address this need by reframing
the inverse problem using Bayes’ rule (Mosegaard and Tarantola 1995). In a Bayesian
framework, solutions to the inverse problem are presented as a conditional probability
distribution of a model given observed data. Because the relationship between model
parameters and data is non-linear, it is common to use Monte Carlo-based methods
to determine the posterior distribution by sampling from a prior model of uncertainty
specifying parameter distributions.

As described by Suzuki and Caers (2008), one of the main challenges in Bayesian
inverse problems in the earth sciences is specifying a prior model for spatial parameters
that ensures model realizations are geologically realistic. This issue of representing
spatial variability has led to the development of a wide array of geostatistical simulation
techniques. These include variogram-based methods that are routinely used to simulate
spatial fields such as permeability and porosity (Goovaerts 1997), and multipoint
geostatistical methods that utilize a training image to capture more complex spatial
patterns such as meandering sand channels (Strebelle 2002). Despite many advances in
the field of geostatistics to represent spatial variability, structural features with variable
topological relationships remain particularly difficult to simulate because of the need
to represent both faults and corresponding displacements of geologic horizons.

One approach to represent structural uncertainty is to perturb a reference model
(Caumon et al. 2007). However, in data sparse problems in which topological rela-
tionships are uncertain or a reference model is not available, a method that can simulate
geologic models with geologically consistent structural features may be advantageous
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for full uncertainty quantification of structural features. One way to approach this
problem is through physics-based modeling of time-varying deformation (simulating
from an undeformed state to a deformed state), either using a continuum constitutive
approach (Exadaktylos et al. 2003; Crook et al. 2006; Nollet et al. 2012) or the dis-
crete element method (Abe et al. 2011; Finch and Gawthorpe 2017; Hardy 2019). In
either approach, alternative geologic models can be generated from these determinis-
tic physical models by varying the boundary conditions and mechanical properties of
geologic horizons in the model. The advantage of a physics-based simulation approach
is that it directly incorporates the physical equations that govern the structural features
being modeled. However, there are major computational limitations inherent to both
of these methods that reduce their applicability to uncertainty quantification problems
that require numerous simulations to be run.

Kinematic modeling is an alternative to physics-based modeling to simulate fault
displacements (Wellmann et al. 2016; Godefroy et al. 2018). In contrast to physics-
based modeling, kinematic modeling is purely geometrical and does not simulate stress
transfer. For this reason, kinematic modeling is significantly more computationally
efficient and comparatively flexible. To utilize kinematic modeling in a stochastic
process, deformation can be thought of as a sequence of random fault operations that
displace geologic horizons. Furthermore, by changing the order of fault operations,
the topology of a model is also changed (Cherpeau et al. 2010). In order to ensure
geologic realism, stochastic simulation of faults is often implemented to follow a set
of geologic rules based on prior geologic knowledge about the distribution of faults
in a study area (Cherpeau et al. 2010; Aydin and Caers 2017; Godefroy et al. 2019).

3 Stochastic Generation of Geologic Models with Kinematic
Restorability

In this section, a method is described to stochastically simulate geologic models that
guarantees kinematic restorability. The approach is particularly apt for simulating
faulted stratigraphy in extensional terranes where deformation can be represented by
rigid-body displacements. By using rigid-body displacements, this method enforces
that geologic horizons on either side of a fault will have the same thickness at the fault
surface. The decision to employ rigid-body displacements, a simplification of typical
fault displacement models (Barnett et al. 1987; Gibson et al. 1989), is discussed in
Sect. 7.

Generation of geologic models and kinematic operations are performed using a
custom Python code using standard scientific libraries (e.g. numpy, pandas). The first
step of the simulation is to initialize a set of regularly spaced points in a domain
that is sufficiently large to account for subsequent displacements (Fig. 1a). Follow-
ing initialization, normal faulting is simulated by applying a sequence of rigid-body
displacement operations to the set of points. Each fault in the sequence is defined by
a location, dip, slip, and orientation. Displacements are applied with relative motion,
meaning that the hanging wall moves downward while the footwall moves upwards.
The result of this process is a mapping of each point’s location pre- and post-faulting
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Fig. 1 Generating a geologic model. a Points in the pre-faulting state. Color represents density values.
Black box denotes the location of the final domain extent. b Points in the post-faulting state. ¢ Fault locations.
Color represents fault ID

that can be used to generate realizations of geologic models with continuous rock
properties that are offset by faults (Fig. 1b).

