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Abstract Spatial data mining helps to find hidden but potentially informative pat-
terns from large and high-dimensional geoscience data. Non-spatial learners gener-
ally look at the observations based on their relationships in the feature space, which 
means that they cannot consider spatial relationships between regionalised variables. 
This study introduces a novel spatial random forests technique based on higher-order 
spatial statistics for analysis and modelling of spatial data. Unlike the classical ran-
dom forests algorithm that uses pixelwise spectral information as predictors, the 
proposed spatial random forests algorithm uses the local spatial-spectral information 
(i.e., vectorised spatial patterns) to learn intrinsic heterogeneity, spatial dependen-
cies, and complex spatial patterns. Algorithms for supervised (i.e., regression and 
classification) and unsupervised (i.e., dimension reduction and clustering) learning 
are presented. Approaches to deal with big data, multi-resolution data, and miss-
ing values are discussed. The superior performance and usefulness of the proposed 
algorithm over the classical random forests method are illustrated via synthetic and 
real cases, where the remotely sensed geophysical covariates in North West Min-
erals Province of Queensland, Australia, are used as input spatial data for geology 
mapping, geochemical prediction, and process discovery analysis.
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1 Introduction

Spatial data mining reveals hidden and previously unknown but potentially informa-
tive patterns from big and high-dimensional geoscience data. It takes advantage of 
the ever-growing availability of geographically referenced data and their potential 
abundance (Sellars 2018). Many geomatic applications benefit from spatial data 
mining in several stages, including data collection, data storage, exploratory data 
analysis, data processing, prediction, and uncertainty quantification. For instance, 
spatial data mining techniques can be used for splitting the study area to account 
for different behaviours of natural phenomena, which is useful for discovering earth 
processes and simplifying subsequent modelling steps (Rolnick et al. 2019). How-
ever, understanding the particularities of geosystems and geoscience data is critical 
for obtaining accurate and physically consistent inferences and predictions via data 
mining approaches (Reichstein et al. 2019; Talebi et al. 2020).

Geoscience processes vary significantly through time and space. Such hetero-
geneity and non-stationarity are related to the spatial and/or temporal variation of 
soil types, rock types, land uses, vegetation types, climatic conditions, and tec-
tonic activities. Geographical observations that are located close to each other in 
space and time tend to share similar characteristics. This phenomenon is known as 
auto-correlation and provides additional information to inform statistical models 
(Matheron 1962; Cliff and Ord 1973). Remotely sensed data are examples of earth 
observations that show spatial and/or temporal auto- and cross-correlations. Gener-
ally, pixels that are located close to each other in satellite images are more likely to 
have similar values compared to those that are spaced further apart (Woodcock et al. 
1988). Traditional data mining algorithms treat observations as independent values 
(i.e., independent and identically distributed data) and exclude useful information 
from the analysis by disregarding space and time dependencies. Consequently, pre-
dictions and inferences from non-spatial learners can be misleading when applied to 
geoscience data (Reichstein et al. 2019; Bergen et al. 2019; Karpatne et al. 2019).

Spatial data mining techniques should be able to capture multivariate spatial and/
or temporal patterns of different scales and types. Either current machine learning 
(ML) algorithms can be amended to be consistent with the nature of geoscience data 
or new algorithms need to be developed (Karpatne et al. 2019; Talebi et al. 2020). 
Among the statistical learners, tree-based techniques are very useful for geoscience 
data analysis and modelling due to their transparency, simplicity of implementation, 
ability to capture non-linear relationships, and ability to handle big and high-dimen-
sional data, mixed data, and missing values (Kuhn and Johnson 2013). The tree-
based learners can be improved further by considering the heterogeneity and spatial 
dependency of geoscience data.

Hengl et al. (2018) showed that adding covariates such as Euclidean buffer dis-
tances to observations to a random forests (RF) model produces estimates as accu-
rate and unbiased as those from the common geostatistical method, kriging. Liu 
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et al. (2018) used a combination of RF and regression kriging to measure particu-
late matter concentration derived from remotely sensed and ground observations. In 
their proposed methodology, a non-linear trend between the dependent variable and 
covariates is predicted by RF. Subsequently, kriging is used to estimate residuals of 
the predicted trend (Hengl et al. 2015). Meyer et al. (2019) argued that the nonspa-
tial validation procedures based on the random sampling of a dataset (e.g., k-fold 
cross-validation and bootstrapping) are inappropriate for learning from spatial data. 
Nonspatial sampling results in over-optimistic predictive models (caused by the spa-
tial correlations) that can predict the input training data accurately but have marginal 
performance in terms of extrapolation (i.e., predicting patterns that have not been 
seen during the training process). Moreover, using geolocation variables such as lat-
itude and longitude may generate several artefacts in the final predicted maps. Talebi 
et al. (2019) introduced a new method for spatial uncertainty quantification of geo-
science data based on a combination of geostatistical simulation and random forests 
predictive models. Approaches to deal with compositional data were also discussed. 
Georganos et al. (2019) introduced a locally varying RF predictive model and con-
cluded that the performance of the technique can be improved when an appropriate 
spatial scale is selected. Finally, Mitchell and Sheppard (2019), inspired by convo-
lutional neural networks, demonstrated how the performance of the RF algorithm 
for recognising spatial patterns can be improved by introducing a local spatial bias 
during the learning process.

