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Abstract This paper introduces a novel method using an adaptive functional basis for
reduced order models based on proper orthogonal decomposition (POD). The method
is intended to be applied, in particular, to hydrocarbon reservoir simulations, where a
range of varying boundary conditions must be explored. The proposed method allows
updating the POD functional basis constructed for a specific problem setting to match
varying boundary conditions, such as modified well locations and geometry, without
the necessity to recalculate each time the entire set of basis functions. This adaptive
technique leads to a significant reduction in the number of snapshots required to
calculate the new basis, and hence reduces the computational cost of the simulations.
The proposed method was applied to a two-dimensional immiscible displacement
model; the simulations were performed using a high-resolution model, a classical
POD reduced model, and a reduced model whose POD basis was adapted to varying
well locations and geometry. Numerical simulations show that the proposed approach
leads to a reduction of the required number of model snapshots by a few orders of
magnitude compared to the classical POD scheme, without noticeable loss of accuracy
of calculated fluid production rates. The adaptive POD scheme can therefore provide
a significant gain in computational efficiency for problems where multiple or iterative
simulations with varying boundary conditions are required, such as optimization of
well design or production optimization.
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1 Introduction

Fluid flow simulation in subsurface porous media is an essential process in virtually
all reservoir engineering applications. Hydrodynamic reservoir models are typically
based on a numerical solution of a systemof nonlinear partial differential equations (for
details see, e.g. Aziz and Settari 1979) that describe the evolution in time of pressure
field and fluid flow. These equations are discretized using such numerical methods as
finite volumes (Monteagudo and Firoozabadi 2004) or finite elements (Young 1981),
and are solved using IMPES (implicit pressure, explicit saturation), sequential, or fully
implicit schemes (Coats et al. 1998; Spillette et al. 1973; Jiang and Tchelepi 2019).
In order to accurately reflect the structural and physical complexities of a hydrocar-
bon reservoir, the numerical model typically contains millions of cells. Numerical
simulations based on such models are inevitably very challenging computationally.
Another factor that increases the computational complexity of reservoir models is
the non-linearity of the governing equations. Consequently, industry-grade reservoir
simulations are very resource-intensive and usually require high-performance comput-
ing hardware. A significant effort by the reservoir simulation community is aimed at
improving the computational efficiency of the simulations either through paralleliza-
tion or by algorithmic means. Despite such improvements, the computational cost and
consequently the duration of the simulation are often prohibitive for such classes of
problems as reservoir optimization and uncertainty quantification, as they typically
require thousands of runs of simulation scenarios.

This paper discusses an application of the Reduced Order Modeling (ROM)
approach to reservoir simulation problems where a range of boundary conditions
needs to be explored. A new variant of the proper orthogonal decomposition (POD)
method is introduced: it leads to a considerable decrease in the number of calculations
for each particular set of boundary conditions, and hence to a reduction of the overall
computational cost of the problem.

ROM methods and their applications to resource-intensive simulations in various
areas of science and engineering have been actively explored in recent years (e.g.
Mehta and Linares 2017; Shlizerman et al. 2012; Xiao et al. 2015; Yao et al. 2019). A
class of ROMmethods frequently applied to large-scale simulation problems is based
on POD. In these methods, POD is used to obtain a consistent representation of a
model in a functional space whose dimension is lower than that of the original model.
To that end, the model’s state variables are projected onto a lower-dimensional POD
domain, and Galerkin or least-squares Petrov–Galerkin projection is applied to obtain
a reduced system of equations (Carlberg et al. 2017).

One of the main difficulties in the realization of efficient POD-based ROMs lies in
handling the non-linearities of the model’s equations. Iterative algorithms frequently
used for solving non-linear systems of equations, such as Newton’s method, require
calculating the non-linear terms and estimating the Jacobian. To do so, one generally
needs to project the approximate solution back to the original domain and calculate
the nonlinear functional in the full-scale domain on every iteration of the algorithm.
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The cost of such full-scale non-linear functional calculation and the back-and-forth
projections may considerably offset the gains obtained from the model reduction.