Rock properties are generated using geostatistical simulation (Goovaerts 1997),
and then assigned to points in the pre-faulting state and mapped to point locations in
the post-faulting state. One advantage of generating properties in the pre-faulted space
is that it enables properties to be simulated as a function of their stratigraphic position
rather than their post-faulted location (Souche et al. 2014). The specific parameteriza-
tion of the geostatistical simulation will depend on the problem of interest and the data
available. Although not the focus in this study, there are many examples in the litera-
ture of using Gaussian simulations to create highly realistic earth models (Beucher and
Renard 2016). For this study, Sequential Gaussian Simulation is performed using the
Stanford Geostatistical Modeling Software (SGeMS) (Remy et al. 2009). The specific
geostatistical model parameterization used in this study will be discussed in Sect. 5.
One final step after generating the post-faulting point set is to interpolate points that are
within the final domain boundary onto a regular two-dimensional grid for geophysical
forward modeling. In addition to interpolating rock properties, fault locations (Fig. 1¢)
are also interpolated to create binary fault map images.

4 Gravity Inversion Approach for Quantifying Structural Uncertainty

In this section, a high-level overview is provided of the techniques used in the gravity
inversion approach. The goal of the approach is to invert gravity data for a suite of
models in order to quantify the probability of model properties of interest. The first
step is to use Monte Carlo simulation to sample models from a prior distribution. Sec-
ond, prior model realizations that are close to the solution space are refined using the
gradual deformation method (GDM) to improve models fits while preserving desired
geologic properties such as kinematically restorable cross-sections. Optionally, a sur-
rogate machine learning model can be used to reduce the number of geophysical
forward calculations thereby reducing computation time. Following the overview pro-
vided in this section, these ideas are implemented in two example inversion problems
in Sects. 5 and 6.
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4.1 Sampling from a Prior Model Using Monte Carlo Simulation

The first technique is to use Monte Carlo simulation to sample models that span
the solution space. Because this study is concerned with understanding structural
uncertainty, the model m is defined as a structural-density model consisting of two
components

m = {x, ¢}, ey

where y are variables describing the structural model (e.g. the location, dip, and slip of
faults), and ¢ describes the density model (e.g. the spatial distribution of rock density
within the domain).

Next, model uncertainty is represented as a probability distribution f (m) referred
to as the prior model of uncertainty. The parameterization and parameter distributions
specified in the prior model depend on prior geologic knowledge about the geologic
setting. This is typically one of the more challenging aspects of any Bayesian uncer-
tainty quantification method because it requires that prior understanding is explicitly
stated. For now, it is assumed that the prior model has been specified; later a specific
example of how to parameterize a two-dimensional model for an asymmetric basin
typical of the Basin and Range geologic province.

Having specified the prior model, Monte Carlo is used to sample from f(m) to
generate a set of L model realizations {m(l), m?®, .. , m(L)}. Finally, these realiza-
tions are used to compute a set of L gravity realizations d using the following forward
function

d = g(m), @)

where g is a deterministic function that computes the gravity forward calculation of
each model, transforming realizations of m into realizations of d. The forward calcu-
lation is performed using SIimPEG, an open source python package for geophysical
applications (Cockett et al. 2015). The actual field-observed gravity data is denoted
as dyps.-

4.2 Applying GDM to Optimize Fitting of Gravity Data

In this step, prior model realizations that are close to the solution space are refined to
match observed gravity data. To select models that are close to the solution space, a
distance metric is needed. For gravity inverse modeling, there is a large body of research
emphasizing the importance of gravity gradient analysis for constraining depth, size,
and geometry of density source bodies (Butler 1995; Blakely 1996). Therefore the
distance metric is defined as the mean squared error of the gravity gradient

