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Abstract The joint identification of the parameters defining a contaminant source and
the heterogeneous distribution of the hydraulic conductivities of the aquifer where the
contamination took place is a difficult task. Previous studies have demonstrated the
applicability of the restart normal-score ensemble Kalman filter (rNS-EnKF) in syn-
thetic cases making use of sufficient hydraulic head and concentration data. This study
shows an application of the same technique to a non-synthetic case under laboratory
conditions and discusses the difficulties found on its application and the avenues taken
to solve them. Themethod is first tested using a synthetic case that mimics the sandbox
experiment to establish the minimum number of ensemble members and the best tech-
nique to prevent the filter collapsing. The synthetic case shows that among different
techniques based on update damping and covariance inflation, the Bauser’s covari-
ance inflation method works best in preventing filter collapse. Its application to the
sandbox data shows that the rNS-EnKF can benefit from Bauser’s inflation to reduce
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the number of ensemble realizations substantially in comparison with a filter without
inflation, arriving at a good joint identification of both the contaminant source and the
spatial heterogeneity of the conductivities.

Keywords Inverse modeling · Forensic hydrogeology · Data assimilation · Sandbox

1 Introduction

The motivation of this paper is to advance our ability to solve the problem of the
joint identification of a contaminant source in an aquifer together with the spatial
distribution of hydraulic conductivities. The restart normal-score Ensemble Kalman
filter (rNS-EnKF) has been tested in synthetic aquifers for the joint identification of
source parameters and conductivities and in a sandbox experiment for the identification
of just the source parameters (Chen et al. 2018; Xu and Gómez-Hernández 2018).
In both cases, the rNS-EnKF performed well; however, it could be argued that the
synthetic case was far from reality, and that the sandbox experiment used a known
homogeneous conductivity. For these reasons, a new sandbox experimentwas designed
with a binary heterogeneous distribution of conductivity, and with the aim of testing
the rNS-EnKF for the joint identification of the source and a spatially heterogeneous
conductivity field.

In addition, previous experience in the application of the rNS-EnKF (Xu et al. 2013)
showed the effect of filter collapse, a problem that can be tackled by the proper choice
of number of ensemble realizations, covariance inflation, covariance localization or
update damping. For this reason, the paper starts with the analysis of a synthetic
field, resembling the new sandbox experiment, to determine the choice of number
of realizations, the technique that prevents the filter from collapsing and yields an
acceptable identification of both source and conductivities within reasonable computer
times. Once these choices are made, the sandbox experiment is directly addressed.

The importance of contaminant source identification, for instance in relation with
the protection of wellhead capture zones (Feyen et al. 2003a, b), does not need to be
stressed, as it has been the subject of research for many years. The reader is referred
to any of the review papers that can be found in the literature (e.g., Atmadja and Bagt-
zoglou 2001; Bagtzoglou and Atmadja 2005; Michalak and Kitanidis 2004; Sun et al.
2006). A very brief review, including some works that appeared after the mentioned
review papers, follows.

Most contaminant source identification approaches can be classified into two main
categories: optimization approaches and probabilistic approaches. In the optimiza-
tion approaches, an objective function is built and the algorithm tries to minimize the
discrepancies between simulated and measured concentrations using an optimization
approach such as least-squares regression or maximum likelihood (e.g., Amirabdol-
lahian and Datta 2014; Aral et al. 2001; Ayvaz 2016; Gorelick et al. 1983; Mirghani
et al. 2009; Wagner 1992; Yeh et al. 2007). In the probabilistic approaches, the prob-
lem is cast in a stochastic framework and the algorithm tries to maximize the posterior
probabilities of the simulated concentrations conditioned on the observed values using
techniques such as those based onminimum relative entropy or the use of adjoint states
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(e.g., Bagtzoglou et al. 1992; Butera et al. 2013; Koch and Nowak 2016; Neupauer
and Wilson 1999; Woodbury and Ulrych 1996).

The main criticism of both approaches that can be found in the literature, and
the reason it is difficult to find applications of any of those techniques in practice,
is that they have worked on synthetic cases, focusing on the identification of the
contaminant source parameters and assuming that aquifer hydraulic conductivities are
perfectly known. But the truth is that geological properties are quite heterogeneous,
only sparsely known in reality, and very influential in how the aquifer behaves (e.g.,
Gómez-Hernández and Wen 1994; Gómez-Hernández and Wen 1998; Knudby and
Carrera 2005; Li et al. 2011; Wen et al. 1999; Zinn and Harvey 2003). Only a few
papers discuss the simultaneous identification of conductivity and the contaminant
source, but almost all of them are limited to either homogeneous aquifers or offer only
a simplistically-described heterogeneity (Datta et al. 2009; Mahar and Datta 2000;
Wagner 1992). Only the works by Koch and Nowak (2016) and Xu and Gómez-
Hernández (2018) address the problem of identifying heterogeneous conductivities;
the former using a Bayesian methodology, and the later using the rNS-EnKF.

This paper builds on the previous work by Chen et al. (2018) and (Xu and Gómez-
Hernández 2016, 2018) in which the capabilities of the rNS-EnKF, for the purpose of
the identification of the parameters defining a point contaminant source and the aquifer
hydraulic conductivities, had been shown in both a synthetic case and in a laboratory
experiment, and on the experience of the research team on addressing the problem
of characterization of non-Gaussian conductivities (Capilla et al. 1999; Franssen and
Gómez-Hernández 2002;Gómez-Hernández et al. 2003; Journel et al. 1993; Zhou et al.
2012a, b). The goal of this paper is to advance towards a practical application of the
rNS-EnKF for contaminant source identification in an aquifer with sparse information
about hydraulic conductivity heterogeneity. In comparison with previous papers, this
paper works with data collected in a sandbox experiment, instead of with generated
synthetic data, and the sandbox has a binary heterogeneous distribution (unknown to
the algorithm), instead of a known homogeneous distribution. There is an additional
important difference with respect to the work by Xu and Gómez-Hernández (2018),
which is that no piezometric head data are available, and, therefore, the parameter
identification will have to be solely based on concentration observations. This adds
an additional complication to the performance of the rNS-EnKF, since an important
source of information for conductivity heterogeneity identification will be missing.

In an initial attempt to apply the rNS-EnKF directly to the sandbox data, numerous
problems were found related with compute time, filter collapse and filter divergence.
For this reason, a decision was taken to first analyze a more controlled synthetic
experiment mimicking the heterogenous sandbox, then to decide on the number of
realizations and the best technique for preventing filter collapsewithout compromising
the results (in a reasonable time, with a reasonable uncertainty). As a result, the paper
contains two case studies: (i) the synthetic case, in which a sensitivity analysis is
performed combining two numbers of realizations, two update damping schemes and
two covariance inflation approaches, out of which the number of ensemble realizations
and a filter collapse prevention technique are chosen; and (ii) the laboratory case, in
which the rNS-EnKF is demonstrated using the findings from the synthetic case.
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Filter collapse is dealt with by the use of covariance inflation. Several such tech-
niques can be found in the literature (e.g., Anderson 2007; Li et al. 2009; Liang et al.
2012; Bauser et al. 2018; Hendricks Franssen and Kinzelbach 2008;Wang and Bishop
2003; Zheng 2009), of which the damping method, Wang’s method and Bauser’s
method will be tested. These methods will be discussed in detail further on in the
corresponding section.

The paper shows the power of concentration data for the joint identification of
conductivities and contaminant source information in a sandbox experiment by the
rNS-EnKF. After this introductory review, the paper continues with a review of the
methodology and a description of the sandbox experiment and its numerical modeling,
followed by the synthetic data analysis and the sandbox data analysis. The paper ends
with the discussion of the results and some conclusions.

2 Methodology

2.1 Groundwater Flow and Solute Transport Equations

Water flow and contaminant transport in the sandbox are modeled using the corre-
sponding governing equations for groundwater flow (Bear 1972) and contaminant
transport (Zheng and Wang 1999)

Ss
∂h

∂t
= ∇ · (K∇h) + w (1)

∂ (θC)

∂t
= ∇ · (θD · ∇C) − ∇ · (θvC) − qsCs, (2)

where Ss is specific storage [L−1], h is hydraulic head [L], t is time [T ], ∇· is the
divergence operator, ∇ is the gradient operator, K is hydraulic conductivity [LT−1]
and w represents distributed sources or sinks [T−1]; θ is porosity; C is dissolved
concentration [ML−3]; D is the hydrodynamic dispersion tensor [L2T−1];v is theflow
velocity vector [LT−1] derived from the solution of the flow equation, qs represents
volumetric flow rate per unit volume of the aquifer associated with a fluid source or
sink [T−1] and Cs is the concentration of the source or sink [ML−3].