Several approacheswere suggested to treat non-linearities efficiently.Chaturantabut
and Sorensen (2010) introduced the Discrete Empirical Interpolation Method (DEIM)
to treat non-linearities in POD-based ROMs governed by systems of time-dependent
partial differential equations (PDE). POD-DEIM has become one of the most widely
used ROM methods applied to reservoir simulation problems (e.g. see, Tan et al.
2019; Efendiev et al. 2016). Carlberg et al. (2011) developed the Gauss-Newton with
Approximated Tensors (GNAT) method, which also uses POD to reduce the vector of
unknowns, but in contrast to DEIM, it operates in a fully discrete domain. Jiang and
Durlofsky (2019) successfully applied the GNAT approach to complex reservoir sim-
ulations. Rewienski andWhite (2003) developed a method called trajectory piecewise
linearization (TPWL). In this method, a number of the system’s states and Jacobians
are first calculated and saved; then new simulations are obtained as a result of linear
expansions around previously saved states. This approach can also be applied in a
reduced subspace such as the one obtained through POD. A combination of POD and
TPWL (POD-TPWL) is now widely used to model subsurface flows (e.g. see, Car-
doso and Durlofsky 2010; He et al. 2011). Trehan and Durlofsky (2016) developed
an extension of TPWL called trajectory piece-wise quadratic extension procedure
(TPWQ) and combined it with POD (POD-TPWQ).

In recent years, ROM methods based on machine learning (ML) have gained pop-
ularity. Kani and Elsheikh (2017) developed a deep residual recurrent neural network
(DR-RNN) approach and applied it in Kani and Elsheikh (2018) to the modeling of
two-phase subsurface flows. They used POD to project the original problem onto a
reduced subspace and used a recurrent neural network (RNN) to model the dynamics
in the reduced space. Another group of methods uses Variational Autoencoders (VAE)
to obtain a reduced representation of the model’s states. Lee and Carlberg (2019) mod-
ified the GNAT approach and used VAE instead of POD. Temirchev et al. (2020) used
VAE combined with RNN to mimic the dynamics of subsurface flows. In Temirchev
et al. (2019), an approach called Neural Differential Equations based ROM (NDE-b-
ROM) was suggested: the authors applied the Neural Ordinary Differential Equations
method (Chen et al. 2019) to model the dynamics in the reduced latent space while
the reduced representation was obtained with the help of VAE. Fraces et al. (2020)
used feedforward neural networks to approximate derivatives in the Buckley-Leverett
problem. They exploited the transfer learning approach and Generative Adversarial
Networks to obtain an approximation of PDE solution continuous both in time and
space.

Many important reservoir engineering problems involve iterative simulationswhose
total computational cost may be particularly high. A typical example of such problems
are various optimization tasks, such as finding the optimal well locations, well geome-
tries, well completion schemes, and well control schedules. The numerical solution
of such optimization problems requires multiple simulations of essentially the same
reservoir unit with varying well parameters and schedules. Reduced reservoir models,
including POD-based ROMs, were successfully applied to well control optimization
problems (e.g. Jansen andDurlofsky 2017; Cardoso 2010; Trehan andDurlofsky 2016;
Insuasty et al. 2015; Cardoso and Durlofsky 2010; He et al. 2011). However, some
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reservoir optimization problems require simulations with varying well locations and
well geometries, in addition to well control sequences. For such problems, standard
POD-based ROMs fail to correctly reproduce the flow dynamics even after a slight
change in well location or well geometry with respect to the model used to construct
the basis. In these cases, classical POD schemes require the construction of a new POD
basis after every change in well locations or geometry. That implies re-calculating,
from scratch, a new training data set based on high-resolution model simulations with
a significant associated computational overhead.

This paper introduces a POD-based adaptive scheme that accounts for changes in
well location and well geometry at the expense of a relatively small computational
overhead. The proposed scheme requires significantly less training data compared to
what is necessary for constructing a new POD basis from scratch.

The paper proceeds as follows. In Sect. 2, the governing equations for a two-phase
immiscible displacement problem are presented together with an overview of POD-
Galerkin ROM method and its application to this problem. Section 3 describes two
different approaches for constructing the POD basis for the problems with varying
well locations and geometries. Section 4 introduces a test problem related to the
optimization of the geometry of a horizontal productionwell; the results of simulations
using full resolution and adaptive PODmodels are compared and discussed. In Sect. 5,
the advantages and shortcomings of the proposed adaptive POD scheme are discussed,
and directions for further work are suggested.