1
J = ;”dobs/ - d/||%, 3)
where d’ is the gradient of gravity data realizations d.
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After selecting prior models that minimize the distance metric, small adjustments
are likely still needed to improve the fit of data; this means adjusting the location,
dip, and slip of faults, as well as density model variables. At the same time, it is
essential that refinement of model realizations is performed in such a way that it
preserves properties specified in the prior model, such as that model realizations are
structurally restorable. One way to accomplish this is by applying GDM, which was
developed to perturb models defined by Gaussian random functions while preserving
spatial variability (Hu et al. 2001). The key idea of GDM is the recognition that each
stochastic model realization is defined by a random vector drawn from a specified
distribution; by perturbing the random vector, the corresponding model realization
is also perturbed. In GDM, perturbations of random Gaussian vectors are generated
using

vg = v1cos(f) + vy sin(h), 4)

where v1 and v, are independent standard Gaussian random vectors, and 0 is a scalar
value. Typically, @ € (0, 7) such that v1 and v, are returned at the limits of the bounds.
Because v1 and v, are independent standard Gaussian random vectors, vg will also
be standard Gaussian. For models defined by random samples from non-Gaussian
distributions, such as a uniform distribution, a normal-score transformation can be
applied prior to applying Eq. 4.

Since its development, GDM and related perturbation-based algorithms have been
applied to many case studies, mostly commonly for history matching well data (Hoff-
man and Caers 2005; Le Ravalec and Mouche 2012). In a typical implementation, the
GDM equation is used to minimize an objective function as part of an iterative opti-
mization algorithm (Algorithm 1). The optimization algorithm is initiated by sampling
aproposed model realization (i.e. a Gaussian vector) followed by a loop that iteratively
updates the proposed model. For each iteration, a second Gaussian vector (representing
an independent stochastic model realization) is drawn from the prior model, and the
GDM equation is applied to generate a set of perturbed model realizations. For each
perturbed realization, the data forward function (Eq. 2) is applied and the objective
function (Eq. 3) is calculated. The proposed model realization is then updated to be
the perturbed realization that minimizes the objective function for that iteration step.
Minimization can be performed using any standard univariate optimization technique
such as Brent’s Method. In some iterations, the minimum will be found where 8 = 0
(the proposed model realization for that step), in which case there is no decrease in
the objective function for that step.

4.3 Surrogate Machine Learning Model

To reduce the number of forward model calculations required by the GDM optimiza-
tion algorithm (Algorithm 1), an optional step is to train a surrogate machine learning
model to predict whether a sampled model realization is close to the solution space.
By only running the geophysical forward calculation on prior models predicted to be
close to the solution space, computation time can be significantly improved in the
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Algorithm 1: Optimization algorithm using GDM

Initialize:
vy~ N@O,1); > Sample from Gaussian distribution
my < T(vy); > Transform to model parameters
set A9 ; > Set step size of 60
fori =1,2,... do
6«0
viy1 ~ N@O,1); > Draw second Gaussian vector
while 6 < 27 do
0 <« 0+ A6
vg < v; cos() + v; 41 sin(0); > Perturb using GDM equation
mg < T (vg)
dg < g(myg)
end
vj4+1 < vg where min cost(dg, dyps) ; > Using Eqg. 3
0<6<2m
mij1 < T(ig1); > Update model
end

optimization algorithm. The surrogate model can also be used to efficiently generate
additional prior model realizations that are close to the solution space via importance
sampling, although this is not employed in this study.

The surrogate model can be trained on prior model realizations previously gen-
erated by Monte Carlo simulation. To achieve this, it is proposed to first reduce the
dimension of model realizations using a dimension reduction technique such as Prin-
cipal Component Analysis (PCA). This step transforms two-dimensional model grids
m to vectors m* that can be used as the input to a machine learning model. Thus, the
surrogate model 4 aims to estimate the mismatch J (Eq. 3), given a model in reduced
dimension space

J = h(m™). (5)

By setting up the model to predict the mismatch J (a scalar value) rather than
predicting d (a vector), the prediction problem is relatively simple. Once the model is
trained, it can be applied to accept/reject samples based on a chosen threshold value
(e.g. the 10% quantile of J). If the sample is predicted to be close to dyps (less than the
threshold value), then the forward function (Eq. 2) is applied. Else, the geophysical
forward model is not run. Using this approach, the forward model is only run on
samples likely to be relevant, saving significant computation time depending on the
accuracy of the surrogate model and the computational cost of the forward function.
There are any number of machine learning models % that can be used as the surrogate
model. In this study, a Random Forest model is employed, which is a widely used
ensemble tree-based method (Breiman 1999).
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4.4 A Combined Approach