The groundwater flowequation is numerically solvedwithMODFLOW(McDonald
and Harbaugh 1988) and the contaminant transport equation withMT3DS (Zheng and
Wang 1999).

2.2 The Ensemble Kalman Filter

The ensemble Kalman filter (EnKF) was developed by Evensen (1994) as an extension
to the Kalman filter (KF). Themain difference between the EnKF and the KF is that, in
the KF, the state covariance matrix is propagated in time using an explicit expression
based on a linear transition equation, while, in the EnKF, this covariance matrix is
derived from the statistical analysis of an ensemble of state realizations obtained after
the solution of the state equations in each realization of the ensemble. The advantage of
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the EnKF over the KF is for systems in which the state transition equation is not linear;
in such a case, the linear transition equation used by the KF is only an approximation
and the resulting covariance deteriorates in time. By contrast, in the EnKF, since the
covariance is directly calculated from actual state spatial distributions, its value is
more accurate; the only limitation being that the covariance is computed from a finite
ensemble of realizations (if the number of realizations is small, the resulting estimate
may be also inaccurate).

Although the EnKF was initially developed to update only the state of the system
as observations are gathered, it has been shown that it also can be used to update the
parameters using what is called an augmented state that includes both state variables
and the parameters that control them (e.g., Chen and Zhang 2006; Houtekamer and
Mitchell 2001; Li et al. 2012a, c). In summary, the EnKF has been proven to be an
efficient algorithm for parameter identification, for strongly non-linear state-transfer
equations, (Hendricks Franssen and Kinzelbach 2009; Wen and Chen 2005a, b), and
has receivedmuch attention in the last decades. Next, the algorithm is described for the
case study at hand, that is, the identification of the parameters defining a contaminant
source together with the identification of the conductivities in a sandbox experiment
for which only concentration data are available.

First, build an augmented state vector S including the model parameters and the
state variables

S =
(
A
B

)
=

⎛
⎝ (Xs, Zs, Ic, Ir , Te)T

(lnK1, lnK1, . . . , lnKN )T

(C1,C1, . . . ,CN )T

⎞
⎠ , (3)

where A stands for model parameters, B for state variables, and N is the number of
grid cells. In our case, the model parameters are those describing the contaminant
source, Xs , Zs , which are the contaminant source coordinates in the horizontal and
vertical directions, Ic, the injection concentration, Ir , the injection rate, and Te, the
end release time, plus the hydraulic log-conductivities, lnK , and the state variables
are the contaminant concentrations, C . The augmented state vector evolves in time,
starting with an initial value at time 0, S0.

Second, forecast, using the groundwater flow and transport equations, the state
vector St at time t based on the state variable Bt−1 and the model parameters At−1
obtained at time t − 1

S f
t = ψ(Aa

t−1, B
a
t−1), (4)

where the superscript f stands for forecasted values and a stands for updated values
after assimilating the state observations; ψ represents the state-transfer function. (In
the forecast step, the parameters A remain unchanged—the transfer function is the
identity function—and state B evolves according to the flow and transport equations.)

Next, assimilate the state observations. The discrepancy between forecasted states
and observed ones is used to update the forecasted augmented state vector according
to the following expression
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Sat = S f
t + Kt

[
yobst + εi − HS f

t

]
, (5)

where yobst are the observed concentrations at time step t , εi stands for an observation
error with zero mean and covariance Rt , H is the observation matrix that extracts out
of the whole augmented state vector the elements at which observations were taken.
Kt is the Kalman gain matrix

Kt = P f
t H

T [HP f
t H

T + Rt ]−1 (6)

P f
t = 1

Ne − 1
{[S f

t − S f
t ][S f

t − S f
t ]T }, (7)

where P f
t is the experimental covariance computed from the ensemble of augmented

forecasted states, and S f
t is the experimental ensemble mean. (Notice that because

observations are sparse, the observation matrix is mostly made out of zeroes, and it is
not necessary to compute all the elements in P f

t , but only those that are multiplied by
the non-zero elements of H in P f

t H
T .)

2.2.1 The normal-Score EnKF

The EnKF was further extended to deal with non-Gaussian variables. The EnKF was
found to be very effective for dealing with non-linear transfer functions, but it failed
when the augmented state followed a non-Gaussian distribution (Zhou et al. 2014).
Several approaches have been developed to address this issue: Gaussian mixture mod-
els, reparameterizations, iterative approaches, andGaussian anamorphosis, also known
as normal-score transform (e.g., Chang et al. 2010; Hendricks Franssen and Kinzel-
bach 2008; Kumar and Srinivasan 2019; Sun et al. 2009; Zhou et al. 2011). In this
paper, the normal-score approach is used, and more precisely, the normal-score EnKF
(NS-EnKF) as described by Zhou et al. (2011) or Li et al. (2012b).

The NS-EnKF is based on transforming all parameters and variables into Gaussian
variates, performing EnKF in the Gaussian space, and then, backtransforming the
results into the original space. The normal-score transform is a univariate transform
that ensures that the transformed variates follow aGaussian distribution, but it does not
ensure that higher-order moments will follow amulti-Gaussian distribution (Jafarpour
and Khodabakhshi 2011; Kumar and Srinivasan 2020); yet, the results obtained with
the NS-EnKF outperform those of EnKF for clearly non-Gaussian parameters.

2.2.2 The Restart NS-EnKF

The EnKF was designed to update both parameters and state variables at each assimi-
lation step. That is, the discrepancy between forecasted and observed variables is used
to update the whole augmented state (see Eq. (5)). However, in general in the case
of subsurface flow and transport, and in particular in the case at hand of contaminant
source identification, the updated states could be inconsistent with the updated param-
eters, either because the mass conservation laws are no longer obeyed, or because
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the updated state is not coherent with the updated contaminant source location. For
this reason, the forecast of the augmented state to the next observation time is not
done based on the updated augmented state at the previous time state; it is preferable
to perform a forecast from time zero with the latest updated parameters (Camporese
et al. 2011; Crestani et al. 2012; Wen and Chen 2005a). This approach is called, for
this reason, the restart ensemble Kalman filter, or, in our case, the restart normal-score
ensemble Kalman filter (rNS-EnKF).

The forecast function in Eq. (4) changes into

S f (t) = ψ[Aa
t−1, B0] =

(
Aa
t−1
Bt

)
, (8)

where B0 stands for the initial contaminant concentration in the domain. The restart
EnKF has been applied before, for instance, by Camporese et al. (2011) and Crestani
et al. (2012).

2.2.3 Damping

One way to deal with filter collapse is to use a damping factor α, between 0 and 1, at
the update step (Hendricks Franssen and Kinzelbach 2008)

Sat = S f
t + αKt

[
yobst + εi − HS f

t

]
. (9)

2.2.4 Inflation Methods

Another way to reduce filter collapse is by covariance inflation. There are several
covariance inflation approaches in the literature (Anderson 2007; Bauser et al. 2018;
Liang et al. 2012; Wang and Bishop 2003). In this work, two different time-dependent
multiplicative covariance inflation methods are used, the one proposed by Wang and
Bishop (2003) and the one by Bauser et al. (2018). In both methods, the augmented
state vector should be inflated after the forecast, as follows

Sin f, fi,t = √
λt (S

f
i,t − S f

t ) + S f
t , (10)

where Sin f, fi,t is the inflated augmented state vector of realization i after forecast to

t th time step, and λt is the inflation factor, the computation of which depends on the
approach used.

