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Abstract Real geo-data are three-dimensional (3D) and spatially varied, but mea-
surements are often sparse due to time, resource, and/or technical constraints. In
these cases, the quantities of interest at locations where measurements are missing
must be interpolated from the available data. Several powerful methods have been
developed to address this problem in real-world applications over the past several
decades, such as two-point geo-statistical methods (e.g., kriging or Gaussian process
regression, GPR) and multiple-point statistics (MPS). However, spatial interpolation
remains challenging when the number of measurements is small because a suitable
covariance function is difficult to select and the parameters are challenging to esti-
mate from a small number of measurements. Note that a covariance function form
and its parameters are key inputs for some methods (e.g., kriging or GPR). MPS is
a non-parametric simulation method that combines training images as prior knowl-
edge for sparse measurements. However, the selection of a suitable training image
for continuous geo-quantities (e.g., soil or rock properties) faces certain difficulties
and may become increasingly complicated when the geo-data to be interpolated are
high-dimensional (e.g., 3D) and exhibit non-stationary (e.g., with unknown trends
or non-stationary covariance structure) and/or anisotropic characteristics. This paper
proposes a non-parametric approach that systematically combines compressive sens-
ing and variational Bayesian inference for statistical interpolation of 3D geo-data. The

B Yu Wang
yuwang@cityu.edu.hk

Tengyuan Zhao
tyzhao@xjtu.edu.cn

1 School of Human Settlements and Civil Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi
Province, China

2 Department of Architecture and Civil Engineering, City University of Hong Kong, Tat Chee
Avenue, Kowloon, Hong Kong

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11004-020-09913-x&domain=pdf
http://orcid.org/0000-0003-4635-7059


1172 Math Geosci (2021) 53:1171–1199

method uses sparse measurements and their locations as the input and provides inter-
polated values at unsampled locations with quantified interpolation uncertainty as the
output. The proposed method is illustrated using a series of numerical 3D examples,
and the results indicate a reasonably good performance.

Keywords Spatial data · Bayesian compressive sensing · Data-driven approach ·
Uncertainty quantification · Non-parametric interpolation

1 Introduction

High-resolution and spatially varied three-dimensional (3D) geo-data play an essential
role in geosciences. For instance, high-resolution 3D geophysical data are useful for
developing geological models (Wang et al. 2017), which are needed to understand the
subsurface conditions in an engineering project (Hillier et al. 2014). High-resolution
3D data of soil or rock properties are a key input for computational models (e.g., 3D
finite element models) used to analyze the stability of geo-structures (e.g., slopes,
tunnels) (Hack et al. 2006; Griffiths and Marquez 2007; Xiao et al. 2016; Hong et al.
2020). In environmental engineering, high-resolution and spatially varied soil con-
tamination data are necessary for informed and effective decision-making (Largueche
2006; Li and Heap 2011; Horta et al. 2013). High-resolution and spatially varied ore-
grade data within a mineral deposit are also a key element in mining engineering
(Matheron 1963).