2 POD-Galerkin ROM for Two-Phase Immiscible Flow

2.1 Two-Phase Immiscible Flow

The mathematical model of a two-phase immiscible flow is obtained by combining
the system of mass conservation (continuity) equations for fluid phases (oil and water)
and Darcy’s law for each phase. The continuity equation takes the form

∂φρo,wso,w
∂t

− ∇ · (ρo,wvo,w) + qo,w = 0, (1)

where subscripts o, w denote oil and water phases respectively, φ is the porosity, ρ the
fluid density, s the fluid saturation, and v is the Darcy velocity that can be expressed
as follows

vo,w = −λo,wK∇(po,w − ρo,wgh). (2)

HereK is the absolute permeability tensor, λ = kr
μ
the phase mobility, kr is the relative

permeability of the corresponding phase, andμ is the viscosity of this phase, p the fluid
pressure, g the gravitational acceleration, h the depth, and q is the source or sink term
(Kani and Elsheikh 2018). After neglecting the capillary pressure, compressibility, and
gravitational effects, the mass conservation equation and Darcy’s law are combined
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to obtain a system of equations for pressure

∇ · Kλ∇ p = q, (3)

and for water saturation

φ
∂sw
∂t

+ ∇ · vw = qw

ρw

, (4)

where p = po = pw is the global pressure,λ = λw+λo the totalmobility, q = qw+qo
is the source or sink term. The discrete form of the model can be obtained by dividing
the domain into blocks and by applying the finite volume method to Eqs. (3) and (4).
Discretized pressure equation in matrix form can be written as

Asp = b , (5)

where A ∈ R
n×n is a coefficient matrix, sp ∈ R

n is the pressure state vector, and
b ∈ R

n is the vector of right-hand sides of corresponding equations. Each element of
the unknown vector spi represents the mean pressure value in the i-th grid block. The
saturation equation takes the form

dss
dt

+ B(v) fw(ss) = d, (6)

where ss ∈ R
n is the saturation state vector, v is the velocity field obtained from the

pressure field, B ∈ R
n×n is a coefficient matrix that depends on the velocity, fw(ss)

is the nonlinear term that depends on the saturation field, and d ∈ R
n is the vector

of right-hand sides of the equations. Equations (5) and (6) are coupled through the
dependence of matrix A on the saturation field and the dependence of the velocity v
on the pressure field. There are several ways of constructing the numerical solution of
such coupled problems. In the present work, the IMPESmethod (Fanchi 2018) is used:
at each time step, the saturation field from the previous time step is used to construct
the matrix A. The pressure equation is solved using an implicit scheme to obtain the
pressure field. The obtained pressure field is then used to calculate the velocity field v
and construct the matrix B. After that, Eq. (6) is solved explicitly, and the saturation
field is obtained.

2.2 POD-Galerkin Model

2.2.1 POD Basis

The main objective of proper orthogonal decomposition is to obtain an optimal low-
dimensional functional basis that is capable to adequately represent high-dimensional
data. Once constructed, the POD basis can be used to formulate a reduced order
model that corresponds to the original high-resolution model. POD decomposes a
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given fluctuating field into an orthonormal system of spatial modes ui(x) and the
corresponding temporal coefficients ai (t) (Kunisch and Volkwein 2003)

u′(x) =
N∑

i=1

aiui(x). (7)

The discrete variant of POD is also known as principal component analysis (PCA), and
both methods are closely related to the singular value decomposition method (SVD)
(Abdi and Williams 2010). In order to generate a set of POD modes, one needs to
construct a matrix X, in which each column represents the solution at a given instant,
such that if the model’s state is represented by n values, and the data set consists of m
model states, then X ∈ C

n×m .
The POD basis is optimal in the sense that for any given dimension of the basis r ,

the truncation error is minimal

∫

t

∫

x

(
u(x, t) −

r∑

1

ai (t)ui (x)

)2

dxdt = min
φ,b

∫

t

∫

x

(
u(x, t) −

r∑

1

bi (t)φi (x)

)2

dxdt.

(8)

In the discrete case, this equation can be written as

n∑

i=1

m∑

j=1

(
xi, j −

r∑

k=1

(uki a
k
j )

)2

= min
φ,b

n∑

i=1

m∑

j=1

(
xi, j −

r∑

k=1

(φk
i b

k
j )

)2

, (9)

where xi, j corresponds to the j-th value of the i-th system’s state, uki is the i-th value
of the k-th basis vector uk , and akj is a projection of the j-th state onto the k-th basis
vector. This representation can be obtained by factorization of the matrix X using
SVD

X = U�V∗ , (10)

where U ∈ C
n×n is the matrix of left singular vectors, V ∈ C

m×m is the matrix of
right singular vectors, � ∈ R

m×m is the singular values matrix (a diagonal matrix
with non-negative values σi on the main diagonal). In block form the factorization Eq.
(10) can be written as

X = [
u1 . . . ui . . . um

]

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

σ1
. . .