The previously mentioned possibilities to improve the spatial awareness of the 
tree-based learners are not suitable for recognising complex spatial patterns, objects, 
and structures of different scales and their spatial distributions across the domain of 
study. Most of these techniques only use the information available at single points 
or rely on two-point geostatistics (e.g., variogram models and kriging techniques) 
to capture spatial dependency. Considering only two points or pixels is not suffi-
cient for capturing complex spatial patterns. Multiple point geostatistics were devel-
oped to address this limitation by considering more than two points simultaneously 
(Mariethoz and Caers 2015). In addition, approaches for accurately handling multi-
resolution spatial data and missing values must be improved further.

The objective of this study is to develop a spatial random forests (SRF) technique 
based on nonparametric higher-order spatial statistics for spatial data analysis and 
modelling. The proposed model can be applied to the high-dimensional and nonlin-
ear phenomenon with a small number of observations and multi-resolution predic-
tors of mixed type (e.g., continuous and categorical). In the proposed technique, the 
dimension of input data is increased to capture local information and to learn intrin-
sic heterogeneity, spatial dependencies, and complex spatial patterns. Compared 
with the previous attempts to improve the spatial awareness of tree-based learn-
ers, the proposed technique can be considered as a truly spatial predictive model. 
Approaches to handle big data, multi-resolution data, and missing values are dis-
cussed. Algorithms for supervised (i.e., regression and classification) and unsuper-
vised (i.e., dimension reduction and clustering) learning are presented.

The following sections discuss the basics of the proposed methodology and pro-
vide the implementation details of the SRF model. To demonstrate the applicabil-
ity of the proposed technique, extensive use of one synthetic and one real dataset 
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is made. The objective of the synthetic case is to identify complex spatial patterns 
using unsupervised SRF, while the focus of the real case is to reproduce the inter-
preted geological map and to predict the geochemistry of the formations in the North 
West Minerals Province (NWMP) of Queensland, Australia. The paper is concluded 
with a short review of the pros and cons of the proposed technique and recommen-
dations for future research.

2  Methodology

The methodology is based on the classical binary recursive partitioning tree (Brei-
man et al. 1984) and the classical random forests algorithm (Breiman 2001). In the 
following subsections, the classical decision tree and random forests algorithm are 
extended to account for the complex spatial dependencies of regionalised variables. 
The local spatial-spectral information is captured by extracting and vectorising mul-
tivariate spatial patterns. Such local information is used to learn intrinsic heteroge-
neity, spatial dependencies, and complex spatial patterns during the training process 
of regressors and classifiers. Approaches to account for multi-resolution data and 
missing values are discussed. Finally, a novel approach to generate synthetic multi-
variate spatial patterns is proposed for unsupervised modelling of spatial data.

2.1  vectorised Spatial Patterns

Supervised and unsupervised learning models are trained using a set of N observa-
tions at locations ui i = {1, ... N} (Fig. 1(a)). These observations can be multivari-
ate (e.g., of dimension R) and mixed (e.g., continuous and categorical, Fig. 1(b) to 
(d)). It is assumed that the observations are located on regular grids. Non-gridded 
observations should first be migrated to the closest nodes of a regular grid of suit-
able resolution or be rasterised using geostatistical techniques. For each location ui 
and regionalised variable xr(u) , r = {1,… ,R} , a local spatial pattern is extracted 
and stored as a vector patr

(
ui
)
=
[
xr
(
ui1

)
,… , xr

(
uiEr

)]
 which consists of the values 

of the rth variable at Er nodes around the location ui . The parameter Er controls the 
order of spatial statistics (i.e., number of nodes in the extracted pattern) for each 
regionalised variable. The univariate spatial patterns can have different shapes and 
scales. In this illustration, the spatial patterns have square shapes with different sizes 
and numbers of nodes (Fig. 1(e)). To store square patterns as patr(ui) vectors, they 
are stored pixel by pixel from left to right and row by row downward. The overall 
multivariate spatial pattern (Fig. 1(e)) for each location ui is stored as a long vec-
tor pat(ui) =

[
pat1

(
ui
)
,… , patR(ui)

]
 . The total number of predictors is P =

∑R

r=1
Er . 

To make the technique invariant in terms of rotation, scaling, and distortion, the 
transformed patterns should be learned during the training process. For instance, 
the rotated multivariate patterns, rot(pat

(
ui
)
) , can be added to the information about 

location ui to be used later during the training process. In the proposed method, 
only a simplified version of rotation invariance is used by rotating multivariate pat-
terns through angles of 90 degrees, which quadruples the number of observations N 
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(Fig. 1(f)). To train a supervised spatial model (i.e., classification and regression), 
the response values y

(
u1
)
,… , y

(
uN

)
 must be stored with the predictors. The final 

training dataset D =
{(

pat
(
u1
)
, y
(
u1
))
,… ,

(
pat

(
uN

)
, y
(
uN

))}
 will be used to train 

the SRF model.