Whereas Monte Carlo is efficient at exploring the full model space f (m), a necessary
feature for full uncertainty quantification, it is highly inefficient at sampling accurately
from the posterior distribution f(m | dyps). In contrast, GDM is the opposite. It is
efficient at matching data, but because it relies on a simple low-dimensional parame-
terization, it is challenging to sample from high-dimensional posterior distributions,
and may have a tendency to be trapped in local minima (solutions that do not match
data). Therefore, one way to improve the efficiency of GDM is to use the best models
from Monte Carlo simulation as the starting point for GDM. In effect, Monte Carlo
has already explored f(m) and GDM needs only to refine models that are close to
d,ps to learn the posterior distribution f (m | dyps). This will be shown in detail in the
next section.

5 Synthetic Modeling Example

To illustrate the gravity inversion approach, a reference density model is used to
represent the true earth model (Fig. 2). The synthetically created reference model is
intended to represent an idealized normal fault system with three faults of varying
dips and slips that offset layered stratigraphy. By using a reference model with known
properties, the inversion results can be compared to the truth.

5.1 Parameterization of Geologic Models

The structural model and density model are controlled by two sets of parameters
(Eq. 1). With regards to the structural model, the number of faults, location, dip, and
slip are considered to be uncertain, and therefore probability distributions for each of
these parameters are specified in the prior model of uncertainty (Table 1). The specific
distributions are chosen to be large, reflecting the fact that very little prior knowledge
of the study area is assumed (i.e. a narrowly defined base case model does not need
to be proposed). However, in a real study, these distributions could be constrained
given prior knowledge from other data sources; the parameterization and probability
distributions are problem specific.

To sample from the prior model, each fault is sampled independently and the ori-
entation (i.e. which side of the domain is the hanging wall vs footwall) is sampled
with equal probability. This means that if the number of faults drawn from the prior
distribution is 3, then there will be 3 sets of parameters specifying the location, dip,
and slip of 3 independent rigid-body displacement operations. As a consequence, the
dimension of the parameterization depends on the number of faults

X ={rb1,rby, ..., rb,}, (6)

where rb defines a rigid-body displacement parameterized by a location, dip, slip,
and orientation. Rigid-body displacement operations are applied sequentially when
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Fig. 2 Reference model for synthetic case study problem. a Gravity field (red) and gradient of the gravity
field (black). b Density model in units of kg /m3. From left to right, the three faults in the model have dips
of 550, 600, and 650, and slips of 0.3, 0.5, and 0.4 km

generating model realizations (Fig. 1), and thus the age relationship between faults is
controlled by the sequence order (Cherpeau et al. 2010).

The second set of prior parameters controls the density model. Following a similar
approach to Phelps (2016), density is modeled using a geostatistical approach. To
capture the observation that borehole density is spatially correlated and generally
increasing with depth, the density field is decomposed into a trend and residual. The
trend is defined by a gradient of density with depth. The residual is defined by a
parameter specifying the correlation length of a Gaussian random field (Goovaerts
1997). For this study, only vertical changes in density are considered, meaning that
density is simulated in one-dimension and then extended to a two-dimensional grid
resulting in the appearance of layered stratigraphy. However, this approach is easily
extended to modeling spatial correlation in two-dimensional and three-dimensional
domains provided there is sufficient data to define the horizontal correlation lengths.