The measurement of high-resolution and spatially varied 3D geo-data is generally
expensive and time-consuming because numerous drilled boreholes may be required
to obtain adequate subsurface data in 3D space. In geoscience practice, the number
of measurements of a given spatially varied quantity of interest is often small due to
time, resource, and/or technical constraints. This is especially true for medium- or
small-sized projects (Schnabel et al. 2004; Li and Heap 2011). In these cases, the spa-
tially varied quantities of interest at locations where measurements are missing must
be interpolated from sparse measurements obtained at other locations, which leads to
the classical spatial interpolation problem. Two-point geo-statistical methods, such as
kriging orGaussian process regression (GPR) inmachine learning, are commonly used
because they provide both the interpolation and uncertainty at unsampled locations
(Matheron 1963, 1973; Cressie 1993; Rasmussen and Williams 2006). The uncer-
tainty is a useful indicator that reflects the accuracy and reliability of the interpolation
results. After developments in recent decades, GPR and kriging can now handle data
with sophisticated two-point covariance structures (Williams 1998; Rasmussen and
Williams 2006; Shekaramiz et al. 2019; Gilanifar et al. 2019). Kriging and GPR are
powerful in real-world applications but may have some limitations when covariance
models of sparse measurements cannot be appropriately determined, partly due to the
difficulty in obtaining reliable scale parameter estimates from the very limited num-
ber of measurements (Lamorey and Jacobson 1995; Largueche 2006). Additionally,
two-point geostatistics cannot handle datasets with complex spatial structures. These
limitations have partly motivated the development of multiple-point statistics (MPS)
since the early 2000s.
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In contrast to kriging or GPR, MPS bypasses the two-point correlation model (e.g.,
semi-variogram model) (Strebelle 2002) and instead simulates the property of inter-
est at unsampled locations in a non-parametric manner by systematically integrating
a training image with measurements (Remy et al. 2009; Mariethoz and Caers 2015).
Because of its data-driven nature,MPShas evolved as a non-parametric tool in geologi-
cal engineering (Zhang 2008), groundwater flowmodeling (Huysmans andDassargues
2009), climate modeling (Mariethoz and Caers 2015), and subsurface layer modeling
(Shi and Wang 2020). Notably, MPS requires training images to simulate or interpo-
late physical quantities at unmeasured locations, and such images can be difficult to
obtain, especially for certain continuous variables (e.g., soil/rock properties) over spa-
tial coordinates in 3D space. In addition to MPS, other non-Gaussian non-stationary
methods have also been developed to model complex spatial structures in geology,
such as the high-order spatial cumulant method (Dimitrakopoulos et al. 2010), which
unfortunately requires a relatively large number of data points.

To address this problem and provide an alternative to spatial interpolation, a non-
parametric method is developed in this study by combining compressive sensing (CS)
from signal processing (Candès and Wakin 2008) and variational Bayesian inference
(VBI) from Bayesian inference and machine learning (Bishop 2006). The proposed
method requires only a small set of linear measurements and their locations as the
input, and provides both the interpolated 3D dataset and the quantified uncertainty
associated with the interpolation at each location as the output. The CS framework for
3D geo-data is briefly reviewed in this paper, followed by a detailed description of the
Bayesian formulation and VBI and a step-by-step implementation procedure. Finally,
the proposed method is illustrated using a series of numerical examples.

2 Framework of Compressive Sensing

In this section, the CS framework is discussed for spatially varied 3D geo-data (e.g.,
geo-quantity variations in three directions). The notation used in this study is defined
before discussing the CS framework in detail. In this study, a bold, underlined, capital
letter represents a 3D dataset. For example, F represents a 3D dataset with dimen-
sions of N1 ×N2 ×N3. A bold capital letter without an underline represents a
two-dimensional (2D) matrix. For example, B1, B2, and B3 represent three 2D matri-
ces with dimensions of N1 ×N1, N2 ×N2, and N3 ×N3, respectively. A bold italic
letter is used to represent a vector, such as y. Symbols together with a bracket “(·)” and
indexes are used for an element of a 3D dataset or 2D matrix. For example, F(m, n, l)
represents an element of F indexed by (m, n, l) and B1(m, n) represents an element of
B1 indexed by m and n. When an element of a vector is of interest, a vector symbol
with a bracketed “(·)” or subscripted index is used. For example, y(m) and ym both
represent an element of y indexed by m.

Compressive sensing or sampling is a new sampling strategy used to reconstruct
a signal (e.g., 3D dataset) from a small set of linear measurements of that signal.
This approach is originated from the field of signal processing (Candès and Romberg
2005;Candès andWakin2008) and asserts thatmost natural signals are compressible or
sparse, suggesting that a signal can be represented concisely by a weighted summation

123



1174 Math Geosci (2021) 53:1171–1199

Fig. 1 An illustrative example of 3D dataset F

of a limited number of basis functions (e.g., discrete cosine functions) (Salomon 2007;
Zhao and Wang 2018a). The signals of interest here may have a spatial variation of
mean with magnitude significantly larger than zero. Consider for example, the 3D
dataset F in Fig. 1, which has dimensions of N1 ×N2 ×N3. Mathematically, F may
be represented as a weighted summation of N �N1 ×N2 ×N3 3D basis functions
(Caiafa and Cichocki 2013a, b), as illustrated by Fig. 2 and expressed as