2.2  Spatial Decision Trees

A spatial tree partitions the predictor space via a sequence of binary splits on indi-
vidual predictors xp(u), p = {1,… ,P} . The root node of the tree comprises the 
entire vectorised multivariate patterns pat(ui), i = {1,… ,N} . The final partitions of 
the predictor space are associated with the terminal nodes (i.e., the nodes that are 
not split). The internal nodes are split into two descendant nodes (i.e., right and left 
nodes) according to the value of one of the predictors. If a predictor is continuous, 
a split is determined by a cut-off value; multivariate patterns with the selected pre-
dictor smaller than the cut-off go to the left, the remainder go to the right (Fig. 2). 
Similarly, for a categorical predictor with finite levels Si , a binary split is obtained 
by defining a subset of levels S ⊂ Si.

A splitting criterion must be defined to find the best predictor and the best split. 
For a continuous response variable with values y

(
u1
)
,… , y

(
un
)
 at the node to be 

split, the mean of the squared residuals is typically used as the splitting criterion

Fig. 1  Preprocessing the input spatial data, a prediction grid, b categorical variable, c high-resolution 
continuous variable, d low-resolution continuous variable, e extracted multivariate pattern for location ui, 
e rotated patterns for invariant training, and g the proposed process for generating synthetic patterns for 
unsupervised learning
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where y = 1

n

∑n

i=1
y
�
ui
�
 is the local mean of the response variable and n is the num-

ber of patterns at the node to be split. For a categorical response variable with K 
levels, a typical splitting criterion is the Gini impurity index

where p̂k =
1

n

∑n

i=1
I
�
y
�
ui
�
= k

�
 is the proportion of class k in the node to be 

split, and I
(
y
(
ui
)
= k

)
= 1 if y

(
ui
)
= k and 0 otherwise. The splitting criteria for 

left and right descendent nodes, QL and QR , and the associated sample sizes, nL 
and nR , are calculated for each split candidate. The best split is that which mini-
mises Qsplit = nLQL + nRQR . The splitting process continues until a stopping cri-
terion is met. For instance, the recursive splitting stops when the sample size of 
the node is less than a predefined threshold. Predicted values of the response vari-
able at the terminal nodes are given by ĥ(x(u)) = 1

n

∑n

i=1
y
�
ui
�
 for regression and 

ĥ(x(u)) = argmaxy(u)
∑n

i=1
I
�
y
�
ui
�
= y(u)

�
 for classification. The predictors xp(u) , 

p = {1,… ,P} , of a new multivariate pattern pat(u) are used to determine a terminal 
node, and ĥ(x(u)) is used as the prediction.

(1)Q =
1

n

n∑

i=1

(
y
(
ui
)
− y

)2
,

(2)Q = 1 −

K∑

k=1

p̂2
k
,

Fig. 2  Spatial decision tree for learning multivariate spatial patterns
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2.3  Spatial Random Forests

The SRF model uses the proposed spatial trees as the base learners. Using the input 
data D =

{(
pat

(
u1
)
, y
(
u1
))
,… ,

(
pat

(
uN

)
, y
(
uN

))}
 , the base learners 

ĥj
(
x(u), �j,Dj

)
 , j = 1,… , J , are trained to learn the input multivariate spatial patterns. 

The random component �j is used to inject randomness to the base learners by fitting 
each spatial tree to an independent bootstrap sample (i.e., Dj ) of D and finding the best 
split over m randomly selected predictors. Sampling the predictors for node splitting is 
particularly relevant in the case of high-dimensional data, where data consist of a very 
large number of predictors compared to the small number of observations. The SRF 
prediction for a new multivariate pattern pat(u) is given by f̂ (x(u)) = 1

J

∑J

j=1
ĥj(x(u)) 

for regression and f̂ (x(u)) = argmaxy(u)
∑J

j=1
I
�
ĥj(x(u)) = y(u)

�
 for classification. In 

the case of classification, instead of the abstract class prediction based on majority vot-
ing for a pat(u) , one can look at the fractions of the total number of trees pk(u) which 
vote for each class k , k = {1,… ,K} . These predicted fractions can be used to calculate 
the local entropy (Shannon 1948; Goovaerts 1997) as a measure of local uncertainty

where H(u) ∈ [0, 1] . Locations where the entropy is close to 1 have high uncertainty, 
and the entropy is greatest when all fractions pk(u) are equal.

For each bootstrap sample Dj and tree predictionĥj(x(u)) , some patterns pat
(
ui
)
 do 

not make it into the sample. These remaining patterns are called out-of-bag (OOB) and 
can be used to estimate the generalisation error of the SRF model and to measure pre-
dictor importance. For each patternpat

(
ui
)
,i = 1,… ,N , a prediction of the response 

variable is obtained using the Ji spatial trees for which pat
(
ui
)
 is 

OOB,di =
{
j ∶

(
pat

(
ui
)
, y
(
ui
))

∉ Dj

}
 . The OOB predictions are given by 

f̂OOB(x(u)) =
1

Ji

∑
j∈di

ĥj(x(u)) for regression and 

f̂OOB(x(u)) = argmaxy(u)
∑

j∈di
I
�
ĥj(x(u)) = y(u)

�
 for classification. The generalisation 

error for a regression model is typically estimated via the out-of-bag mean squared 
error

Similarly, the generalisation error for a classification model is estimated using the 
OOB error rate

(3)H(u) = −
1

ln(K)

∑K

k=1
pk(u).

[
ln
(
pk(u)

)]
,

(4)MSEOOB =
1

N

N∑

i=1

(
y
(
ui
)
− f̂OOB

(
x
(
ui
)))2

.