In the work by Wang and Bishop (2003), λt is given by

λt =

(
R

− 1
2

t dt

)T

R
− 1

2
t dt − nb

trace

{
R

− 1
2

t H P f
t

(
R

− 1
2

t H
)H

} (11)
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where nb is the number of observations, and dt is a vector with the residuals between
the observation data and the mean of the forecast data at observation locations

dt = yobst − H ∗ S f
t . (12)

Then, the updated augmented state vector is calculated as

Sai,t = Sin f, fi,t + λtP
f
t H

T [HλtP
f
t H

T + Rt ]−1
[
yobst + ε − HSin f, ft

]
. (13)

Wang and Bishop (2003) have already recognized that parameter λt could vary
significantly in time, particularly at the early stages when concentrations are small
everywhere. For this reason, following their recommendations, its value is restricted
to be between 0.7 and 1.2.

In the work by Bauser et al. (2018), λt is treated as a state variable that is used to
inflate the model parameters. Because it is a state variable, it is forecasted and updated
using the Kalman filter formulation as follows

λ
f
t = λat−1 (14)

λat = λ
f
t + Kλt [dλt − hλ(λ

f
t )], (15)

where the superscripts f and a stand for forecasted and updated values, Kλt is the

Kalman gain, dλt is the absolute value of dt , and hλ(λ
f
t ) represents the mean residual

between observation data and forecasted mean at the observation location. These
values are obtained by

Kλt = P f
λt
HT

λt
[HλtP

f
λt
HT

λt
+ Rλt ]−1 (16)

(hλt (λ
f
t ))i = [(Rλt )i i ]

1
2 . (17)

The covariance of the inflation parameter, P f
λt
, the observation matrix Hλt and the

inflation parameter observation error Rλt can be obtained from the state covariance

matrix P f
t , the observation matrixH and the observation error covariance matrix R of

the augmented state vector S by

(P f
λt

)i j = σ 2
λ |(P f

t )i j |[(P f
t )i i (P

f
t ) j j ]− 1

2 (18)

(Hλt )i j = [2[(λ f
t ) j ] 12 (hλt (λ

f
t ))i ]−1

∑
m

(H)i j (H)im(P f
t ) jm[(λ f

t )m] 12 (19)

(Rλt )i j = |(R)i j + (HPin f, f
t HT )i j |, (20)

where σλ stands for the uncertainty about the inflation factor, which, in this case, is
set to one, the same value used by Bauser et al. (2018). Pin f, f

t stands for the inflated
forecast error covariance matrix, which is given by
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Fig. 1 A flowchart of Bauser’s method for updating the inflation factors, λat

Pin f, f
t = (

√
λ
f
t

√
λ
f
t

T

) · P f
t . (21)

A workflow summarizing how to apply Bauser’s inflation method is shown in
Fig. 1.

Finally, the updated augmented state vector is computed as

Sai,t = Sin f, fi,t + Pin f, f
t HT [HPin f, f

t HT + Rt ]−1
[
yobst + ε − HSin f, ft

]
. (22)

2.2.5 Localization Methods

Covariance localization (Greybush et al. 2011) is yet another technique for tack-
ling ensemble collapse. In this case, the localization removes spurious correlations
observed in the experimental covariances, that is, corrects the experimental covariance
to ensure that points that should bear no correlation have zero correlation. Experi-
mental covariances, particularly when computed from a small ensemble size, may
display unwanted spurious correlations. Covariance localization is not analyzed in
this manuscript because the standard techniques for removing those spurious corre-
lations also reduce, on occasions significantly, the correlations between locations for
which the attributes are correlated. Correlations between attributes are significant in
the sandbox and, for this reason, it seemed more appropriate to focus only on covari-
ance inflation techniques rather than on covariance localization techniques, without
disregarding or discarding the use of localization to improve EnKF performance in
another setting.

3 Sandbox Experiment

A contaminant experiment was carried out in a sandbox with sodium fluorescein as
the tracer. The size of the sandbox was 120 cm by 14 cm by 70 cm. Two reservoirs
with constant water levels at 62.5 cm and 60.6 cm with respect to the bottom of the
sandbox were set at the upstream and downstream boundaries, respectively. (Notice
that the experiment was performed with the upstream boundary on the right side of the
sandbox, and all figures are represented in this way.) These two tanks define prescribed
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Fig. 2 Sketch of the experimental device (view from the camera side inside the darkroom). Hu and Hd
stand for the constant head boundaries, the dashed rectangle corresponds to the area captured by the camera
in which concentrations will be monitored, the red triangle is the release location, and the small square
around the red dot indicates the release suspect location during the identification process. Units are in cm.
Pairs of numbers in parenthesis refer to row and column pairs in the numerical model

head boundaries; the bottom of the sandbox was impermeable and the top boundary
was the phreatic surface. Between the upstream and downstream tanks, the area filled
with sand was 95 cm by 10 cm by 70 cm, which, for the purpose of modeling, is
discretized into 95 columns, 1 row, and 70 layers of equal-sized cells of 1 cm by 10
cm by 1 cm. The sandbox was filled with glass beads of two different diameters, 1 mm
and 4 mm, according to a spatial arrangement generated using a truncated Gaussian
simulation (Journel and Isaaks 1984) with the first quartile as the truncation threshold,
resulting in a large-bead proportion of 0.25. The spatial distribution of the glass beads
in the sandbox can also be seen in Fig. 2. An injector was located at column 86, layer
40, at the position identifiedwith a red dot in the figure. Thewhole sandboxwas placed
in a darkroom with a blue light source that was used to excite the injected fluorescein.
Pictures of the plume, as it evolved in time, were taken and luminosity values were
converted into concentration after a calibration procedure following Citarella et al.
(2015).

The hydraulic properties of the beads (Table 1) had been characterized before with
the same sandbox equipment (e.g., Cupola et al. 2015; Citarella et al. 2015). The
hydraulic conductivity of the large beads was estimated as 10.4 cm·s−1, and that of
the small beads as 0.65 cm·s−1. The porosity is constant, independent of the bead size,
and equal to 0.37. The longitudinal dispersivitywithin the large beadswas estimated as
0.25 cm, andwithin the small beads as 0.106 cm. The ratio of transverse to longitudinal
dispersivity is constant and equal to 0.45.
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Table 1 Parameters used in the
groundwater flow and transport
models

Hydr. conduct., K 4 mm beads 10.4 cm·s−1

Hydr. conduct., K 1 mm beads 0.65 cm·s−1

Porosity, φ 0.37

Long. disp., αL 4 mm beads 0.2 cm

Long. disp., αL 1 mm beads 0.106 cm

TRVT, αT /αL 0.45

Although after processing the pictures the spatial distribution of concentration is
fully known within the entire central area of the sandbox (dashed rectangle in Fig. 2),
in order to mimic a potential sampling campaign in the field, only the concentrations
observed at the twenty nine dots identified as observation points in the figure will be
used for the purpose of identifying both the hydraulic conductivity and the contaminant
source parameters. The release lasted 1200 s, the fluorescein concentrationwas 20mg/l
and the injection rate 2.60 cm3 · s−1. Observations were taken every 30 s until after
3000 s from the beginning of the injection, for a total of 100 observations at each
observation point.

The number of observation locations was large enough to allow us to arrive at
acceptable results. Previous studies (Xu et al. 2013) have shown that there is a threshold
number of observation locations below which the identification becomes impossible,
due to lack of information by which to perform any identification. The number of
observations and their regular pattern used here may not be realistic in a practical case,
but it should always be borne in mind that without enough information, identification
by the EnKF or any other approach will not be possible.