F �
N∑

t�1

ω3D
t B3D

t , (1)

where B3D
t is the tth 3D basis function with the same dimension as F and is used

to decompose F. The construction of B3D
t , however, is independent of F. A detailed

construction of B3D
t is given in “Appendix A”. ω3D

t is the weight corresponding to
B3D
t . For a compressible signal, most elements of ω3D

t are negligible except for a few
non-trivial elements with significantly large magnitudes (Caiafa and Cichocki 2013a,
b). It is therefore possible to reconstruct the 3D dataset F and estimate or interpolate
values of the quantity at unsampled locations by using sparse measurements of F,
once the non-trivial elements of ω3D

t can be appropriately estimated. In such cases, F
can be reconstructed as F̂, which is expressed as

F̂ �
N∑

t�1

ω̂3D
t B3D

t , (2)

where ω̂3D
t represents ω3D

t as estimated from measurements.
To estimate ω̂3D

t from measurements of F, a relationship between ω̂3D
t and the

measurements is required. Let a column vector ω3D represent ω3D
t (t �1, 2, …, N)

and y3D represent M sparse measurements of F with an M×3 matrix Iind,M that
records the index (m, n, l) of the M elements of y3D in F. The first, second, and third
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Fig. 2 Illustration of 3D dataset decomposition

columns of Iind,M , i.e., I ind,M
1 , I ind,M

2 , and I ind,M
3 , respectively record the index m,

n, and l of the M measurements of y3D in F. For mathematical convenience, y3D

records the M measurements F(m, n, l) in an increasing order of m (m ∈ I ind,M
1 )

first, followed by n (n ∈ I ind,M
2 ) and l (l ∈ I ind,M

3 ). A close examination of Eq. (1)
shows that each element F(m, n, l) is a weighted summation of B3D

t (m, n, l), i.e.,
F(m, n, l) � ∑N

t�1 ω3D
t B3D

t (m, n, l). For conciseness, B3D
t (m, n, l) (t �1, 2, …, N)

is rewritten as a row vector (ar)T with a length of N , where “T” in the superscript
represents the transpose operation in linear algebra. In such a case, F(m, n, l) can be
rewritten as (ar)Tω3D. Because each element of y3D is also an element of F, the former
can also be expressed as (ar)Tω3D. Because there areM elements in y3D, there areM
row vectors (ar1)

T, (ar2)
T, …, (arM )T, which are stored as a matrix A with dimensions

of M×N . The relationship between y3D and ω3D is then established as

y3D � Aω3D. (3)

Subsequently, the non-trivial elements of ω3D may be obtained from y3D using Eq. (3).
Because the number of measurements in y3D is usually small, the ω3D estimated
from y3D and denoted as ω̂

3D may contain significant statistical uncertainty. Such
uncertainty propagates to the interpolated 3D geo-data F̂ through Eq. (2) and may
significantly affect the subsequent analysis when the interpolated geo-data are used as
the input to analyze problems in geoscience (Luo et al. 2013; Ching et al. 2016; Wang
and Zhao 2017b). Quantification of the uncertainty associated with the interpolated

123



1176 Math Geosci (2021) 53:1171–1199

Fig. 3 Locations of measurements and four boreholes H1 to H4 in 3D space

3D geo-data F̂ is thus essential. This begins with the quantification of the estimation
uncertainty associated with ω̂

3D , which is discussed in the following section.
Note that in the context of CS, measurements from sparse or compressible signals

are often made in a smart way such that each measurement contains valuable infor-
mation about the entire signal through, say, a linear combination of all measurements
in a randomized matrix. Such an operation is often performed for data compression
in image compression and signal transmission, where the complete signal or at least a
significant portion (e.g., 50%) of the signal is available. However, when only a small
portion (e.g., a few percent) of the signal is measured, it might not be necessary to
perform a random linear combination for data compression and transmission because
the number of data points is already very small. Consider, for example, the data shown
in Fig. 3, where only 100/262,144≈0.038% of the dataset is measured. This is a
scenario similar to typical geoscience applications (e.g., geological or mining appli-
cations), where only a very limited number of soil or rock samples is collected at
pre-selected locations (e.g., some prescribed boreholes in Fig. 3), and their properties
are measured via either laboratory or in situ tests. In this case, the measurements of the
soil and rock properties are similar to a limited number of pixels in an image, rather
than “compressed” pixel data. Accordingly, the “sensing matrix” is only a matrix with
all elements being either one or zero, which reflects the measurement positions of the
soil/rock properties in space. A random linear combination is therefore not used in
this study.