(5)EOOB =
1

N

N∑

i=1

I
(
y
(
ui
)
≠ f̂OOB

(
x
(
ui
)))

.
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The strategies used for tuning the hyperparameters of a classical RF model 
(Probst et al. 2019) can also be implemented for the proposed SRF model. However, 
due to the underlying structure of the SRF model that increases the dimension of 
the input data to capture spatial patterns, automated hyperparameter optimisation is 
computationally demanding.

Measuring the importance of predictors is useful for variable selection and for 
interpreting the SRF model. For the input patterns pat

(
ui
)
 , i = 1,… ,N , the OOB 

predictions f̂OOB(x(u)) are obtained. The values of a predictor of interest xp(u) are 
randomly permuted in the OOB patterns and the OOB predictions are recalcu-
lated. The difference between the error rates (classification) or mean squared errors 
(regression) of the predictions obtained from the original OOB patterns and those 
obtained using the permuted data gives a measure of importance for the predictor 
xp(u) . The same procedure is used to measure the importance of other predictors. 
The predictor importance estimates the increase of error rate or mean square error of 
a predictive model on a test set when values of a predictor of interest are randomly 
permuted. The spatial approach to measure predictor importance not only ranks the 
predictors but also measures the zone of influence for each regionalised variable 
xr(u) , r = {1,… ,R} . The zone of influence for a regionalised variable xr(u) shows 
the importance of local information at Er nodes surrounding a central node ui . The 
zone of influence can be used to assess the anisotropic behaviour and scale of the 
spatial patterns and structures. The provided information regarding the significance 
of the Er surrounding nodes can be used to define the structure or geometry of data 
events in multiple point geostatistics and also to assess training images (Mariethoz 
and Caers 2015).

Missing data occur frequently and require appropriate handling. For instance, the 
spatial patterns at the margins of a study area may contain many missing values. In 
the proposed algorithm, missing data imputation is conducted temporarily at each 
splitting node. To assess the splitting criterion for a predictor xp(u) , the existent 
missing values are imputed by sampling from the known in-bag values at the node 
to be split. The imputed values are only used to assign the patterns with missing val-
ues to the left or right descendent nodes. The imputed values are removed from the 
descendent nodes after splitting (Ishwaran et al. 2008).

2.4  Unsupervised Learning

Geoscience data typically hold informative statistical and spatial patterns. Conse-
quently, such statistical and spatial patterns should be distinguishable from a randomly 
generated version of themselves. A synthetic set of multivariate patterns is gener-
ated by introducing two steps of randomisation. First, for each regionalised variable 
xr(u) , r = {1,… ,R} , the N univariate patterns patr

(
ui
)
 are randomly sampled (with-

out replacement). Then, the Er nodes of each sampled pattern patr
(
ui
)
 are permuted 

(Fig. 1(g)). The random sampling of the univariate patterns removes the spatial cross-
correlations while the permutation of the Er locations removes the remaining auto-cor-
relations in the synthetic patterns. The synthetic pattern for each location ui is stored as 
a long vector pat∗

(
ui
)
=
[
pat∗

1

(
ui
)
,… , pat∗

R
(ui)

]
 . The final dataset for unsupervised 
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learning is constructed by concatenating the synthetic vectorised multivariate patterns 
below the original ones and consists of 2 × N rows of vectorised multivariate patterns 
and P columns of predictors. A binary SRF classifier (introduced in Sect. 2.3) is trained 
to discriminate the original multivariate patterns from the synthetic ones. An OOB 
error rate lower than 50\% indicates the presence of coherent statistical and spatial pat-
terns in the input spatial data and the capability of the SRF model to capture those pat-
terns accurately.

The N patterns pat
(
ui
)
 are modelled by each spatial tree, and if a pair of multivari-

ate patterns, pat
(
ui
)
 and pat

(
uj
)
 , i, j, (1, 2, …, N), ends in the same terminal node, their 

proximity is increased by 1. The proximities are averaged over J trees in the SRF clas-
sifier to generate the spatially aware N × N proximity matrix. The principle is that any 
two similar multivariate spatial patterns will follow the same paths in different spatial 
decision trees. The proximity between two patterns is a measure of how close together 
they are in spatial predictor space, but it automatically gives more weight to important 
spatial predictors that are useful for identifying the underlying statistical and spatial 
structures of geoscience data. The proximities between multivariate patterns are real 
numbers bounded between 0 and 1. By subtracting 1 from the proximities, a positive 
semi-definite dissimilarity matrix D is constructed that can be used for unsupervised 
analysis.

To understand various patterns and spatial structures in the study area, the spatially 
aware dissimilarity matrix D is used to perform a classical multidimensional scaling 
(MDS) and to obtain a simplified two- or three-dimensional plot (Mead 1992). Each 
point on such a plot represents one of the multivariate patterns pat

(
ui
)
 , and the dis-

tances between the points reproduce, as closely as possible, the proximity-based dis-
tances in D . Several subgroups of patterns or outlier patterns (e.g., gold mineralisation) 
are easily captured from the MDS plots. The spatially aware dissimilarity matrix D can 
also be used to cluster the geoscience data and define the underlying natural domains. 
In this study, the partitioning around medoids technique (Kaufman and Rousseeuw 
1990) is used for this purpose.