4 Definition of Scenarios and Ensemble Initialization

Onafirst attempt to apply the rNS-EnKFdirectlywith the observed sandbox concentra-
tions, some difficulties were found, mostly related to filter collapse. These difficulties
led us to perform a synthetic experiment, prior to applying the filter to the real data,
to analyze the impact of the number of ensemble realizations and the use of different
approaches to prevent filter collapse. For this purpose, a reference set of synthetic
concentrations was generated by solving, numerically, the flow and transport equa-
tions in a field with the same spatial distribution of conductivities as the sandbox, the
same boundary conditions, and the same solute injection pulse. Then, six scenarios
(S1 − S6) were analyzed with different ensemble sizes and different damping and
inflation methods. More precisely, two ensemble sizes were tested (500 and 1000),
two values for the damping coefficient (damping with a factor of 0.1 and with a factor
of 0.5) and two covariance inflation methods (Wang’s method and Bauser’s method).
After the analysis of the results using the synthetic reference, the conclusion was
reached, as discussed below, that Bauer’s inflation method was the best method to
prevent filter collapse, thus two additional scenarios (R1 − R2) were run using the
experimental data to test Bauer’s inflation approach. The combination of ensemble
sizes and inflation methods for the different scenarios is shown in Table 2.
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Table 2 Definition of scenarios Scenario Inflation method Ensemble size
Synthetic

S1 No inflation 500

S2 No inflation 1000

S3 Damping factor=0.1 500

S4 Damping factor=0.5 500

S5 Wang’s method 500

S6 Bauser’s method 500

Experimental

R1 No inflation 1000

R2 Bauser’s method 500

The initial ensembles of log-conductivity realizations are the same for all scenarios
(for the scenarios of 500 realizations only the first 500 of a total of 1000 realizations
are retained. The choice of the first 500 is arbitrary; any subset of 500 could have
been used without loss of generality). They are generated using a Gaussian random
function with a mean equal to the weighted mean of the bead log-conductivities, 1.07
ln cm · s−1, and a variance equal to the variance of a binary Gaussian mixture of
two facies with the means and proportions of the sandbox and an internal variance
of one within each facies, i.e., 1.55 (ln cm · s−1)2. The correlation range of the log-
conductivities is isotropic and equal to 15 cm. Previous studies (Xu et al. 2013),
in which no conditioning conductivity values had been used—as in this case—have
shown that the initial ensemble of log-conductivities is not as important as a sufficient
number of observations of the state of the aquifer.

Similarly, the initial ensembles of source locations and pulses are the same for all
scenarios. They are generated within suspect ranges that are defined using uniform
distributions. The suspect source location (Xs, Zs), in cm, ranges in U[78, 86] ×
U[38, 47] (see Fig. 2), the suspect injection rate ranges in U[2, 3] cm3 ·s−1, the suspect
injection concentration ranges inU[5, 25]mg/l and the suspect final release time ranges
in U[1050, 1250] s (see Table 3). These parameters are generated independently of
one another and of the log-conductivities. These ranges are used exclusively for the
generation of the initial ensembles; afterwards, the updated parameter values are not
restricted by any bounds. These ranges are chosen considering that, in a real case,
there is always some information about when and where the contamination entered
the system. It could be argued that the ranges should have been larger. From previous
works on the impact that the choice of the initial ensemble of realizations has in the
performance of the EnKF (Xu et al. 2013), it could be anticipated that the use of wider
or shorter ranges would have little impact on the final results.

5 Performance Evaluation

The rNS-EnKF was applied to each scenario assimilating the observed concentrations
at the points indicated in Fig. 2 at each time step. No log-conductivity or piezometric
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Table 3 Suspect ranges of source parameters for the generation of the initial ensemble of realizations and
their true values

Parameter Actual value Suspect range

Xs - x-coordinate of source (cm) 86 78 − 87

Zs - z-coordinate of source (cm) 40 38 − 47

I r (cm3 · s−1)—injection rate 2.60 2 − 3

I c (mg/l)—injection concentration 20 5 − 25

T e (s)—final release time 1200 1050 − 1250

head data were observed at any time. After assimilating the concentration data at the
end of each time step, the filter provided an ensemble of updated parameters, which
were analyzed in different ways:

1. Computing the ensemble mean and variance of the contaminant source parameters
at the end of each time step. The ensemble mean can be interpreted as a parameter
estimate and the variance as a measure of the estimation uncertainty.

2. Visually analyzing the spatial variability of the cell ensemble mean and ensemble
variance of log-conductivitieswith respect to the reference log-conductivity spatial
distribution.

3. Computing the root mean-squared error (RMSE), the ensemble spread (ES), and
the ratio RMSE/SE of log-conductivities as given by

RMSE =
√√√√1

n

n∑
i=1

(ln Kref
i − ln Ki )2, (23)

ES =
√√√√1

n

n∑
i=1

σ 2
ln Ki

, (24)

with n being the number of cells over which the averages are computed, ln Kref
i is

the reference log-conductivity value at cell i , ln Ki is the average of the ensemble
of log-conductivity realizations at cell i , and σ 2

ln Ki
is the variance. The RMSE

measures the accuracy of the ensemble average as an estimate of the reference
field, and the ES measures the uncertainty associated with such an estimate. The
ratio RMSE/ES is a measure of filter inbreeding, which may cause the filter to
collapse, and should, ideally, be close to one (e.g., Liang et al. 2011; Xu et al.
2013).

6 Results

As mentioned above, two analyses have been performed, a preliminary one using
synthetic data to decide on the number of realizations and on a method to prevent
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filter collapse, followed by a specific analysis of the data collected from the sandbox
experiment.

6.1 Analysis of the Synthetic Data

The synthetic analysis is performed on six scenarios, with combinations between two
numbers of realizations and five alternatives to prevent filter collapse, as given in Table
2. Recall that the reference for the synthetic case comes from a numerical simulation
of flow and transport with the same characteristics as the sandbox experiment.

Figures 3 and 4 focus on the source parameters; they provide the ensemble mean
and the ensemble variance, respectively, of all five source parameters, after the update
at each time step for all six scenarios. The ranges of the ensemble variances were
very different for each parameter; for this reason the results are displayed after stan-
dardization by the ensemble variances of the initial ensembles. It is hard to argue
which scenario performs best. Scenario S3, the one with a damping factor of 0.1, can
be discarded since it is the one that ends with the highest variances for most of the
parameters. Scenario S5, the one with Wang’s inflation method, should also be dis-
carded because it collapses the ensemble after a few time steps, as shown by the rapid
decrease of the ensemble variance to zero for almost all parameters. Scenario S2, with
no inflation, but 1000 realizations—double the rest of the scenarios—performs well in
that it provides an estimate close to the true values, and the variance decreases in time
consistently and similarly to the rest of the scenarios. Scenario S1, with no inflation
and 500 realizations shows some filter collapse, which does not happen as quickly as
for S5 but ends with similar magnitudes for the ensemble variances. Scenario S4, with
a damping factor of 0.5, does a good job in the estimation of the source parameters,
except for I c, but the final uncertainties are the largest after S3 for most of the param-
eters. Finally, scenario S6, with Bauser’s inflation method, could be considered as the
onewith the best performance, since it provides very good estimates for all parameters,
except for I r , and it has low final uncertainties without filter collapse. All methods
estimate the vertical position Zs of the release point lower in the sandbox than its real
position, this behavior can be produced by local velocity variations induced by the
proximity of the injection to the boundary between two cells with different glass bead
diameters, which are not resolved by the observations.

Figure 5 shows the ensemble mean and Fig. 6 the ensemble variance of the initial
lnK realizations and of the updated ones computed at the 90th time step for all synthetic
scenarios. The ensemble mean and ensemble variance of the initial lnK are almost
homogeneous and equal to their prior values, since no conditional data of lnK is
employed. After assimilating all concentration data during 90 time steps, the ensemble
mean of the updated lnK conductivities can capture the main patterns of variability
of the glass bead distribution with a substantial reduction of the ensemble variance in
most of the sandbox.A comparison among the different scenarios shows that, again, S3
performs worst, with the worst estimation of lnK and the largest estimation variances,
and S5 shows filter collapse at most locations. Of the remaining scenarios, S2 and S6
give the best results, with S2 being slightly better in lnK pattern estimation thanks
to the larger number of ensemble members. For a more quantitative evaluation of the
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Fig. 3 Time evolution of the ensemblemeans of the updated contaminant source parameters for all synthetic
scenarios (S1 − S6)

identification of lnK , Figure 7 shows how the three statistics RMSE, ES andRMSE/ES
evolve in time as the data assimilation proceeds. The best performance would be for
the lowest values of RMSE and ES and the closest-to-one RMSE/ES ratio. The two
best scenarios are S2 and S6, with S6 having the RMSE/ES ratio closest to one.

Taking into consideration the performance of the rNS-EnKF for the different syn-
thetic scenarios, the two scenarios that will be analyzed with the experimental data are
the non-inflation method with 1000 realizations, referred to as R1, and the Bauser’s
inflation method with 500 realizations, referred to as R2.