3 Bayesian Formulation for ω̂
3D

In this section, ω̂
3D is estimated under a Bayesian framework, and its uncertainty

is effectively quantified. A Bayesian method is adopted in this study because it can
effectively handle various uncertainties, including model uncertainty (Zhang et al.
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2009; Wang and Zhao 2017a), spatial variability of soil properties (Wang et al. 2016;
Wang and Zhao 2017b), and soil stratification or lithology characterization uncertainty
(Buland et al. 2008; Wang et al. 2013, 2018; Cao et al. 2018; Moja et al. 2018).
Following Bayes’ theorem, the knowledge (including uncertainty) of ω̂

3D updated by
measurements y3D is reflected by its posterior probability density function (PDF), i.e.,
p(ω̂3D| y3D, Prior ), where “Prior” represents the knowledge of ω̂

3D in the absence
of measurements y3D. In Bayesian literature, p(ω̂3D| y3D, Prior ) is usually simplified
as p(ω̂3D| y3D), which is expressed as (Sivia and Skilling 2006)

p(ω̂3D| y3D) � p( y3D|ω̂3D)p(ω̂3D)

p( y3D)
, (4)

where p( y3D|ω̂3D) is the likelihood function, which reflects the plausibility of observ-
ing y3D given ω̂

3D; p(ω̂3D) is the prior PDF of ω̂3D , which reflects the prior knowledge
of ω̂

3D in the absence of y3D; and p(y3D) is a constant, which ensures that the integra-
tion of p(ω̂3D| y3D) �1. Equation (4) shows that the likelihood function and the prior
PDF are two essential ingredients of a Bayesian framework; these are constructed
separately below.

To construct the likelihood function p( y3D|ω̂3D), the elements of y3D should be
related to ω̂

3D [see Eq. (3)]. When ω̂
3D is estimated and substituted into Eq. (3), some

residuals may be introduced between y3D and Aω̂
3D . The residuals are often modeled

as a Gaussian random variable ε in the literature (Bishop and Tipping 2000; Tipping
2001). In such cases, Eq. (3) is modified to

y3D � Aω̂
3D + ε IM , (5)

where ε has a mean of zero and an unknown variance. IM is a column vector with
a length of M, and all of its elements are equal to one. The likelihood function of
observing y3D is then expressed as (Tipping 2001; Ji et al. 2008)

p( y3D|ω̂3D
, τ ) � τM/2

(√
2π

)M
exp

⎛

⎜⎝−
τ

(
y3D − Aω̂

3D
)T (

y3D − Aω̂
3D

)

2

⎞

⎟⎠ , (6)

where τ represents the reciprocal of the unknown variance of ε for derivation conve-
nience. Because τ influences ω̂

3D through Eqs. (6) and (4), τ may also be taken as a
random variable (Huang et al. 2016; Bishop and Tipping 2000). In such cases, a prior
joint PDF of (ω̂3D , τ ) is required and can be expressed as

p(ω̂3D
, τ ) � p(ω̂3D)p(τ ), (7)

where ω̂
3D and τ are taken to be independent of each other.

Consider first the prior PDF of ω̂
3D . Each element of ω̂

3D , i.e., ω̂3D
t , is taken to

follow a Gaussian distribution with a mean of zero and an unknown variance. This
may be justified by noting that ω̂3D

t can be either negative or positive. For derivation
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convenience, the inverse of the variance of ω̂3D
t is expressed as αt (αt>0) (Bishop and

Tipping 2000; Zhao et al. 2018a). The prior distribution of ω̂
3D is then expressed as

p(ω̂3D |α) �
N∏

t�1

α
1/2
t√
2π

exp

(
−αt (ω3D

t )2

2

)
� [det(Dα)]1/2

(2π )N/2 exp

(
− (ω3D)TDα(ω3D)

2

)
.