Several techniques can be used to assess the quality of clustering and to select the 
optimum number of clusters (Kassambara 2017). In this study, the silhouette width is 
used to assess the performance of the proposed unsupervised SRF. For each location ui , 
the silhouette width is calculated as

where a
�
ui
�
=

1

�Cp�−1
∑

uj∈Cp,i≠j
d
�
pat

�
ui
�
, pat

�
uj
��

 is the average distance between 

the multivariate pattern located at ui and all other patterns at locations uj of the clus-
ter Cp to which ui belongs. The smaller the value of a

(
ui
)
 , the better the assignment 

of location ui to a cluster Cp . The parameter 
b(ui) = minq∈(1,2,…,M) and q≠p

�
1

�Cq�
∑

uj∈Cq
d
�
pat

�
ui
�
, pat

�
uj
���

 is the minimum of 

the average distances between the pattern at location ui , and all patterns at locations 

(6)S
(
ui
)
=

b
(
ui
)
− a

(
ui
)

max
(
a
(
ui
)
, b
(
ui
)) ,
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uj belong to the other clusters in which ui is not a member. This parameter can be 
seen as the distance between the location ui and the closest cluster to which ui does 
not belong. These parameters can be easily calculated from the spatially aware dis-
similarity matrix D . Locations with a S

(
ui
)
 close to 1 are well clustered. As S

(
ui
)
 

approaches −1, the location ui is probably in the wrong cluster. Finally, S
(
ui
)
 close 

to 0 means that the location ui is between two clusters. The silhouette width can be 
averaged over the study area A for different numbers of clusters M . The optimal 
number of clusters is the one that maximises this average.

In the case of large datasets such as high-resolution satellite images, the dis-
similarity matrix D can be enormous. Calculating, storing, and analysing such large 
matrices are challenging. To handle such large datasets, a representative sample of 
the vectorised multivariate patterns is taken, and the proposed method is applied to 
this subset to define the cluster numbers. Subsequently, an SRF classifier is trained 
using the sampled vectorised multivariate patterns as input predictors and the cluster 
numbers as the new categorical response variable. This multiclass classifier is later 
used to predict the cluster numbers across study area A.

3  Implementation and Results

3.1  SRF Unsupervised Learning

The aim of this experiment is to investigate the capability of the unsupervised SRF 
model for capturing complex spatial patterns. A synthetic dataset is used in this experi-
ment which consists of two continuous variables with the same resolution (Fig. 3a, b). 
In this case study, the resolution of the clustering grid is the same as that of the input 
variables ( N = 10, 000 ). Unconsolidated sediments, marshes, and channels are the 
three spatial structures that need to be captured by unsupervised learning (Fig. 3a). The 
second variable is a Gaussian noise and is used to assess the performance of the pro-
posed SRF model in the presence of noisy variables without any coherent spatial struc-
ture. The same order of spatial statistics was selected for the two input variables, 
E1 = E2 = 81 (Fig.  3(d) and (e)). The default value was selected for the parameter 

m = ceiling

��∑2

r=1
Er

�
= 13 . The number of spatial decision trees was set to 

J = 1,000 . The error rate EOOB = 0.024 demonstrates the presence of coherent statisti-
cal and spatial structures in the input spatial data and the ability of the SRF model to 
discriminate the original spatial patterns from the synthetic ones. The average silhou-
ette width suggests three spatial clusters (Fig. 3c), which is consistent with the prior 
knowledge. Comparing the zone of influence for the two input variables reveals the 
robustness of the SRF model in terms of automatically ignoring the noisy variables 
without any coherent spatial structures (Fig. 3d, e). The spatially aware dissimilarity 
matrix D was used to visualise the level of similarity between the multivariate spatial 
patterns in the study area via the multidimensional scaling approach. The first coordi-
nate in Fig. 3f discriminates marshes and channels from the unconsolidated sediments, 
whereas the second coordinate discriminates marshes from channels. Classical RF 
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( E1 = E2 = 1 ) was also implemented to assess the gain in the implementation of a spa-
tially aware learner. The final clustered map via a classical RF model and the proposed 
SRF model can be seen in Fig.  3g, h respectively. The SRF model recognised the 
underlying geological structures, while the nonspatial RF model only captured unstruc-
tured noise. Finally, Fig.  3i shows the silhouette width S(u) across the study area. 
According to this map, the channels are very well clustered, whereas the transitions 
between channels and marshes show lower silhouette width.

Fig. 3  a and b input variable #1 and #2 respectively, c optimum number of clusters based on average 
silhouette width, d and e spatial predictor importance for the input variable #1 and #2 respectively, f mul-
tidimensional scaling plot coloured by the predicted spatial clusters via the SRF model, g final clusters 
generated via classical RF model, h spatial clusters generated via the SRF model, and i the estimated 
silhouette width S(u) across the study area
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3.2  Automated Geology Mapping and Geochemical Prediction

3.2.1  Study Area and Initial Data

The overall aim of the experiments with real geoscience data is to investigate how 
aspects of the SRF model can support geoscientists to make quicker and more 
informed interpretations by semi-automated or automated analysis of multi-source 
spatial datasets. The study area covers a small part of the North West Minerals Prov-
ince (NWMP) in Queensland (Fig. 4). The first experiment aims at digital geological 
mapping using geophysical covariates and an interpreted geology map (SRF classi-
fication), while the second experiment attempts to predict the concentration of Cu as 
an indicator of possible mineralisation in rock formations using in situ geochemical 
soil samples (SRF regression).