123



1602 Math Geosci (2021) 53:1587–1615

0 10 20 30 40 50 60 70 80 90
Time step

0

0.2

0.4

0.6

0.8

1

R
el

at
iv

e 
va

ri
an

ce
 t

o
th

e 
p

ri
o

r 
u

n
if

o
rm

 d
is

tr
ib

u
ti

o
n

Xs

S1
S2
S3
S4
S5
S6

0 10 20 30 40 50 60 70 80 90
Time step

0

0.2

0.4

0.6

0.8

1

R
el

at
iv

e 
va

ri
an

ce
 t

o
th

e 
p

ri
o

r 
u

n
if

o
rm

 d
is

tr
ib

u
ti

o
n

Zs

S1
S2
S3
S4
S5
S6

0 10 20 30 40 50 60 70 80 90
Time step

0

0.2

0.4

0.6

0.8

1

R
el

at
iv

e 
va

ri
an

ce
 t

o
th

e 
p

ri
o

r 
u

n
if

o
rm

 d
is

tr
ib

u
ti

o
n

Ic (mg/l)

S1
S2
S3
S4
S5
S6

0 10 20 30 40 50 60 70 80 90
Time step

0

0.2

0.4

0.6

0.8

1

1.2

R
el

at
iv

e 
va

ri
an

ce
 t

o
th

e 
p

ri
o

r 
u

n
if

o
rm

 d
is

tr
ib

u
ti

o
n

Ir ( cm 3 /s)
S1
S2
S3
S4
S5
S6

0 10 20 30 40 50 60 70 80 90
Time step

0

0.2

0.4

0.6

0.8

1

1.2

1.4

R
el

at
iv

e 
va

ri
an

ce
 t

o
th

e 
p

ri
o

r 
u

n
if

o
rm

 d
is

tr
ib

u
ti

o
n

Te(s)

S1
S2
S3
S4
S5
S6

Fig. 4 Time evolution of ensemble variances of the updated contaminant source parameters for all synthetic
scenarios(S1 − S6). Each variance plot has been standardized by the variance of the initial ensemble

6.2 Analysis of the Sandbox Data

The difficulties found on the first attempt in applying the rNS-EnKF to the sandbox
data must be due to observation errors in the concentrations. According to earlier work
(Chen et al. 2018), an underestimation of the observation error will force the filter to
fit the concentrations too closely, producing biased estimates of the parameters, and an
overestimation of the observation error will allow too loose a fit, producing estimates
with large uncertainty. Since the same sandbox equipment as Cupola et al. (2015) and
Chen et al. (2018) was used, the same observation error distribution with a mean of 0
mg/l and a standard deviation of 1 mg/l were retained for this analysis.
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Fig. 5 Ensemble mean of the initial lnK realizations and the updated lnK realizations of all synthetic
scenarios(S1 − S6) at the 90th time step

Figures 8 and 9 show the evolution of the ensemblemean and the ensemble variance,
respectively, of the contaminant source parameters for the two sandbox scenarios
(R1, R2). Both approaches perform well with mean estimates close to the true values
and estimation variances close to zero for all parameters. It seems that the injection
concentration and the injection rate are more difficult to identify; they have the largest
estimation error and the largest estimation variance. However, if the mass loading rate
is computed, that is the product of the injection rate times the injection concentration;
its mean and variance is similar to those of the other contaminant parameters. This
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Fig. 6 Ensemble variance of the initial lnK realizations and the updated lnK realizations of all synthetic
scenarios(S1 − S6) at the 90th time step

result seems to indicate that there may be some indetermination in the identification of
parameters I c and I r that disappears when the subject of identification is its product.
Disregarding parameters I c and I r , it can be concluded that both scenarios perform
equally and, therefore, that Bauser’s inflation method can make up for the reduction
from 1000 realizations to 500 realizations with similar performance.

Figure 10 shows the ensemble mean and variance of lnK for scenarios R1 and R2
at the 90th time step. Figure 11 shows the ensemble mean of the absolute differences
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Fig. 7 Time evolution of RMSE, ES and the ratio of RMSE to ES for all synthetic scenarios (S1−S6)

between the reference and updated lnK maps at the 90th time step. Both scenarios
capture the main patterns of variability of lnK and the ensemble variance is substan-
tially reduced in the areas of low conductivity. This is mainly because there is a strong
correlation between low concentrations and low conductivities; the algorithm forces
conductivities to be low at the locations where the realization predict large concentra-
tions when the observed values are low or zero. Comparing the two scenarios, variance
reduction is larger for scenario R2 and the absolute deviations between reference and
estimated conductivities are smaller for R2, implying again that Bauser’s inflation
method is a valuable approach to reducing ensemble size and achieving results similar
to (or better that) those obtained when a larger ensemble is used. Figure 12 shows
the evolution in time of the RMSE, ES and RMSE/ES ratio for scenarios R1 and R2.
Again, scenario R2 performs remarkably well as compared to scenario R1, with a
similar RMSE, smaller ES and a ratio RMSE/ES not too far from one.

Figure 13 shows the evolution of the contaminant plume in the sandbox at the 10th,
40th, 60th and 90th time steps, while Fig. 14 is the ensemble mean of the contaminant
plumes computed on the initial ensemble of realizations. Figures 15 and 16 show the
ensemble mean of the contaminant plumes for scenarios R1 and R2, respectively, at
the same times steps as in Fig. 13 computed with all the parameters updated at the
90th time step. The comparison of the simulated plumes with the observed ones is
very favorable, demonstrating that the estimated parameters are conditioned on the
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Fig. 8 Time evolution of the ensemble means of the updated contaminant source parameters for the two
sandbox scenario (R1, R2). Also shown is the mass loading rate I c · I r

observed concentrations, and that they are capable of giving a good prediction of
contaminant movement.

7 Discussion and Conclusions

Xu and Gómez-Hernández (2018) showed the capabilities of the restart normal-score
ensemble Kalman filter (rNS-EnKF) for the simultaneous identification of source
parameters and hydraulic conductivities in synthetic aquifers. This work presents the
first attempt to apply it to a non-synthetic exercise. An aquifer is mimicked by a
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Fig. 9 Time evolution of the ensemble variances of the updated contaminant source parameters for the
two sandbox scenario (R1, R2). Also shown is the mass loading rate I c · I r . Notice that each ensemble
variance has been normalized by their values at time zero

laboratory sandbox inwhich geometry, initial and boundary conditions are known. The
first finding was that it was not straightforward to apply the approach to the collected
data; working under laboratory conditions does not preclude measurement errors and
other errors, which prevented the filter from working properly on first attempts. The
filterwould collapse, even for large ensemble sizes. This led us to conduct a preliminary
analysis of a synthetic case using solute concentrations generated by a numerical
model, thus getting rid of model or measurement errors. Six scenarios were compared
in this synthetic exercise, showing the importance of a good selection of an approach to
prevent filter collapse.Of the four alternative approaches, Bauser’s covariance inflation
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Fig. 10 Ensemble mean (top row) and ensemble variance (bottom row) of updated lnK of scenarios R1
and R2 at the 90th time step

Fig. 11 Ensemble mean of the absolute deviation between reference and updated lnK in scenarios R1 and
R2 at the 90th time step

method emerged as themost appropriate, allowing us to reduce the ensemble size from
1000 members (without inflation) to 500 (with inflation) to yield similar results. In
these synthetic scenarios, it could also be observed that the horizontal coordinate of the
sourcewaswell identified, but that the vertical onewas estimated a little bit downwards
from the original position. The explanation must be due to the closeness of the source
to a boundary between the large glass beads and the small ones. The synthetic results
also showed that it is difficult to identify a binary conductivity field starting from a
continuous distribution of log-conductivities, yet the two main zones of high and low
conductivities were well captured in the different scenarios, with the scenario having
1000 realizations performing best, followed by the scenario with 500 realizations and
using Bauser’s covariance inflation method.