(8)

Note that Eq. (8) and the likelihood function in Eq. (6) are a conjugate pair in the
Bayesian formulation, which means that the posterior PDF of ω̂3D to be derived in the
next section also follows a multivariate normal distribution (Murphy 2012). In Eq. (8),
α represents αt in a vector format and Dα is a diagonal matrix with a dimension of
N×N , which has diagonal element Dα(t, t)�αt . αt (t �1, 2, …, N) may be treated
probabilistically as a random variable such that the uncertainty associated with αt and
its effect on ω̂

3D can be explicitly considered. Following Zhao et al. (2015), αt is taken
to follow an inverse Gamma distribution with a constant parameter of 1 and γ (γ >0),
i.e., p(αt |γ )�γ /2·α−2

t ·exp(−γ /2·α−1
t ). The prior PDF for α is expressed as

p(α|γ ) �
N∏

t�1

p(αt |γ ). (9)

γ is then further taken as a random variable, which follows a Gamma distribution

p(γ ) � Gamma (a0, b0) � ba00 γ a0−1 exp (−b0γ ) /Γ (a0), (10)

where a0 and b0 are taken as small non-negative values in this study, e.g., a0 �b0 �
10−4. Small a0 and b0 values in a Gamma distribution ensure that γ can potentially
vary across a very broad range but tends to have small values. In such a case, the prior
PDF of αt tends to exhibit a spike around zero; namely, αt tends to be small and 1/αt ,
i.e., the variance of ω̂3D

t , tends to be significant. Such parameter configurations ensure
that the prior PDF of ω̂3D

t is uninformative and that ω̂3D
t can be efficiently updated

by the measurements. The reciprocal of the variance of ε, i.e., τ , is taken to follow a
Gamma distribution, and the prior PDF p(τ ) is expressed as

p(τ ) � dc00 τ c0−1

Γ (c0)
exp (−d0τ) , (11)

where c0 and d0 are also non-negative parameters and are taken as small values, e.g.,
c0 �d0 �10−4 in this study (Shekaramiz et al. 2017, 2019). This ensures that τ has
a tendency of being small, i.e., large values for 1/τ . Such a configuration promotes a
non-informative prior distribution for the variance of the residuals between y3D and
Aω̂

3D .
The joint prior PDF of ω̂

3D
,α, τ, γ can then be obtained by substituting the prior

PDF of each parameter shown in Eqs. (8)–(11) into Eq. (12) below

p(ω̂3D
,α, γ, τ ) � p(ω̂3D|α)p(α|γ )p(γ )p(τ ). (12)
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Note that Eq. (12) uses p(ω̂3D
,α, γ, τ ), rather than p(ω̂3D) as in Eq. (7), because α,

γ , and τ are also taken as random variables in addition to ω̂
3D . Subsequently, the joint

posterior PDF of (ω̂3D
,α, γ, τ ) can be derived theoretically as

p(ω̂3D
,α, γ, τ | y3D) � p( y3D |ω̂3D

, τ )p(ω̂3D |α)p(α|γ )p(γ )p(τ )/p( y3D).

� τM/2

(2π)M/2 exp

(
−τ ( y3D − Aω̂

3D)T ( y3D − Aω̂
3D)

2

)

[det(Dα)]1/2

(2π )N/2 exp

(
− (ω̂3D)TDα(ω̂3D)

2

)

×
N∏

t�1

γ

2
α−2
t exp

[
−γ

2
α−1
t

]
× dc00 τ c0−1

Γ (c0)
exp (−d0τ) × 1/p( y3D).

(13)

The marginal posterior PDF of ω̂
3D can be obtained theoretically by marginaliza-

tion, i.e., p(ω̂3D| y3D) � ∫
p(ω̂3D

,α, γ, τ | y3D)dαdγ dτ . In this case, the influence
of the uncertainty of hyperparameters α, τ , and γ on ω̂

3D is explicitly considered
in the formulation. The 3D dataset F̂ can then be interpolated, and the uncertainty
propagated from ω̂

3D can be quantified. However, no analytical solution is available
for the joint posterior PDF of ω̂

3D
,α, γ, τ because there is no analytical expression

for p(y3D) (Bishop and Tipping 2000). To obtain the marginal posterior PDF of ω̂
3D ,

the VBI method is adopted, as discussed in the following section.