All the geophysical covariates were acquired from the Geological Survey of 
Queensland (GSQ, https:// geosc ience. data. qld. gov. au). The digital elevation model 

Fig. 4  The input spatial data to train predictive models. a to g Continuous regionalised variables, h cat-
egorical response variable, and i continuous response variable. To enhance the visualisation of spatial 
variables, the colour scales for the continuous variables are defined according to quantile (equal prob-
ability) classes

https://geoscience.data.qld.gov.au
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(DEM, Fig.  4(a)) was obtained from the 1 arc second DEM of bare-earth with 
attempted removal of vegetation and man-made structure effects (Gallant et  al. 
2011). The variable reduction to the pole (VRTP) correction was applied to the 
merged total magnetic intensity grid (Fig. 4b). Apart from the VRTP map, the first 
vertical derivative (IVD) of the magnetic field (Fig. 4c) was also used to enhance 
the resolution of closely spaced and superposed anomalies (Greenwood 2018). The 
gamma-ray spectrometry data (Fig. 4d–f) derived from Geoscience Australia’s Third 
Edition Radiometric Map of Australia (Minty et  al. 2010). The Bouguer anomaly 
gravity grid (Fig. 4(g)) represents a gridded compilation of all freely available grav-
ity observations from exploration companies and state and federal regional surveys 
maintained by the GSQ (Cant 2014). The simplified solid geology (interpreted by 
GSQ, Fig.  4(h)) is used as the categorical response variable for the classification 
experiment. The in situ soil geochemistry data were obtained from the Queensland 
Government Department of Natural Resources and Mines (QDEX 2018). The Cu 
samples from 3,755 locations across the study area are used to train the random for-
ests regressors (Fig. 4(i)). Although dependent and independent layers can have dif-
ferent spatial resolutions in the proposed model, the resolution of the predictors and 
the response variables is 90 m in this case.

3.2.2  SRF Classification

Geological maps are normally products of field observations and interpretation 
of geophysical and remote sensing datasets, as well as expert background knowl-
edge about the geological history of the map area. This experiment investigates the 
suitability of the SRF model to provide a repeatable and faster method for auto-
mated geology mapping. The model utilises the existing geological interpretations 
(Fig. 4(h)) by drawing samples from it and demonstrates how the published geology 
can be replicated when all possible geological classes are known a priori and train-
ing samples are available from each class. A balanced training dataset was obtained 
by randomly sampling 84 pixels from each geological class ( N = 672 ). The over-
all training pixels constitute 1\% of the interpreted geology map (Fig.  4(h)). The 
remaining 99\% of the pixels will be used to validate the predictions.

The number of bootstrap samples (number of spatial decision trees) is set to 
J = 1,000 . The number of regionalised variables is R = 7 (Fig. 4a–g), and Er = 100 
for all covariates. The overall number of spatial predictors is P =

∑7

r=1
Er = 700 . 

The default value was selected for the parameter m = ceiling

��∑7

r=1
Er

�
= 27 in 

the classification framework. The OOB error rate for the SRF classifier is 
EOOB = 0.134 . The SRF model returns a measure of predictor importance that 
reveals which input covariates provide the most value (Fig. 5). The gravity layer and 
thorium concentrations from the gamma-ray spectrometric data are more important 
than the other covariates for predicting the true underlying geology at the selected 
scale (900 m × 900 m). The zone of influence for each regionalised covariate can be 
investigated further. For instance, the gravity zone of influence shows long-range 
spatial correlations, which means that this covariate captures large geological 
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structures with specific gravity features. Unlike the gravity layer, the zone of influ-
ence for magnetic VRTP is anisotropic and shows a clear orientation of the geologi-
cal patterns with specific shallow magnetic responses at the selected scale. Finally, 
the thorium layer captures isotropic small-scale geological structures with excep-
tionally high thorium concentration.

A classical RF classifier ( Er = 1;r = {1,… , 7} ) was also implemented to com-
pare the results of the SRF model with a nonspatial ensemble leaner. Figure 6a and 
b show the predicted surface geology by the SRF and RF classifiers respectively. 
The misclassified pixels (based on the 99\% validation pixels) are shown in Fig. 6c. 
There is a higher proportion of misclassified pixels for the RF predicted geological 
map compared to the SRF results. The SRF predicted geology map shows greater 
spatial continuity, whereas the RF map displays a distinct lack of spatial continu-
ity and a noisy appearance. Figure 6d shows the omnidirectional experimental vari-
ograms for geological class #9. The larger nugget effect and shorter variogram range 
generated by the RF model show the limitations of nonspatial learners in reproduc-
ing the spatial continuity of geoscience data. The SRF model was able to correctly 
reproduce the geological picture with similar details as the interpreted geology map 
(Fig.  4h). The class-wise and overall error rates for the two models are shown in 
Table1. All the geological classes were predicted with higher accuracy using the 
SRF model. Geological classes #13, #4, and #33 show the lowest error rates, while 
class #9 shows the highest error rate in the SRF model. The local uncertainty of the 
geological class predictions can be measured by the standardised entropy (Eq. 3). 
The entropy maps can be used interactively during the mapping process to gain 
valuable information during fieldwork through the identification of areas of high 
variability and uncertainty. Figure 6e and f show the entropy maps for the SRF and 
RF models respectively. Compared to the RF model, geological predictions show 
lower uncertainty in the SRF model. Geological class #33 shows the lowest level 
of uncertainty, which might be related to the physical homogeneity of this unit. The 