σi
. . .

σn
0 . . . . . . . . . 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎢⎢⎣

v∗
1
...

v∗
i
...

v∗
n

⎤

⎥⎥⎥⎥⎥⎥⎦
, (11)
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where ui is an n-dimensional column vector, and v∗
i is a m-dimensional row vector.

The singular matrix � is constructed such that σ1 ≥ σ2 ≥ . . . 0 (Shlizerman et al.
2012). The optimal reduced basis is obtained by taking the first r left singular vectors
ui .

To obtain a reduced POD basis for a specific problem, one needs to construct a
snapshot matrixX, which is composed of state vectors s obtained from the solution of
the full system. For two- or three-dimensional problems, the model’s states are first
flattened to vectors. These vectors called snapshots are then stacked to compose the
snapshot matrix. The reduced POD basis is obtained by applying SVD to the snapshot
matrix and keeping the first r columns of the calculated singular matrix.

2.2.2 POD-Galerkin ROM

POD-Galerkin ROM of a two-phase immiscible displacement in IMPES formulation
can be stated as follows. During the offline stage (also called the training stage), pres-
sure snapshots are recorded, and a snapshot matrixXp is constructed. Then SVD (Eq.
(10)) is applied to the snapshot matrix, and the reduced basis Ur

p = [u1 . . . ui . . . ur ]
is obtained. During the online stage, a reduced representation of the pressure equation
Eq. (5) is constructed. It can be written as

Ar srp = br , (12)

where Ar = Ur
p
�AUr

p is the projection of the equation coefficients matrix onto the

reduced subspace, srp = Ur
p
�sp, and br = Ur

p
�b are the projections of the state vector

and of the right-hand side of the equation onto the reduced subspace respectively. This
equation is solved in the reduced subspace to obtain a new reduced pressure state srp.
It is used to form a full representation of the pressure state s̃p, the velocity field ṽ, and
the coefficient matrix B̃(̃v). The saturation field s̃s is then calculated explicitly, and a
new coefficient matrix Ã is formed. This procedure is repeated for subsequent time
steps.

3 Adaptive POD-Galerkin Technique for Problems with Variable Well
Locations and Geometry

This section discusses applications of POD-Galerkin ROM to problems with varying
well locations and geometry. First, it describes a straightforward approach for con-
structing POD-basis suitable for modeling problems with well locations and geometry
varying in a certain range. This will be referred to as the universal basis approach.
In the second part of the section, a novel technique for adaptation of the existing
POD-basis to new boundary conditions, such as locations or geometry, is introduced
and its detailed workflow is described. The proposed approach leads to a significant
reduction in the number of snapshots required to build the new basis, thus reducing
the computational cost of corresponding full-scale model simulation.
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3.1 Universal POD Basis

To address optimal well placement problems, the POD-Galerkin model must be capa-
ble of simulating production scenarios with various well locations and geometries.
This universal model thus needs to capture the key spatio-temporal features of all
these scenarios. This can be achieved by generating a sufficiently long learning data
set that contains the maximum amount of information on possible modes of the model.
To generate such a data set, one needs to perform simulations with varyingwell param-
eters (locations, geometries) and record the corresponding snapshots.

One of the possible ways to achieve this is to perform a sufficiently long simulation
with random variations of parameters of interest, and use the set of collected snapshots
to build thebasis for POD-GalerkinROM.Constructed in thiswaybasiswill be referred
to as universal, since it captures a wide variety of system states. The universal basis
approach can be formulated as follows:

1. Run a full-dimensional simulation with well control and well parameters (e.g.
well geometry) randomly varying during the simulation and collect the resulting
snapshots.

2. Compose the snapshot matrix S.
3. PerformSVDofS and take the first r components (r � n, where n is the dimension

of the original model) in order to construct the reduced basis Ur.