4 Variational Bayesian Inference (VBI)

The VBI aims to find a tractable distribution that can properly approximate the true
joint posterior PDF of interest (Beal 2003). In the context of this study, the VBI
aims to find a joint PDF q(ω̂3D

,α, γ, τ ) that can approximate the posterior PDF
p(ω̂3D

,α, γ, τ | y3D).Note that the approximate PDFobtained from theVBI is denoted
as “q(·)” to distinguish from the true PDF “p(·)”. In the VBI, the approximate PDF
q(ω̂3D

,α, γ, τ ) is obtained by minimizing a difference metric, such as Kullback-
–Leibler (KL) divergence, between q(ω̂3D

,α, γ, τ ) and p(ω̂3D
,α, γ, τ | y3D). The KL

divergence between q(ω̂3D
,α, γ, τ ) and p(ω̂3D

,α, γ, τ | y3D), denoted as KL(q||p), is
expressed as (Bishop 2006; Murphy 2012; Yu et al. 2016)

K L(q||p) � −
∫

q(ω̂3D
,α, γ, τ ) ln

p(ω̂3D
,α, γ, τ | y3D)

q(ω̂3D
,α, γ, τ )

dω̂3Ddαdγ dτ. (14)

Note thatKL(q||p) is non-negative. SmallerKL(q||p) values allowq(ω̂3D
,α, γ, τ ) to

better approximate p(ω̂3D
,α, γ, τ | y3D). By reformulating the integrand in Eqs. (14)

and (15) is obtained as

ln[p( y3D)] � L(q) + KL(q||p), (15)
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where ln[p(y3D)] is the natural logarithm of the constant term p(y3D) from Eqs. (4)
and (13). Because p(y3D) is a constant, ln[p(y3D)] is also a constant. L(q) represents
the lower bound of ln[p(y3D)]. A detailed derivation of Eq. (15) and L(q) is given in
“Appendix B”. Equation (15) shows that the minimization of KL(q||p) is equivalent to
the maximization of L(q).

To obtain a tractable distribution, q(ω̂3D
,α, γ, τ ) is often factorized as (Bishop

2006)

q(ω̂3D
,α, γ, τ ) � q(ω̂3D)q(α)q(γ )q(τ ), (16)

where q(ω̂3D), q(α), q(γ ), and q(τ ) respectively represent the tractable PDFs of ω̂
3D ,

α, γ , and τ from the VBI, which respectively approximate the true posterior PDF of
ω̂
3D , α, γ , and τ . Following the factorization in Eq. (16) and derivation discussed in

Bishop (2006), the approximate PDF of a random variable of interest (e.g., q(ω̂3D))
or its logarithmic version (e.g., ln[q(ω̂3D)]) that maximizes L(q) can be expressed in
terms of the expectation of the right joint PDF (e.g., ln p(ω̂3D

,α, γ, τ, y3D)) under
the approximate posterior PDF of other random variables (e.g., q(α), q(γ ), q(τ )). For
example, the q(ω̂3D) that maximizes L(q) is expressed as (see “Appendix C”)

ln[q(ω̂3D)] �
∫

q(α)q(γ )q(τ ) ln p(ω̂3D
,α, γ, τ, y3D)dαdγ dτ + const1, (17)

where “const1” is a constant that ensures that the integration of q(ω̂
3D) �1. Based on

the conditional probability rules and Eq. (12), ln p(ω̂3D
,α, γ, τ, y3D) is expressed as

ln p(ω̂3D
, α, γ, τ, y3D) � ln p( y3D |ω̂3D

, τ ) + ln p(ω̂3D |α) + ln p(α|γ ) + ln p(γ ) + ln p(τ ).
(18)

Substituting Eqs. (6), (8–11), and (18) into Eq. (17) and rearranging the terms lead
to

q(ω̂3D) � 1√
(2π )N det(�

ω̂3D )
exp

[
− (ω̂3D − μ

ω̂3D )T (�ω̂3D )−1(ω̂3D − μ
ω̂3D )

2

]
.