5.2 Monte Carlo Simulation

Following the steps of the gravity inversion approach, 80,000 prior model realizations
were generated by Monte Carlo simulation. Figure 3 shows a random subset of the
prior model realizations. For each realization, a geologic model was generated and the
data forward function (Eq. 2) was applied to simulate the gravity field. This number of
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Table 1 Prior model of uncertainty for synthetic modeling example

Type Parameter Distribution
Structure Number of faults U[1, 4]
Structure Location (X-axis) U[0.25, 3.75] km
Structure Dip U[50, 70] degrees
Structure Slip U[0, 0.75] km
Structure Orientation Discrete[0 1]
Density Trend U[0, 200] kg/m? /km
Density Variogram range (Y-axis) U[S, 25] grid cells
kg/m?
a b oo 2800
215
— ~ 2700
8 = =037 2600
E 2104 §
> £ -1.01 2500
g § 2400
G 205 A -1.5
2300
, , - : - -2.0 T T T T T T . 2200
0 1 2 3 4 00 05 10 15 2.0 25 30 35 40
Distance [km] Distance [km]
C = —
Y
[ — A — |
L ] —

Fig. 3 Monte Carlo results. a 200 of 80,000 forward gravity calculations drawn from the prior model. b
Mean density of prior model realizations. ¢ Example prior model realization [same color scale and axes as

()]

prior models took approximately 15 min to simulate at a model resolution of 100 x 50
grid cells utilizing 4 compute nodes and multi-processing on a computer cluster.

The number of prior models required is largely dependent on the complexity of the
data and the specification of the prior model. If the observed gravity field d,p falls
well outside of the prior distribution, then either more samples need to be generated or
the specification of the prior model needs to be revised. In this example, 80,000 prior
model realizations were determined to be sufficient to select model realizations that
are close to the solution space for detailed refinement using GDM. Figure 4 shows 100
prior model realizations that were selected for refinement. While these prior model
realizations exhibit varying number of faults in different age sequences (Fig. 4b), they
are all close to matching the gradient of the observed gravity data.
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Fig. 5 Dimension reduction using principal component analysis (PCA). a Scatterplot of first two principal
component (PC) scores. b Scree plot showing cumulative explained variance for first 200 PCs. ¢ Eigenfaces
of first 8 PCs

5.3 Training Surrogate Model

Using 3000 of the 80,000 prior model realizations, a Random Forest regression model,
implemented in the Scikit-learn library in Python (Pedregosa et al. 2011), was trained
to predict the distance J in Eq. 3 (the objective function in Algorithm 1). Before
training the Random Forest model, the dimension of model realizations (50 x 100
grid cells) was reduced using PCA (Fig. 5). The input variables for the Random Forest
model are the first 60 PC components, which were found to explain 90% of the variance
of the prior models. The training set of 3000 models was then split into a training and
test set using a 70/30 split, and the Random Forest model was trained using standard
hyperparameters. Prediction performance on the test set shows a correlation coefficient
of 0.91 comparing the model predicted values to the true values, suggesting relatively
high prediction accuracy (Fig. 6).
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Fig. 6 Test set performance of surrogate model to predict the objective function (Eq. 3) in Algorithm 1

5.4 Refining Data Fit Using GDM

Having selected 100 prior model realizations that are close to the solution space, the
final step is to apply the GDM optimization algorithm (Algorithm 1) to refine the
selected models. However, because GDM perturbs standard Gaussian random vectors
of equivalent dimension (Eq. 4), there are two issues with the parameterization of
the prior model. The first issue is that model parameters are sampled from uniform
distributions (Table 1). To transform uniform samples to standard Gaussian samples, a
normal-score transformation is applied. The second issue is that the dimension of the
samples drawn from the prior model is variable depending on the number of faults in
the structural model for that sample (Eq. 6). To ensure that there is a constant sample
dimension during GDM optimization, the number and orientation of faults in the
structural model are fixed to that of the selected starting model. While the number and
orientation of faults are fixed for each run of the optimization algorithm, the process
is repeated many times using different starting models from the 100 selected prior
models, thus generating posterior models with varying fault models.

Note that this problem of solving an inverse problem with a variable number of
parameters to optimize is generally referred to as the trans-dimensional inverse prob-
lem (Sambridge et al. 2006). The solution proposed in this study is to sample from
the trans-dimensional space using Monte Carlo simulation and then refine a selected
subset of models using GDM, a constant-dimension optimization approach. Whether
this approach generalizes to other trans-dimensional inverse problems requires further
investigation.