Fig. 5  Spatial predictor importance and the zone of influence for the input covariates obtained from the 
SRF classifier
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Fig. 6  Comparing the results of the SRF and RF classifiers, a and b predicted geology maps via SRF 
and RF models respectively, c misclassified pixels, d omnidirectional experimental variograms for the 
geological class #9, e and f entropy maps for the SRF and RF models respectively

Table 1  Class-wise and overall error rate for the SRF and RF classifiers

Class error #4 #5 #9 #13 #28 #33 #34 #35 #All

RF 0.1708 0.2543 0.4154 0.1746 0.2672 0.1608 0.1645 0.2822 0.2837
SRF 0.0795 0.1952 0.3762 0.0756 0.2052 0.0801 0.1229 0.2268 0.2211
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transitions from class #13 to classes #9 and #35 and boundaries of class #5 show 
high uncertainty (Fig. 6e). High uncertainty of transition zones is partly related to 
the fact that geological units are also interpreted models themselves utilising the 
same geophysical covariates. Deterministic and subjective approaches to generate 
geological maps can be efficiently replaced with objective approaches capable of 
modelling uncertainty such as SRF classification. This case study also revealed that 
the traditional geological maps can be revisited to highlight the areas with the high-
est level of uncertainty.

This experiment suggests that if a field geologist was able to identify all poten-
tial geological classes within a given spatial domain successfully and collect a rea-
sonable amount of ground truth observations, then an SRF model could be trained 
(using the relevant spatial covariates) to predict the spatial distribution of the geo-
logical classes. The SRF model can provide a meaningful automated prediction of 
geological units which could assist in geological mapping and help to guide field 
work while minimising the time needed to produce a geological map.

3.2.3  SRF Regression

This experiment describes an approach for the prediction of in  situ soil geochem-
istry (Cu concentration) even under deeper regolith that covers the bedrocks. The 
relationships between surface geochemical measurements and subsurface geophysi-
cal data are investigated. Mineral exploration in such covered areas strongly depends 
on the use of subsurface geophysical data as they can indirectly map the deep and 
covered geological structures that control mineralisation. However, the influence of 
cover on geophysical data was not considered in this study. The SRF regressor was 
used to model Cu concentration across the study area based on subsurface geophysi-
cal covariates only (i.e., magnetic and gravity layers).

The training samples consist of N = 3,755 Cu observations that are mostly 
located in the southern part of the study area (Fig. 4(i)). The number of spatial deci-
sion trees in the SRF regressor is set to J = 1,000 . The number of regionalised vari-
ables is R = 3 (Fig. 4(b), (c) and (g)), and Er = 100 for all covariates. The overall 
number of spatial predictors is P =

∑3

r=1
Er = 300 . The default value was selected 

for the parameter m = ceiling

�∑3

r=1
Er

3

�
= 100 in the regression framework. The 

SRF regressor returned a measure of predictor importance that reveals the most sig-
nificant covariates for Cu prediction (Fig. 7).

The gravity layer is the most important covariate (Fig. 7) for predicting Cu con-
centration. The zone of influence for gravity covariate shows isotropic behaviour 
at small scales (less than 300 m) and anisotropic behaviour (NW–SE and NE–SW 
trends) at larger scales (greater than 900 m). The first vertical derivative (IVD) of 
the magnetic field is more important than the original magnetic VRTP layer for pre-
dicting Cu concentration. This may be partly related to the complex relationships 
between shallow magnetic features and Cu mineralisation. The zone of influence for 
magnetic IVD covariate is anisotropic, and the anisotropy directions change with 
scale.
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The results of the SRF regressor were compared to those from a classical RF regres-
sor, RF with buffer distances to observations as extra covariates (RFsp, Hengl et  al. 
2018), and the geographical random forests (GRF, Georganos et al. 2019). The clas-
sical RF regressor is based on three geophysical covariates ( Er = 1;r = {1,… , 3} ) in 
Fig. 4(b), (c) and (g). In addition to these three covariates, the RFsp model uses Euclid-
ean buffer distances to 375 (10\% of the total observations) randomly selected sam-
ples. Multiple RFsp models were built by iterating the random sampling of the Euclid-
ean buffer covariates, and the most accurate RFsp model (i.e., lowest MSEOOB ) was 
selected for prediction. Finally, the GRF model predicts the response values by fusing 
the results from multiple local sub-RFs and a global RF to account for spatially het-
erogeneous data. The local sub-RFs are trained using a number of nearby observations 
(i.e., adaptive kernel). The most accurate GRF model was obtained by setting the num-
ber of nearest neighbours in the adaptive kernel to 400 and the fusing weights to 0.4 
and 0.6 for the local and global models respectively. To implement the GRF analyses, 
the R package ‘SpatialML’ (https:// cran.r- proje ct. org/ web/ packa ges/ Spati alML/ index. 
html) was used.

The number of trees in all the experiments was set to 1,000. The default value (one 
third of the covariates) was selected for the number of covariates randomly sampled as 
candidates at each split in the trees.