(19)

Equation (19) shows that q(ω̂3D) is a multivariate normal distribution, the detailed
derivation of which is summarized in “Appendix C”. The mean μ

ω̂3D and covariance
matrix �

ω̂3D are expressed as

μ
ω̂3D � �ω̂3DAT y3DE(τ )

�
ω̂3D � [ATAE(τ ) + E(Dα)]−1, (20)

where E(τ )�∫
τq(τ )τ represents the posterior mean of τ . Similarly, E(Dα) represents

the posterior mean of αt inmatrix format, i.e.,E(Dα(t,t))�E(αt)�
∫
αtq(αt)αt , where

q(αt) represents the distribution that can properly approximate the true posterior PDF
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of αt . Following a derivation procedure similar to that of q(ω̂3D), q(αt) and q(τ ) are
derived to follow a Generalized Inverse Gaussian (GIG) distribution and a Gamma
distribution, respectively, as shown in “Appendix C”. E(αt) and E(τ ) are then obtained
as

E(αt ) �
√
bt K p+1(

√
atbt )√

at K p(
√
atbt )

, (21a)

E(τ ) � cn
dn

, (21b)

where at � μ2
ω̂3D
t

+ σ 2
ω̂3D
t
; μω̂3D

t
and σ 2

ω̂3D
t

represent the tth element of μ
ω̂3D
t

and

tth diagonal element of �
ω̂3D , respectively; bt �E(γ ) is the posterior mean of γ ,

i.e., E(γ ) � ∫
γ q(γ )dγ , which is shown later in this section; Kp+1(·) represents the

modifiedBessel function of the second kindwith parameter p�−1/2 in this study; and
cn and dn are the shape parameters of q(τ ), which are expressed as cn �M/2+c0 and
dn � d0 + 1/2[( y3D)T ( y3D) − 2μT

ω̂3DA
T y3D + E[(ω̂3D)TATA(ω̂3D)], respectively.

E[(ω̂3D)TATA(ω̂3D)] is expressed as (Petersen 2004)

E[(ω̂3D)TATA(ω̂3D)] � μT
ω̂3DA

TAμ
ω̂3D + Tr (A�

ω̂3DAT ), (22)

where “Tr(·)” is the trace operation, which represents the sum of all diagonal elements
of amatrix. In addition, q(γ ) is derived to follow aGamma distribution (see “Appendix
C”) with the expectation of E(γ )

E(γ ) � γa/γb, (23)

where γ a �N+a0 and γb � b0 +
∑N

t�1 E(α
−1
t ). E(α−1

t ) represents the posterior
mean of α−1

t , i.e., E(α−1
t )�∫

α−1
t q(α−1

t )dα−1
t , and q(α−1

t ) is derived to follow a GIG
distribution (see “Appendix C”) with parameters −p �1/2, bt , and at . E(α

−1
t ) is

expressed as

E(α−1
t ) �

√
at K−p+1(

√
atbt )√

bt K−p(
√
atbt )

. (24)

The above derivations show that μ
ω̂3D and �

ω̂3D depend on E(τ ) and E(αt),
which in turn depend on μ

ω̂3D , �
ω̂3D , and E(γ ). As a result, an iteration pro-

cess among μ
ω̂3D , �

ω̂3D , E(τ ), E(αt), and E(γ ) is required to obtain μ
ω̂3D and

�
ω̂3D . The iteration continues until a convergence criterion is satisfied. For exam-

ple, the relative difference between measurements y3D and ŷ3D � Aμ
ω̂3D , e.g.,

rE � ∑M
k�1 [y

3D(k) − ŷ3D(k)]2/
∑M

k�1 [y
3D(k)]2 does not decrease with further iter-

ations. y3D(k) and ŷ3D(k) represent the kth elements of y3D and μ̂
3D , respectively.
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Subsequently, the 3D dataset F̂ can be interpolated statistically, and the mean and
interpolation standard deviation (SD) of each element are expressed as