Figure 7 shows an example iteration step of GDM optimization where a model real-
ization, denoted as m, is gradually deformed to another model realization, denoted
as m®, using the GDM equation (Eq. 3). In this example, the number and orientation
of faults in the structural model is fixed to 3 faults (2 down-to-the-right and 1 down-
to-the-left) based on the selected starting model. Although the number and orientation
of faults are the same in both model realizations, m‘D and m(z), the location, dip, slip
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Fig.7 Minimization of objective function for a single iteration. a Gradient of the gravity field. b Objective
function. ¢ Geologic model

of each fault, as well as the density model, are perturbed as the value of theta ranges
from O to v /2. Corresponding to the set of perturbed model realizations, the gradient
of the gravity field is also perturbed, and the objective function is minimized where
6 = 0.35.

Figure 8 shows an example of GDM optimization over 500 iterations, using a
different starting model with 4 faults. This example shows typical behavior in which
the objective function decreases quickly through the first 100 iterations before the
rate of decrease plateaus.

5.5 Inversion Results

The GDM optimization algorithm (Algorithm 1) was run multiple times for each of
the 100 starting models selected from prior model realizations. In total, 2000 models
were run of which 100 were determined to have converged to match the gradient of the
gravity data (Fig. 9a). To match the gravity data (in addition to matching the gradient),
a simple post-processing step is needed to shift each model’s density values by a scalar
constant; in this example the datum shift was generally in the range of 100kg/m>.
Together, these 100 models form a suite of posterior model realizations of f(m | dyps)
(Fig. 9b).

Aggregating the posterior density models and calculating the mean value by grid cell
produces a mean density model (Fig. 10a) that closely resembles the true density model
(Fig. 2b). Although stratigraphic layers have been smoothed by the aggregation, the
mean of the posterior models clearly shows three zones of deformation corresponding
to the three faults in the true model (Fig. 3b). In addition to aggregating the density
values by grid cell, faults can be similarly aggregated by transforming fault locations
into a binary image (0 for no fault present, 1 for fault). The mean of the posterior
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Fig. 9 Gravity field fits for 100 posterior models. a Gradient of the gravity field. b Gravity field

binary fault models is the probability of a fault by grid cell (Fig. 10b). As expected,
fault locations are most tightly constrained near the surface of the domain where the
gravity field is most sensitive to source bodies. Below 0.5 km depth, fault probabilities
become more diffuse due to the range of fault dips in the suite of posterior models.

Visualizing individual posterior models highlights the full range of uncertainty in
both density and structure represented in these models (Fig. 10c). For example, these
models show different number of faults, age relationships, and stratigraphic thick-
nesses. Nevertheless, the gravity field associated with each of these models matches
the observed gravity field.

To investigate how prior uncertainty was reduced, posterior density models were
compared to the prior density models. Figure 11a shows the ratio of the prior model
variance to the posterior model variance, illustrating that the majority of uncertainty
reduction occurred in the top 250 m depth. Figure 11b shows density with depth at
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a single location in the center of the domain. Whereas the mean of the prior density
profiles is linear, the mean of the posterior density profiles follows the long wavelength
trend of the true model’s density profile. However, the posterior density models do not
appear to resolve short wavelength features of the true model. This suggests that the
gravity field is not sensitive to high resolution changes in density.

In addition to a reduction of uncertainty in the density model, there is also a reduction
of uncertainty in the structural model. Figure 12 shows the distribution of dips and
slips corresponding to the locations of the three prominent zones of deformation in
the posterior fault probability map (Fig. 10b). Recall that the prior specifies a uniform
distribution for dip and slip. For each histogram plot, the true value (from the true
model) lies within the posterior distribution.
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6 Dixie Valley Case Study

To compare the proposed gravity inversion approach to a conventional forward mod-
eling approach, a gravity profile from Dixie Valley, Nevada, previously modeled in
Okaya and Thompson (1985), was inverted. The gravity model developed by Okaya
and Thompson (reproduced in Fig. 13) shows an asymmetric basin formed by stair-
stepped normal faults. As described in the original study, gravity observations were
acquired along a transect across Dixie Valley and modeled using polygonal shapes to
represent different facies units. In addition to gravity observations, Okaya and Thomp-
son also collected rock samples to compute average density values, and a seismic
reflection survey that was used to constrain a portion of the gravity forward model.