4. Use the basis Ur to obtain the reduced POD-Galerkin model.

3.2 Adaptive POD Basis

Let us compare the universal basis approach with using the POD basis constructed for
a specific well configuration. The latter is referred to as the local basis approach. In this
approach, a series of snapshots are generated with fixed geometry and well locations,
and step-wise pressure changes with random amplitudes are applied at every timestep
at the injector wells. These snapshots are flattened and stacked into a matrix, after
which SVD is applied to that matrix, and the reduced basis is obtained. The local
basis is easy to construct since it requires simulations with a single well configuration.
However, POD-Galerkin model with such a basis is only adapted to simulations with
the particular well locations and geometry that were used to build the local basis.
To perform simulations with a different well configuration, it is necessary to build a
new basis corresponding to the new well configuration. Although using the local POD
basis constructed for a well configuration that does not match the actual simulated
well configuration yields quite poor results, this poorly matching basis still contains
some useful information about the simulated problem. This section describes a new
approach based on the utilization of this information, which allows us to update the
POD basis and adapt it to handle simulations with new well configurations.

To adapt the existing POD basis to a new model setting, one needs to update it with
additional components while keeping the information about the generic features of the
model. Let us consider a POD basis constructed for a particular well configuration and
adapt it to simulate production scenarios for a different well configuration. Building
a new local POD basis from scratch may require a considerable amount of additional
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computations, since one needs to generate a new training data set that typically consists
of thousands of simulated snapshots of the full-resolution model. Additional comput-
ing resources required to generate such training data set may entirely eliminate the
gain achieved due to POD model reduction. The new proposed approach is based on
updating the existing POD basis with several new components obtained from a lim-
ited amount of additional snapshots; this leads to accurate simulations with new well
configurations using the updated POD basis.

Let us consider a reduced POD basisUr
o constructed for a given well configuration,

and calculate a few additional snapshots corresponding to the new well location spi .
These snapshots are stacked to form the matrix Sp. The information lost during the
projection of these snapshots onto the reduced subspace defined by the basis Ur

o can
be expressed in the matrix form

Sp
res = Sp − Ur

oU
r
o
�Sp. (13)

SVD (Eq. (10)) is then applied to this residual snapshot matrix to obtain a residual
basis Ur

res = [u1 . . . ui . . . urres ]. By construction, this basis is orthogonal to Ur
o. One

can therefore use a combination of components from these bases to build an updated
basis Ũr which can be used in the POD-Galerkin method. The suggested method
complements Ur

o by several components from Ur
res to construct Ũr which can be

used in a reduced POD-Galerkin model for the new well configuration. The numerical
experiments show that the number of additional components rres does not significantly
affect the quality of simulation and usually, just one to three additional components
are enough. The analysis of the sensitivity of the simulation error with respect to the
number of additional components (rres) is presented in Sect. 4.3.3. The workflow of
the proposed method can be summarized as follows:

1. Calculate n snapshots with the new well configuration.
2. Compose the snapshot matrix Sp.
3. Calculate the residual snapshot matrix Sresp (Eq. 13).
4. Perform SVD and take the first rres components (rres � r ; usually 1-3 additional

components are enough) to obtain the reduced basis for the residual snapshots
Ur
res .

5. Update the existing POD basis Ur
o by adding the components of Ur

res to obtain Ũr

(Ũr = [
Ur
o Ur

res

]
).

6. Use Ũr to formulate the updated reduced POD-Galerkin model.

4 Numerical Validation and Sensitivity Analysis of Adaptive
POD-Galerkin Technique

4.1 Test Problem Setup

Let us consider a simplified production optimization problem in which one needs
to optimize the orientation (azimuth) of a horizontal producing section of a well. A
two-dimensional immiscible displacement problem in a square domain of the size
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(a) (b)

Fig. 1 a Porosity field, b permeability field of the model; blue dots in the corners indicate the positions of
injector wells, green line shows the location of the producer

1,000 × 1,000 m is considered, and the domain is divided into 40 × 40 square cells.
Heterogeneous porosity and permeability fields are generated numerically to mimic a
high permeability fluvial channel crossing a less permeable formation (Fig. 1).

In the corners of the square area, four injector wells are placed that inject water
with controlled injection pressure. The oil that initially saturates themodel is displaced
toward the center of the simulation area where fluids are recovered by a 150-m long
horizontal producer (Fig. 1).

4.2 Numerical Tests of POD-Galerkin ROM with Universal Basis

To test the ROM with the universal basis, it first needed to be built. This was done by
running a simulation in which the orientation (azimuth) of the horizontal producer was
randomly changed at regular time intervals. The injection pressure at each injection
well was also varied randomly during that part of the simulation. All the pressure
fields obtained from this simulation were flattened into vectors and stacked together
to form a snapshot matrix where each column represents a specific pressure field state.
Singular value decomposition was performed on this matrix (Eq. (10)), and the first r
columns of the resulting left singular matrix U were taken to obtain the reduced POD
basis. In Fig. 2, the first 12 components of the reduced basis are shown. This basis was
further used to formulate the reduced problem (Eq. (12)).