The generalisation errors for the four random forests experiments were estimated via 
the out-of-bag mean squared error. The SRF regressor showed superior performance 
( MSEOOB = 132,391 ) compared to other models in terms of predicting OOB Cu con-
centrations. The GRF regressor was the second most accurate model (Table 2).

Figure 8 shows the Cu prediction via the four regressors. The models are different, 
especially in terms of extrapolation under cover. For instance, unlike the SRF model, 
the RF regressor predicted an anomalous area in the southwestern part of the study 
area. Several unrealistic artefacts can be seen in the maps generated by RFsp and GRF 
models. Consequently, these models are not recommended for extrapolation under 
deeper regolith that is the main goal of this case study.

Fig. 7  Spatial predictor importance and the zone of influence for the input covariates obtained from the 
SRF regressor

Table 2  Out-of-bag mean 
squared error for the four 
random forests regressors

SRF RF RFsp GRF

MSE
OOB

132,391 180,348 167,234 159,412

https://cran.r-project.org/web/packages/SpatialML/index.html
https://cran.r-project.org/web/packages/SpatialML/index.html


18 Math Geosci (2022) 54:1–22

1 3

The correlation between true Cu concentrations and Cu prediction (OOB cases) via 
the RF model is 0.518, while this correlation is 0.685 for the SRF model (Fig. 9(a) and 
(b)). The correlations for the RFsp and GRF models are 0.491 and 0.502 respectively 
(Fig. 9(c) and (d)). The conditional bias assessment for the four models can be seen in 
Fig. 9(e) to (h), where the errors ( ̂fOOB

(
x(ui)

)
− y

(
ui
)
 ) are plotted against the observed 

Cu concentrations. The lowest conditional bias was achieved by the SRF model.
Based on the implemented performance analyses, the predicted Cu map obtained 

from the SRF model is more accurate and reliable for Cu exploration. This experi-
ment showed the potential of using geophysical datasets and soil assay samples to gain 
insight into the surface and subsurface geochemistry.

Fig. 8  Cu prediction via four random forests regressors



19

1 3

Math Geosci (2022) 54:1–22 

4  Discussion

Unlike other attempts to improve the spatial awareness of the tree-based learners, the 
proposed spatial random forests model is capable of learning complex spatial pat-
terns and using such knowledge during the classification, regression, and unsuper-
vised modelling tasks. Multi-resolution covariates can be used as spatial predictors 
without any preprocessing (e.g., upscaling all covariates to a consistent resolution). 
The spatial framework for measuring the predictor importance provides valuable 
knowledge about the underlying spatial structures of predictors that control the pat-
terns in the response variable. For instance, anisotropic behaviour at various scales 
can be captured by calculating the zone of influence for each regionalised variable. 
The unsupervised SRF model is very robust against noisy covariates without mean-
ingful auto- and/or cross-correlations. The synthetic case study reveals the robust-
ness of the SRF model in terms of automatically ignoring such noisy covariates.

Multi-resolution gridded data can be used as input to the SRF model. However, if 
the input data do not lie on a regular grid, they should first be migrated to the clos-
est nodes of a regular grid of suitable resolution or be rasterised using geostatistical 
techniques. The SRF model is not suitable for sparse scattered data unless repre-
sentative training images are available for training. Missing values are allowed, and 
no separate imputation step is necessary.

Compared to the classical nonspatial random forests algorithm, the proposed 
spatial model is computationally demanding. However, the SRF algorithm is easily 
parallelisable, and parallel computing with multi-core processors can speed up such 
intensive calculations.

Although the spatial continuity of the predicted response variable is more real-
istic in the SRF model compared to the noisy outcomes predicted by nonspatial 
learners such as RF, some artefacts or spatial discontinuity can be seen. Such spatial 

Fig. 9  a to d Scatterplots of the true Cu concentrations and random forests predictions (OOB cases). e to 
h Distribution of errors against true Cu concentrations. The red lines are the locally weighted polynomial 
regressions and the scatterplots are coloured by kernel density estimates
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discontinuities are partly related to the prediction function. The response values are 
predicted for each pixel independent of the predictions in nearby pixels. The pix-
elwise and independent prediction is not consistent with the spatial dependency 
of response values. The other limitation is the nonspatial bootstrapping or random 
sampling for training the base learners. Since the spatial and/or temporal response 
variables are correlated through space and time, nonspatial bootstrapping or random 
sampling leads to over-optimistic learners. These limitations are the topics of future 
studies.

5  Conclusions

A truly spatial random forests technique based on higher-order spatial statistics 
was introduced in this study. The proposed non-parametric technique is capable of 
learning multivariate spatial patterns of mixed type (i.e., continuous and categori-
cal spatial patterns) and capturing complex nonlinear relationships. The algorithm 
measures the predictor importance internally and estimates the zone of influence for 
each regionalised variable. Unlike deep learning techniques, the high-dimensional 
systems in which the number of predictors is much larger than the number of obser-
vations can be handled appropriately via the SRF model. The algorithm accepts 
multi-resolution covariates without any preprocessing (i.e., interpolation, upscaling, 
and imputation). The algorithm can be used for both supervised and unsupervised 
learning. The case studies demonstrate applications where a spatial learner has the 
potential to improve, aid, or automate existing processes around the preparation and 
validation of geoscience data and interpretations.
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