The application of Bauser’s inflation and 500 realizations to the data observed in the
sandbox was compared with a non-inflated filter and 1000 realizations, with compa-
rable results. The identification of the source parameters was good in both cases, even
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Fig. 12 Time evolution of RMSE, ES and the ratio of RMSE to ES for scenarios R1 and R2

Fig. 13 Reference contaminant plume evolution at the 10th, 40th, 60th and 90th time steps in the sandbox.
Red triangle denotes the real injector
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Fig. 14 Ensemble mean of contaminant plume evolution of the initial realizations at the 10th, 40th, 60th
and 90th time steps. Red triangle denotes the real injector

Fig. 15 Ensemble mean of contaminant plume evolution of scenario R1 at the 10th, 40th, 60th and 90th
time steps with all parameters updated after the 90th time step. Red triangle denotes the real injector
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Fig. 16 Ensemble mean of contaminant plume evolution of scenario R2 at the 10th, 40th, 60th and 90th
time steps with all parameters updated after the 90th time step. Red triangle denotes the real injector

for the vertical coordinate of the injection. A better identification of the source vertical
position in the sandbox than in the synthetic exercises could be explained by the larger
measurement error variance used in the sandbox observations than in the synthetic
scenarios. A larger measurement error gives the filter more flexibility to update the
parameters to fit the observations, while resulting in a larger variance on the ensemble
of final parameters. It was also evident that the estimation of both injection rate and
injection concentration were biased; a further analysis showed that there is a degree
of indetermination in the estimation of these two parameters, since the parameter that
really matters is their product, the mass loading rate. The mass loading rate is well
estimated with no bias and little uncertainty. As in the synthetic case, the estimation
of a binary conductivity field by a continuous one is almost impossible, but the final
ensemble of log-conductivities displays enough spatial heterogeneity to distinguish
two main areas of high and low conductivities. More importantly, the solution of the
mass transport equation in the final conductivity fields yields a contaminant plume that
moves in space and time in pattern very similar to the one observed in the sandbox,
particularly in comparison with the mean plume estimate based on the initial ensemble
of conductivities.

It is important to notice that, in the sandbox experiment, the only available datawere
concentration data; no observations of either conductivities or piezometric heads were
available. In a practical case, both conductivity and piezometric head data could also
be assimilated, resulting in an improved estimation of all parameters being identified
as shown, for instance by Wen et al. (1996). In all cases, the number and distribution
of the observations will be critical; an interesting continuation of this work would be
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to perform a sensitivity analysis on the number and geometry of observation locations
together with the inclusion of piezometric head and conductivity data.

In conclusion, the rNS-EnKF has been demonstrated to work for the joint iden-
tification of a contaminant source and conductivities beyond the synthetic exercises
where it had been tested previously. The demonstration is still far fromfield conditions,
where boundary and initial conditions, forcing terms or geometry are not necessarily
known, but the sandbox exercise included a binary heterogeneous conductivity spatial
distribution, which is always difficult to identify. Further work should focus on the
application of the rNS-EnKF to a field case.

Acknowledgements Financial support to carry out this work was received from the Spanish Ministry of
Science and Innovation through project PID2019-109131RB-I00, and from the Spanish Ministry of Educa-
tion through project PRX17/00150. Teng Xu also acknowledges the financial support from the Fundamental
Research Funds for the Central Universities (B200201015) and Jiangsu Specially-Appointed Professor Pro-
gram (B19052). And the authors would like to thank University of Parma for providing the experimental
equipment. Part of the work was performed during a stay of the third author at the University of Parma
under the TeachinParma initiative, co-funded by Fondazione Cariparma and University of Parma.

References

Amirabdollahian M, Datta B (2014) Identification of pollutant source characteristics under uncertainty
in contaminated water resources systems using adaptive simulated anealing and fuzzy logic. Int J
GEOMATE 6(1):757–762

Anderson JL (2007) An adaptive covariance inflation error correction algorithm for ensemble filters. Tellus,
Ser A: Dynam Meteorol Oceanogr 59(2):210–224. https://doi.org/10.1111/j.1600-0870.2006.00216.
x

Aral MM, Guan J, Maslia ML (2001) Identification of contaminant source location and release history in
aquifers. J Hydrol Eng 6(3):225–234. https://doi.org/10.1061/(ASCE)1084-0699(2001)6:3(225)

Atmadja J, BagtzoglouAC (2001) State of the art report onmathematical methods for groundwater pollution
source identification. Environ Forens 2(3):205–214. https://doi.org/10.1006/enfo.2001.0055

Ayvaz MT (2016) A hybrid simulation-optimization approach for solving the areal groundwater pollution
source identification problems. J Hydrol 538:161–176. https://doi.org/10.1016/j.jhydrol.2016.04.008

Bagtzoglou AC, Atmadja J (2005) Mathematical methods for hydrologic inversion: the case of pollution
source identification. Water Pollut 5:65–96. https://doi.org/10.1007/b11442

Bagtzoglou AC, Dougherty DE, Tompson AFB (1992) Application of particle methods to reliable identifi-
cation of groundwater pollution sources. Water Resour Manage 6(1):15–23. https://doi.org/10.1007/
BF00872184

Bauser HH, Berg D, Klein O, Roth K (2018) Inflation method for ensemble Kalman filter in soil hydrology.
Hydrol Earth Syst Sci 22(9):4921–4934. https://doi.org/10.5194/hess-22-4921-2018

Bear J (1972) Dynamics of Fluids in Porous Media. American Elsevier, Amsterdam
Butera I, Tanda MG, Zanini A (2013) Simultaneous identification of the pollutant release history and the

source location in groundwater by means of a geostatistical approach. Stochast Environ Res Risk
Assess 27(5):1269–1280. https://doi.org/10.1007/s00477-012-0662-1

Camporese M, Cassiani G, Deiana R, Salandin P (2011) Assessment of local hydraulic properties from
electrical resistivity tomography monitoring of a three-dimensional synthetic tracer test experiment.
Water Resour Res 47(12):1–15. https://doi.org/10.1029/2011WR010528

Capilla JE, Rodrigo J, Gómez-Hernández JJ (1999) Simulation of non-gaussian transmissivity fields hon-
oring piezometric data and integrating soft and secondary information. Math Geol 31(7):907–927

Chang H, Zhang D, Lu Z (2010) History matching of facies distribution with the EnKF and level set
parameterization. J Comput Phys 229(20):8011–8030. https://doi.org/10.1016/j.jcp.2010.07.005

Chen Y, Zhang D (2006) Data assimilation for transient flow in geologic formations via ensemble Kalman
filter. Adv Water Res 29(8):1107–1122. https://doi.org/10.1016/j.advwatres.2005.09.007

Chen Z, Gómez-Hernández JJ, Xu T, Zanini A (2018) Joint identification of contaminant source and aquifer
geometry in a sandbox experiment with the restart ensemble kalman filter. J Hydrol 564:1074–1084

123

https://doi.org/10.1111/j.1600-0870.2006.00216.x
https://doi.org/10.1111/j.1600-0870.2006.00216.x
https://doi.org/10.1061/(ASCE)1084-0699(2001)6:3(225)
https://doi.org/10.1006/enfo.2001.0055
https://doi.org/10.1016/j.jhydrol.2016.04.008
https://doi.org/10.1007/b11442
https://doi.org/10.1007/BF00872184
https://doi.org/10.1007/BF00872184
https://doi.org/10.5194/hess-22-4921-2018
https://doi.org/10.1007/s00477-012-0662-1
https://doi.org/10.1029/2011WR010528
https://doi.org/10.1016/j.jcp.2010.07.005
https://doi.org/10.1016/j.advwatres.2005.09.007


Math Geosci (2021) 53:1587–1615 1613

Citarella D, Cupola F, Tanda MG, Zanini A (2015) Evaluation of dispersivity coefficients by means of a
laboratory image analysis. J Contam Hydrol 172:10–23. https://doi.org/10.1016/j.jconhyd.2014.11.
001

Crestani E, Camporese M, Baú D, Salandin P (2012) Ensemble Kalman filter versus ensemble smoother
for assessing hydraulic conductivity via tracer test data assimilation. Hydrol Earth Syst Sci Discuss
9(11):13083–13115. https://doi.org/10.5194/hessd-9-13083-2012

Cupola F, TandaMG, Zanini A (2015) Laboratory sandbox validation of pollutant source location methods.
Stochast Environ Res Risk Assess 29(1):169–182. https://doi.org/10.1007/s00477-014-0869-4

Datta B, Chakrabarty D, Dhar A (2009) Simultaneous identification of unknown groundwater pollution
sources and estimation of aquifer parameters. J Hydrol 376(1–2):48–57. https://doi.org/10.1016/j.
jhydrol.2009.07.014