Figures 3 and 4 show the simulated fluid production rates for two particular producer
orientations (63 and 175 degrees clockwise from the horizontal axis).

One can observe that in both cases the production curves simulated by the reduced
model demonstrate a very close match with the solutions obtained by the full model.
However, to achieve such accuracy, a relatively large number of components (80-100)
must be kept in the reduced basis due to the complex structure of the solutions used
in the construction of the POD basis. Figure 5 presents the results of modeling the
production rates with a variable number of the reduced basis components.
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Fig. 2 The first 12 principal components of the universal POD basis

Root relative squared errors (RRSE) (Eq. (14)) were calculated for the deviation of
the solutions obtained with a variable number of the reduced basis components with
respect to the full model solution. RRSE is designed to be relative to an error of a
simple predictor (constant mean value) (Witten and Frank 2011).

E =
√∑n

i=1(q̂i − qi )2∑n
i=1(qi − qi )2

, (14)

where q̂—production rate calculated by ROM, q—reference production rate (from
full-scale model), q—mean value of reference production rate. Errors were calculated
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(a) (b)

Fig. 3 Simulation of the fluid production of the well oriented 63 degrees clockwise from the horizontal
axis. a Production rates, b well placement scheme

(a) (b)

Fig. 4 Simulation with the producer oriented 175 degrees clockwise from the horizontal axis a production
rates, b well placement scheme

separately for oil andwater rates. RRSE for oil andwater production rates as a function
of the number of the POD basis components are shown in Fig. 6.

One can observe that a POD basis containing at least 80 components should be
used to simulate the production rates with acceptable accuracy.

4.3 Numerical Tests of POD-Galerkin ROM with Adaptive Basis

4.3.1 Adaptive POD-Bases for Models with Variations of Horizontal Well Direction
(Azimuth)

To assess the simulation accuracy using the proposed adaptive technique, one needs
to first construct a local basis for some specific well configuration. In our case, a
simulation with the producing well oriented 63 degrees clockwise from the horizontal
axis was performed. The resulting snapshots were stacked in a matrix. This snapshot
matrix was decomposed using SVD (Eq. (10)). The first r columns of the left singular
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(a) (b)

(c) (d)

Fig. 5 Production rates simulated using a variable number of components of the reduced basis. a 20
components, b 40 components, c 100 components, d 120 components

Fig. 6 Root relative squared
error of the simulated fluid
production rates as a function of
number of the POD basis
components

matrix U were taken to form the reduced basis Ur . In Fig. 7, the first 12 principal
components of this local POD basis are shown.

Figure 8 shows the simulated production rates for the same well configuration
obtained using a variable number of components of the local POD basis.

One can observe that a similar accuracy of the simulations is achieved with fewer
components of the local POD basis compared to the case of the universal POD basis.
For example, simulations with 20 components of the local POD basis (Fig. 8b) give
practically the same accuracy as thosewith 100 components of the universal PODbasis
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Fig. 7 The first 12 principal components of the local POD basis

(Fig. 5c), at a significantly lower computational cost. Another advantage of the local
basis is that it is much easier to construct since it requires significantly fewer snapshots
than the universal basis. However, POD-Galerkin model with a local basis is only
capable of simulating scenarios with one specific well location and geometry, and to
simulate a newwell configuration, it is necessary to build a new basis corresponding to
that configuration. Figure 9 presents simulated production rates for a well oriented 175
degrees obtained with the POD basis constructed for a mismatching well orientation
(63 degrees clockwise from the horizontal axis) and with a variable number of the
basis components.
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(a) (b)

(c) (d)

Fig. 8 Production rates simulated using the local POD basis with a variable number of components. a 10
components, b 20 components, c 30 components, d 35 components

One can observe that in this case, the simulated production curves do not match
the full model solution, and the accuracy of the ROM simulation remains poor even
when using up to 200 POD basis components.

To make the local POD basis applicable to the problems with new well configu-
rations, the basis adaptation procedure described in Sect. 3.2 was applied. To obtain
the snapshots required for basis adaptation, a simulation was performed with a new
well configuration (horizontal producer well is oriented 175 degrees clockwise to
horizontal axis) and with randomized well controls, and 10 snapshots were recorded
corresponding to the first 10 changes in borehole pressure schedule. The simulation
was performed with the same time step as in the original scenario. As a reminder,
constructing a new POD basis for that problem from scratch would require generating
about a thousand full-model snapshots.