Using the gravity observations from Dixie Valley, the general inversion procedure
follows the previously detailed synthetic modeling example except the prior parame-
terization was changed in two ways (Table 2). First, rather than modeling density using
a one-dimensional Gaussian field (i.e. layered stratigraphy), density was modeled as
a linear trend where density increases linearly with depth. This is parameterized in
the prior model by two parameters controlling the gradient and intercept of the linear
relationship. The second change to the prior model was to create a domain representing
crystalline basement rock that is fixed to 2, 800 kgm? (the value used in the Okaya and
Thompson model). The primary purpose of these two changes is to create models that
will allow us to compare inversion results with the Okaya and Thompson model, and
not to reinterpret the geology of Dixie Valley, Nevada. A secondary purpose is to show
that the inversion approach can accommodate different prior model parameterizations
beyond what was shown in the synthetic modeling example.

In total, 25 posterior models were generated (Fig. 14) that fit the Dixie Valley
gravity data (Fig. 15a). As shown in the synthetic modeling example, the inversion
results can be summarized by visualizing the mean of the posterior models by grid
cell (Fig. 15b) and the mean of the fault locations (Fig. 15c). In general, these two
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Fig. 13 Gravity forward model reproduced from Okaya and Thompson (1985)

Table 2 Prior model of uncertainty for Dixie Valley case study

Type Parameter Distribution

Structure Number of faults U2, 8]

Structure Location (X-axis) U[0.25, 17.75] km
Structure Dip U[50, 70] degrees
Structure Slip U[0, 1.25]km

Structure Orientation Discrete[0 1]

Density Basin sediment trend U[200, 700] kg /m3 /km
Density Basin sediment constant U[2360, 2,650] kg/m3

summary maps show broad agreement with the original Okaya and Thompson model,
depicting an asymmetric basin defined by a stair-step basement topography. In terms
of structural uncertainty, Fig. 15¢ shows four prominent zones of deformation (labeled
a-d) as well as a fifth zone of deformation that is more diffuse (labeled e). These zones
of deformation closely align with interpreted fault and facies changes in the Okaya
and Thompson model. Figure 16 shows the distribution of dip and slip for the first
zone of deformation (label a). Supporting the interpretation of Okaya and Thompson,
the distribution of dips tends towards lower dips (50-600), although higher dips are
also possible. One noteworthy difference in interpretation is the absence of a shallow
dipping layer towards the third zone of deformation (label c) that is part of the Okaya
and Thompson model. In fact, evidence for the dipping layer primarily comes from
the seismic reflection profile utilized in the Okaya and Thompson model, which was
not used to inform the gravity inversion in the present study. Thus, this difference
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in interpretation primarily stems from what prior knowledge was incorporated in the
respective studies.

7 Discussion

The gravity inversion approach proposed in this study demonstrates a methodology to
sample the posterior distribution of geologic models that match observed gravity data.
Rather than manually tuning or calibrating models, as commonly done in conventional
forward modeling approaches, this approach only requires an appropriately defined
prior model of uncertainty. The advantage is that once the prior model is specified, a
full suite of models can be generated, enabling quantification of structural and density
uncertainty.

The approach can also be extended to utilize more sophisticated approaches to
generating structural models. In the example problems presented in this study, rigid-
body displacements were used to model offsets along normal faults, which results in a
uniform displacement of geologic horizons along the fault surface and assumes there
is infinite fault extension along planar faults. Thus, this model does not account for the
fact that displacement on fault surfaces is well established to taper towards the edges
of faults (Barnett et al. 1987; Gibson et al. 1989). Nevertheless, because the gravity
fit is mostly sensitive to the top 250 m of the model (Fig. 11), the use of rigid-body
displacements appears justified; the gravity fit would not be sensitive to a tapered fault
displacement. For modeling problems that require more geologic realism, methods
that model true fault displacement distributions (Hollund et al. 2002; Godefroy et al.
2018) could potentially be employed in place of the method used in this study. The
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only requirement is that structural models can be represented by Gaussian vectors,
which allows models to be perturbed by drawing independent samples.

Another way the inversion approach can be extended is to incorporate hard data
such as density well logs. In this case, the generation of geologic models (Fig. 1) would
need to be modified to use a conditional simulation. Similar to the previously described
approach, the first step is to simulate the pre- and post-faulting point locations. Once the
post-faulting point locations are known, the location of hard data in the post-faulting
state can be transformed to their pre-faulting location and then used to generate a
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conditional geostatistical density realization. The rest of the inversion approach would
proceed as previously described.