EvensenG (1994) Sequential data assimilation with a nonlinear quasi-geostrophicmodel usingMonte Carlo
methods to forecast error statistics. J Geophys Res 99(C5):10143. https://doi.org/10.1029/94JC00572

Feyen L, Gómez-Hernández JJ, Ribeiro P Jr, Beven KJ, De Smedt F (2003a) A Bayesian approach to
stochastic capture zone delineation incorporating tracer arrival times, conductivity measurements, and
hydraulic head observations. Water Resour Res 39(5):1126. https://doi.org/10.1029/2002WR001544

Feyen L, Ribeiro P Jr, Gomez-Hernandez J, Beven KJ, De Smedt F (2003b) Bayesian methodology for
stochastic capture zone delineation incorporating transmissivity measurements and hydraulic head
observations. J Hydrol 271(1–4):156–170

Franssen HH, Gómez-Hernández J (2002) 3d inverse modelling of groundwater flow at a fractured site
using a stochastic continuum model with multiple statistical populations. Stochast Environ Res Risk
Assess 16(2):155–174

Gómez-Hernández J, Wen XH (1994) Probabilistic assessment of travel times in groundwater modeling.
Stochast Hydrol Hydraul 8(1):19–55

Gómez-Hernández J, Franssen HJH, Sahuquillo A (2003) Stochastic conditional inverse modeling of sub-
surface mass transport: a brief review and the self-calibrating method. Stochast Environ Res Risk
Assess 17(5):319–328

Gómez-Hernández JJ, Wen XH (1998) To be or not to be multi-Gaussian? A reflection on stochastic
hydrogeology. Adv Water Resour 21(1):47–61. https://doi.org/10.1016/S0309-1708(96)00031-0

Gorelick SM, Evans B, Remson I (1983) Identifying sources of groundwater pollution: an optimization
approach. Water Resour Res 19(3):779–790. https://doi.org/10.1029/WR019i003p00779

Greybush SJ, Kalnay E, Miyoshi T, Ide K, Hunt BR (2011) Balance and ensemble kalman filter localization
techniques. Mon Weather Rev 139(2):511–522

Hendricks Franssen HJ, Kinzelbach W (2008) Real-time groundwater flow modeling with the Ensemble
Kalman Filter: joint estimation of states and parameters and the filter inbreeding problem. Water
Resour Res 44(9):1–21. https://doi.org/10.1029/2007WR006505

Hendricks Franssen HJ, Kinzelbach W (2009) Ensemble kalman filtering versus sequential self-calibration
for inverse modelling of dynamic groundwater flow systems. J Hydrol 365(3–4):261–274

Houtekamer PL,Mitchell HL (2001) A sequential ensemble kalman filter for atmospheric data assimilation.
MonWeatherRev 129(1):123–137. https://doi.org/10.1175/1520-0493(2001)129<0123:ASEKFF>2.
0.CO;2

Jafarpour B, Khodabakhshi M (2011) A Probability Conditioning Method (PCM) for nonlinear flow data
integration into multipoint statistical facies simulation. Math Geosci 43(2):133–164. https://doi.org/
10.1007/s11004-011-9316-y

Journel A, Isaaks E (1984) Conditional indicator simulation: application to a saskatchewan uranium deposit.
J Int Assoc Math Geol 16(7):685–718

Journel AG, Gomez-Hernandez JJ et al (1993) Stochastic imaging of the wilmington clastic sequence. SPE
format Evaluat 8(01):33–40

Knudby C, Carrera J (2005) On the relationship between indicators of geostatistical, flow and transport
connectivity. Adv Water Resour 28(4):405–421. https://doi.org/10.1016/j.advwatres.2004.09.001

Koch J, Nowak W (2016) Identification of contaminant source architectures—A statistical inversion that
emulates multiphase physics in a computationally practicable manner. Water Res Res 52(2):1009–
1025. https://doi.org/10.1002/2015WR017894

Kumar D, Srinivasan S (2019) Ensemble-based assimilation of nonlinearly related dynamic data in reservoir
models exhibiting non-gaussian characteristics. Math Geosci 51(1):75–107. https://doi.org/10.1007/
s11004-018-9762-x

123

https://doi.org/10.1016/j.jconhyd.2014.11.001
https://doi.org/10.1016/j.jconhyd.2014.11.001
https://doi.org/10.5194/hessd-9-13083-2012
https://doi.org/10.1007/s00477-014-0869-4
https://doi.org/10.1016/j.jhydrol.2009.07.014
https://doi.org/10.1016/j.jhydrol.2009.07.014
https://doi.org/10.1029/94JC00572
https://doi.org/10.1029/2002WR001544
https://doi.org/10.1016/S0309-1708(96)00031-0
https://doi.org/10.1029/WR019i003p00779
https://doi.org/10.1029/2007WR006505
https://doi.org/10.1175/1520-0493(2001)129<0123:ASEKFF>2.0.CO;2
https://doi.org/10.1175/1520-0493(2001)129<0123:ASEKFF>2.0.CO;2
https://doi.org/10.1007/s11004-011-9316-y
https://doi.org/10.1007/s11004-011-9316-y
https://doi.org/10.1016/j.advwatres.2004.09.001
https://doi.org/10.1002/2015WR017894
https://doi.org/10.1007/s11004-018-9762-x
https://doi.org/10.1007/s11004-018-9762-x


1614 Math Geosci (2021) 53:1587–1615

Kumar D, Srinivasan S (2020) Indicator-based data assimilation with multiple-point statistics for updating
an ensemble of models with non-Gaussian parameter distributions. Adv Water Resour 141:103611.
https://doi.org/10.1016/j.advwatres.2020.103611

Li H, Kalnay E, Miyoshi T (2009) Simultaneous estimation of covariance inflation and observation errors
within an ensemble Kalman filter. Q J R Meteorol Soc 135(639):523–533. https://doi.org/10.1002/qj.
371

LiL,ZhouH,Gómez-Hernández JJ (2011)Acomparative study of three-dimensional hydraulic conductivity
upscaling at themacro-dispersion experiment (made) site, Columbus air force base,Mississippi (USA).
J Hydrol 404(3–4):278–293

Li L, ZhouH,Gómez-Hernández JJ, Hendricks FranssenHJ (2012a) Jointlymapping hydraulic conductivity
and porosity by assimilating concentration data via ensemble Kalman filter. J Hydrol 428–429:152–
169. https://doi.org/10.1016/j.jhydrol.2012.01.037

Li L, Zhou H, Hendricks Franssen HJ, Gómez-Hernández JJ (2012b) Groundwater flow inverse modeling
in non-MultiGaussian media: performance assessment of the normal-score Ensemble Kalman Filter.
Hydrol Earth Syst Sci 16(2):573–590. https://doi.org/10.5194/hess-16-573-2012

Li L, Zhou H, Hendricks Franssen HJ, Gómez-Hernández JJ (2012c) Modeling transient groundwater flow
by coupling ensemble kalman filtering and upscaling. Water Resour Res 48(1):W01537. https://doi.
org/10.1029/2010WR010214

Liang X, Zheng X, Zhang S, Wu G, Dai Y, Li Y (2011) Maximum likelihood estimation of inflation
factors on error covariance matrices for ensemble kalman filter assimilation. Q J R Meteorol Soc
138(662):263–273

Liang X, Zheng X, Zhang S, Wu G, Dai Y, Li Y (2012) Maximum likelihood estimation of inflation
factors on error covariance matrices for ensemble Kalman filter assimilation. Q J R Meteorol Soc
138(662):263–273. https://doi.org/10.1002/qj.912

Mahar PS,DattaB (2000) Identification of pollution sources in transient groundwater systems.Water Resour
Manage 14(3):209–227. https://doi.org/10.1023/A:1026527901213

McDonald JM, Harbaugh AW (1988) A modular three-dimensional finite-difference flow model. Techniq
Water Resour Investig US Geol Surv Book 6:586. https://doi.org/10.1016/0022-1694(86)90106-X

Michalak AM, Kitanidis PK (2004) Estimation of historical groundwater contaminant distribution using
the adjoint state method applied to geostatistical inverse modeling. Water Resour Res. https://doi.org/
10.1029/2004WR003214