The snapshot matrix Sp is then composed, and the residual snapshot matrix Spres is
obtainedusingEq. (13).As an illustration, Fig. 10 showsoneof such snapshots together
with the corresponding reduced snapshot (Ur

oU
r
o
�spi ) and the residual snapshot (spi −

Ur
oU

r
o
�spi ).

SVD is then performed on the residual snapshot matrix, and the additional compo-
nents are obtained. The first 12 of the obtained additional components are presented
in the Fig. 11.
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(a) (b)

(c) (d)

Fig. 9 Simulated production rates of the well oriented 175 degrees clockwise from the horizontal axis
using the local POD basis constructed for a mismatching producer orientation (63 degrees) and a variable
number of components of the reduced basis: a 20 components, b 40 components, c 100 components, d 200
components

(a) (b) (c)

Fig. 10 a Original snapshot (spi ), b reduced snapshot (Ur
oU

r
o
�spi ), c residual snapshot (sp

res
i )

Since only 10 additional snapshots were used, most of the higher-order residual
components are quite noisy and contain little structural information about the model.
Consequently, only the first three residual components are used to build the updated
basis Ũr by adding them to the original basis Ur

o(which consists of 30 components).
One can then use the updated basis to formulate the POD-Galerkin problem for the
new well configuration. The simulated production rates obtained for the new well
configuration with the updated POD basis are shown in Fig. 12.
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Fig. 11 The first 12 principal components of the residual snapshot matrix decomposition (Ur
res )

(a) (b) (c)

Fig. 12 Simulated fluid production rates: a using the local basis for a mismatching well orientation; b
using the POD basis constructed from 10 additional snapshots; c using the adaptive POD basis
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(a) (b)

(c) (d)

Fig. 13 Production rates simulated using POD-Galerkinmodelswith local basis constructed fromavariable
number of snapshots: a 10 snapshots; b 100 snapshots; c 500 snapshots; d 1000 snapshots

One can observe that the proposed method of the local basis adaptation signifi-
cantly increases the accuracy of the simulations. Figure 12b shows the results of the
production rates simulation using the local basis with 33 components (the same num-
ber as in the adaptive basis) built using the same 10 additional snapshots. One can
conclude from these results that 10 additional snapshots of the model are not suffi-
cient to construct a new basis without using the information contained in the original
basis. However, the adaptive POD basis scheme with the same 10 additional snapshots
provides quite a satisfactory result.

To estimate the number of snapshots required to build the local basis from scratch,
several simulations were performed with POD-Galerkin models using bases con-
structed from a variable number of snapshots. The corresponding simulated production
rates are shown in Fig. 13.

One can observe that to construct a proper local basis, approximately 1000 snap-
shots are required, in contrast with just about 10 additional snapshots needed for the
adaptation of the existing basis.
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Fig. 14 Well placement
scheme: blue circles represent
the injector wells; the green line
represents the original position
of the producer; the red line
represents the new position of
the producer

(a) (b)

Fig. 15 Simulated fluid production rates: a the original POD basis, b the adaptive POD basis constructed
using 50 new snapshots and 1 additional component

4.3.2 Adaptive POD-Bases for Models with Variations of Well Location and Well
Length

To further test the applicability of the proposed technique to problems with changing
well configurations, it was used to build the adaptive bases for models with varying
well location and well length. Figure 14 shows the well location for which the original
POD basis was constructed, as well as the new location for which the adaptation of
the original basis is performed.

Figure 15 presents a comparison of the simulated fluid production rates for the
new producer location for models using the original POD basis and the adaptive
POD basis. The basis adaptation was performed the same way as in changing the well
orientation. The simulation with the newwell location is performed and first snapshots
are recorded.

Figure 16 shows a well placement scheme with a variable length of the producing
section.