In terms of computation time, the approach requires upwards of hundreds of thou-
sands of forward geophysical calculations depending on the complexity of the problem
and the number of posterior models generated. In the synthetic model example, around
10,000,000 forward calculations were required to refine 2000 models using GDM, of
which 100 were accepted as posterior models. However, employing a surrogate model
to filter non-relevant models reduced the number of forward calculations to around
1,000,000. At a grid resolution of 5000 grid cells, a single gravity forward calcula-
tion takes approximately 0.13s; with parallel processing across 4 compute nodes on
a computer cluster, the total computation time was about 12 h.

Figure 17 shows a time comparison of the surrogate prediction model to the geo-
physical forward calculation at different model grid resolutions. Recall that in the
surrogate modeling approach, a model realization is transformed by PCA, and then
the objective function is predicted by the surrogate model using the PC components
as the input vector. In contrast, in the geophysical forward calculation, the model
realization is directly simulated by the geophysical forward calculation (Eq. 2) and
then the objective function is calculated (Eq. 3). For both methods, the time compari-
son is the computation time to transform 100 model realizations to distances defined
by the objective function, and assumes the surrogate model was already trained and
the PCA matrix already computed. Based on this comparison, the surrogate model
is far more computationally efficient. Furthermore, the need for the surrogate model
becomes particularly apparent at higher grid dimensions, such as for high-resolution
two-dimensional models or extending the inversion framework to three-dimensional
models.

In addition to incorporating a surrogate model to the inversion framework, there are
a variety of other ways computation time can be further reduced. Most of the GDM
optimization results show that the objective function stops decreasing after 100 to
200 iterations (Fig. 8a). This suggests that the number of GDM iterations could be
reduced by as much as 50% by implementing a smarter stopping criterion. Instead
of completing all 500 iterations, the algorithm could be halted if, for example, the
previous 50 iterations resulted in no decrease in the objective function. Another way
to improve the efficiency of the optimization algorithm is to incorporate more prior
geologic knowledge into the prior model. For instance, the approximate location of
faults may be known a priori by geologic or geophysical methods such as well data,
topographic features (Haugerud et al. 2003; Arrowsmith and Zielke 2009), and gradient
analysis of potential-field data (Phillips et al. 2007). This knowledge can be added to
the prior model of uncertainty to create a more narrowly defined prior model.

8 Conclusions
The main contribution of this paper is an extensible gravity inversion approach that
directly incorporates structural uncertainty into the inversion framework. The approach

begins by defining a prior model of uncertainty for a geologic model composed of a
structural model and a density model. The decomposition of the prior model creates
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flexibility to use different methods for the stochastic generation of faults and density.
In this paper, fault displacements are generated using rigid-body displacements, while
density realizations are created using unconditional Gaussian simulation. Depending
on the specific problem, other stochastic methods may be more suitable. Following
specification of the prior, the posterior distribution is learned by a combined approach
of Monte Carlo simulation and application of GDM to refine the best fitting models.

In order to test the performance of the inversion approach, a reference model was
synthetically created to represent an idealized normal fault-controlled basin. The ref-
erence model consisted of three normal faults with varying dip, slip, and orientation.
After specifying a prior model with large uncertainties for structure and density, 100
posterior models were generated that match the observed gravity data from the refer-
ence model. Each posterior model is guaranteed to be structurally restorable and is an
independent realization drawn from the prior, providing a far greater quantification of
uncertainty than conventional gravity inversion approaches. Following the example
using a synthetic model, the inversion approach was further validated by comparing
inversion results to a previously published gravity forward model of Dixie Valley,
Nevada.

By generating a suite of posterior models rather than a single forward model, a host
of new analysis techniques is possible to help guide exploration and understanding of
the subsurface. For example, structure characterization can be assessed probabilisti-
cally, which could be used to optimize well placement in geothermal exploration and
development. This analysis can also be extended to value of information problems in
which one quantifies the reduction of uncertainty given acquisition of additional data.
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