Mirghani BY, Mahinthakumar KG, Tryby ME, Ranjithan RS, Zechman EM (2009) A parallel evolution-
ary strategy based simulation-optimization approach for solving groundwater source identification
problems. Adv Water Resour 32(9):1373–1385. https://doi.org/10.1016/j.advwatres.2009.06.001

Neupauer RM, Wilson JL (1999) Adjoint method for obtaining backward-in-time location and travel time
probabilities of a conservative groundwater contaminant.WaterResourRes 35(11):3389–3398. https://
doi.org/10.1029/1999WR900190

Sun AY, Painter SL, Wittmeyer GW (2006) A constrained robust least squares approach for contaminant
release history identification. Water Res Res 42(4):1–13. https://doi.org/10.1029/2005WR004312

Sun AY, Morris AP, Mohanty S (2009) Sequential updating of multimodal hydrogeologic parameter fields
using localization and clustering techniques. Water Resour Res 45(7):1–15. https://doi.org/10.1029/
2008WR007443

Wagner BJ (1992) Simultaneous parameter estimation and contaminant source characterization for coupled
groundwater flow and contaminant transport modelling. J Hydrol 135(1–4):275–303. https://doi.org/
10.1016/0022-1694(92)90092-A

Wang X, Bishop CH (2003) A comparison of breeding and ensemble transform kalman filter ensemble
forecast schemes. JAtmosSci 60(9):1140–1158. https://doi.org/10.1175/1520-0469(2003)060<1140:
ACOBAE>2.0.CO;2

Wen XH, Chen WH (2005) Some practical issues on real-time reservoir model updating using ensemble
Kalman filter. Paper presented at the International Petroleum Technology Conference, Doha, Qatar,
November 2005. Paper Number: IPTC-11024-MS. https://doi.org/10.2523/IPTC-11024-MS

Wen XH, Chen WH (2006) Real-time reservoir model updating using ensemble Kalman filter with con-
firming option. SPE J 11(4):431–442. https://doi.org/10.2118/92991-PA

WenXH, JaimeGómez-Hernandez J, Capilla JE, SahuquilloA (1996) Significance of conditioning to piezo-
metric head data for predictions ofmass transport in groundwatermodeling.MathGeol 28(7):951–968.
https://doi.org/10.1007/BF02066011

123

https://doi.org/10.1016/j.advwatres.2020.103611
https://doi.org/10.1002/qj.371
https://doi.org/10.1002/qj.371
https://doi.org/10.1016/j.jhydrol.2012.01.037
https://doi.org/10.5194/hess-16-573-2012
https://doi.org/10.1029/2010WR010214
https://doi.org/10.1029/2010WR010214
https://doi.org/10.1002/qj.912
https://doi.org/10.1023/A:1026527901213
https://doi.org/10.1016/0022-1694(86)90106-X
https://doi.org/10.1029/2004WR003214
https://doi.org/10.1029/2004WR003214
https://doi.org/10.1016/j.advwatres.2009.06.001
https://doi.org/10.1029/1999WR900190
https://doi.org/10.1029/1999WR900190
https://doi.org/10.1029/2005WR004312
https://doi.org/10.1029/2008WR007443
https://doi.org/10.1029/2008WR007443
https://doi.org/10.1016/0022-1694(92)90092-A
https://doi.org/10.1016/0022-1694(92)90092-A
https://doi.org/10.1175/1520-0469(2003)060<1140:ACOBAE>2.0.CO;2
https://doi.org/10.1175/1520-0469(2003)060<1140:ACOBAE>2.0.CO;2
https://doi.org/10.2523/IPTC-11024-MS
https://doi.org/10.2118/92991-PA
https://doi.org/10.1007/BF02066011


Math Geosci (2021) 53:1587–1615 1615

Wen XH, Capilla JE, Deutsch C, Gómez-Hernández J, Cullick A (1999) A program to create permeability
fields that honor single-phase flow rate and pressure data. Comp Geosci 25(3):217–230

Woodbury AD, Ulrych TJ (1996) Minimum relative entropy inversion: theory and application to recovering
the release history of a groundwater contaminant. Water Resour Res 32(9):2671–2681

Xu T, Gómez-Hernández JJ (2016) Joint identification of contaminant source location, initial release time,
and initial solute concentration in an aquifer via ensemble Kalman filtering.Water Resour Res. https://
doi.org/10.1002/2014WR016618.Received

XuT (2017)Gómez-Hernández JJ (2018) Simultaneous identification of a contaminant source and hydraulic
conductivity via the restart normal-score ensemble Kalman filter. Adv Water Resour 112:106–123.
https://doi.org/10.1016/j.advwatres.2017.12.011

Xu T, Gómez-Hernández JJ, Zhou H, Li L (2013) The power of transient piezometric head data in inverse
modeling: an application of the localized normal-score EnKF with covariance inflation in a heteroge-
nous bimodal hydraulic conductivity field. Adv Water Res 54:100–118. https://doi.org/10.1016/j.
advwatres.2013.01.006

Yeh HD, Chang TH, Lin YC (2007) Groundwater contaminant source identification by a hybrid heuristic
approach. Water Resour Res 43(9):1–16. https://doi.org/10.1029/2005WR004731

Zheng C, Wang PP (1999) MT3DMS: A Modular Three-Dimensional Multispecies Transport Model
(December):219

Zheng X (2009) An adaptive estimation of forecast error covariance parameters for Kalman filtering data
assimilation. Adv Atmos Sci 26(1):154–160. https://doi.org/10.1007/s00376-009-0154-5

Zhou H, Gómez-Hernández JJ, Hendricks Franssen HJ, Li L (2011) An approach to handling non-
Gaussianity of parameters and state variables in ensemble Kalman filtering. Adv Water Resour
34(7):844–864. https://doi.org/10.1016/j.advwatres.2011.04.014

Zhou H, Gómez-Hernández JJ, Li L (2012a) A pattern-search-based inverse method. Water Resour Res
48(3):W03505. https://doi.org/10.1029/2011WR011195

Zhou H, Li L, Franssen HJH, Gómez-Hernández JJ (2012b) Pattern recognition in a bimodal aquifer using
the normal-score ensemble kalman filter. Math Geosci 44(2):169–185

Zhou H, Gómez-Hernández JJ, Li L (2014) Inverse methods in hydrogeology: evolution and recent trends.
Adv Water Resour 63:22–37. https://doi.org/10.1016/j.advwatres.2013.10.014

Zinn B, Harvey CF (2003) When good statistical models of aquifer heterogeneity go bad: a comparison
of flow, dispersion, and mass transfer in connected and multivariate Gaussian hydraulic conductivity
fields. Water Resour Res 39(3):137–147. https://doi.org/10.1029/2001WR001146

123

https://doi.org/10.1002/2014WR016618.Received
https://doi.org/10.1002/2014WR016618.Received
https://doi.org/10.1016/j.advwatres.2017.12.011
https://doi.org/10.1016/j.advwatres.2013.01.006
https://doi.org/10.1016/j.advwatres.2013.01.006
https://doi.org/10.1029/2005WR004731
https://doi.org/10.1007/s00376-009-0154-5
https://doi.org/10.1016/j.advwatres.2011.04.014
https://doi.org/10.1029/2011WR011195
https://doi.org/10.1016/j.advwatres.2013.10.014
https://doi.org/10.1029/2001WR001146

	Contaminant Spill in a Sandbox with Non-Gaussian Conductivities: Simultaneous Identification by the Restart Normal-Score Ensemble Kalman Filter
	Abstract
	1 Introduction
	2 Methodology
	2.1 Groundwater Flow and Solute Transport Equations
	2.2 The Ensemble Kalman Filter
	2.2.1 The normal-Score EnKF
	2.2.2 The Restart NS-EnKF
	2.2.3 Damping
	2.2.4 Inflation Methods
	2.2.5 Localization Methods


	3 Sandbox Experiment
	4 Definition of Scenarios and Ensemble Initialization
	5 Performance Evaluation
	6 Results
	6.1 Analysis of the Synthetic Data
	6.2 Analysis of the Sandbox Data

	7 Discussion and Conclusions
	Acknowledgements
	References