Figure 17 presents a comparison of the simulated fluid production rates for this
model obtained with the original POD basis and with the adaptive POD basis.
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(a) (b)

Fig. 16 aWell placement scheme. Blue circles represent the injectorwells; the green line shows the original
position and length of the producer; the red line indicates the new length of the producer. b zoomed-in part
of the model with the producer well

(a) (b)

Fig. 17 Simulated fluid production rates: a the original POD basis, b the adaptive POD basis constructed
using 50 new snapshots and 1 additional component

One can see that the proposed approach allows adapting the existing ROM to a
wide range of new well configurations, including varying well orientations, length,
and position, at the expense of a relatively small number of additional snapshots.
In contrast, if one tries to build a universal POD-based ROM capable of accurately
simulating production rates for models with variable well positions and geometries,
a set of snapshots is required that scales exponentially with the number of varying
parameters (well orientation, well length, etc.). In statistics and ML applications this
problem is known as the curse of dimensionality (Bishop 2006). Another problem is
the increasing complexity of the snapshot space that would in turn lead to a significant
increase in the number of POD basis components required for adequate simulation
accuracy and stability. That makes the universal POD-basis approach impractical for
problems with multiple optimization parameters.
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(a) (b)

(c) (d)

Fig. 18 Simulated fluid production rates for the model with a modified length of the producer, obtained
with the adaptive POD basis using a variable number of snapshots: a 10 snapshots, b 30 snapshots, c 50
snapshots, d 100 snapshots

4.3.3 Analysis of Sensitivity to the Number of Additional Snapshots and
Complementary Basis Components

In order to estimate the impact of the number of additional snapshots used in the
adaptive POD basis on the accuracy of the flow rate simulations, several variants of
the model with a modified length of the producer (Fig. 16) and a specific number
of additional snapshots for each of the variants were simulated. The results of these
simulations are presented in Fig. 18.

Deviations of the simulated fluid production rates with respect to the full model
were calculated for themodels with the adaptive PODbasis constructedwith a variable
number of additional snapshots. The corresponding RRSE graphs are presented in Fig.
19.

Not surprisingly, increasing the number of additional snapshots initially improves
the accuracy of the flow rate simulations. However, using more than 30–50 additional
snapshots does not lead to a further improvement of the accuracy.

In Fig. 20, the simulated fluid production rates are shown for models built with the
adaptive POD basis with a variable number of additional components. In all the pre-
sented cases, the POD basis adaptation was performed using 50 additional snapshots.

Deviations of the simulated fluid production rates with respect to the full model
were calculated for the cases with the adaptive POD basis constructed with a variable
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Fig. 19 Root relative squared
error of simulated fluid
production rates with respect to
the full model as a function of
the number of additional
snapshots used in the
construction of the adaptive
POD basis

(a) (b)

(c) (d)

Fig. 20 Simulated fluid production rates for models with the adaptive POD basis with a variable number
of additional components: a 1 component, b 3 components, c 5 components, d 10 components

number of additional components. The corresponding RRSE graphs are presented in
Fig. 21.

One can observe that the influence of the number of additional components of the
adaptive basis on the production rate simulations is relatively small, and typically 1–3
additional components are sufficient for a satisfactory basis adaptation.
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Fig. 21 Root relative squared
error of simulated fluid
production rates with respect to
the full model as a function of
the number of additional
components of the adaptive
POD basis

5 Conclusions and Future Work

In thiswork, separate approaches for efficient use of POD-GalerkinROMs for reservoir
simulation were explored for several problems in which variations of the boundary
conditions, such as well location and geometry, are essential. In the universal basis
approach, a training data set is generated that contains snapshots of the solutions
corresponding to all of the considered well geometries. This approach allows using
the same POD basis for simulating scenarios with various well geometries. However,
that comes at the expense of a relatively large number of the universal POD basis
components required to obtain a reasonable accuracy of the simulations. Another
drawback of this approach is the necessity to generate a very large training data set
to reflect the entire range of possible scenarios. The universal basis approach may be
suitable in cases where a relatively small range of possible well geometries needs to
be explored.

The new approach introduced in this work is based on the adaptation of the POD
basis to variable well configurations. This approach enables using the POD basis
constructed for a specific model configuration to simulate a different problem setup.
Such an adaptation of the POD basis is achieved at a relatively low computational cost
by updating the basis with a few additional components obtained from the snapshots
of the new model configuration. It was found that the number of such additional
snapshots is substantially smaller than the one required for building a new POD basis
from scratch. The new adaptive method was validated on several test cases; a POD-
Galerkin ROM was used to simulate immiscible oil displacement by water injection
in various settings of a synthetic reservoir model in which a horizontal producer had
variable location, length, and orientation.

In the present work, the adaptive POD reduction technique was only applied to
the pressure field. An extension of the proposed adaptive approach that includes the
reduction of the saturation-related variables is in the scope of our future work. Another
envisaged direction of studies is the application of the adaptive POD approach to
address reservoir optimization problems, such as finding the optimal well design, well
completion, and hydraulic fracturing schemes.
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