μF̂(i, j, k) �
N∑

t�1

μ
ω̂3D
t
B3D
t (i, j, k) � (bTi, j,k)μω̂3D

σF̂(i, j, k) �
√
(bTi, j,k)�ω̂3D bi, j,k, (25)

where μF̂(i, j, k) and σ F̂(i, j, k) respectively represent the mean (or expectation) and

interpolation SD of element F̂ (i, j, k) and bi,j,k is a column vector that records element
B3D
t (i, j, k) in an increasing order of t. Equation (25) shows that given themeasurement

y3D, each element, particularly the measurements at unsampled locations of F, can
be interpolated with the interpolation error given by σ F̂(i, j, k). Furthermore, Eq. (25)
shows that each element μF̂(i, j, k) is a weighted summation of μ

ω̂3D
t
, which in turn is

a function of the measurements y3D [see Eq. (20)]. Similarly, σ F̂(i, j, k) is a weighted

summation of the elements �
ω̂3D , which is also a function of the measurements y3D.

All of the elements in y3D therefore contribute to μF̂(i, j, k) and σ F̂(i, j, k). Note also
that neither the assumption that the 3D dataset is either isotropic or anisotropic nor the
stationarity assumptions of the 3D dataset are required for the proposed method. This
approach is thus robust and applicable when interpolating a 3D dataset with trends
(i.e., so-called non-stationary data) orwith anisotropic characteristics (e.g., anisotropic
auto-correlation) (Wang et al. 2019).

5 Implementation Procedure

In this section, the implementation procedure of the proposed method is summarized
as nine steps, which are discussed in detail below.

Step 1: Obtain sparse measurements and their locations in a 3D field and the size of
the 3D field of interest. Consider, for example, a field with a length of h1 �127 m
and width of h2 �127 m in the x- and y-directions, respectively, and a depth of h3
�15 m in the z-direction.
Step 2: Specify a resolution of interest for each direction, such as η1 �η2 �η3 �
1 m for the x-, y- and z-directions, respectively, and calculate the dimensions of the
3D dataset to be interpolated as N1 �h1/η1 +1�128, N2 �h2/η2 +1�128, and
N3 �h3/η3 +1�16.
Step 3: Construct the 3D basis function B3D

t (see “Appendix A”), then construct
matrix A and y3D following the procedure detailed in Sect. 3.
Step 4: Initialize all parameters. For example, set parameters a0 �b0 �d0
�10−4 and c0 �1. Set the initial values as E(αt)�E(γ )�10−4 and E(τ )�
100/var(y3D), where var(y3D) represents the measurement variance. The setting
E(τ )�100/var(y3D) is suggested by Tipping (2001) and Ji et al. (2008) to ensure a
good starting point during the iteration.
Step 5: Update μ

ω̂3D and �
ω̂3D [see Eq. (20)] using E(αt) and E(τ ).
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Step 6: Calculate at and bt as at � μ2
ω̂3D
t

+ σ 2
ω̂3D
t
, using the updated μ

ω̂3D and �
ω̂3D

and bt �E(γ ), respectively, then update E(αt) using Eq. (21a).
Step 7: Calculate cn and dn as cn �M/2+c0 and dn � d0 + 1/2[( y3D)T ( y3D) −
2μT

ω̂3DA
T y3D + E[(ω̂3D)TATA(ω̂3D)], using the updated μ

ω̂3D and �
ω̂3D together

with Eq. (22), then update E(τ ) using Eq. (21b).
Step 8: Calculate γ a as γ a �N+a0 and update γ b using γb � b0 +

∑N
t�1 E(α

−1
t ),

where E(α−1
t ) is expressed in Eq. (24). E(γ ) is then updated as E(γ )�γ a/γ b using

Eq. (23).
Step 9: Return to Step 5 and continue the iteration until the relative
difference between measurements y3D and ŷ3D � Aμ

ω̂3D (i.e., rE �∑M
k�1 [y

3D(k) − ŷ3D(k)]2/
∑M

k�1 [y
3D(k)]2) is smaller than a prescribed small

value (e.g., 10−3) and rE does not decrease with further iterations.

Note that although the derivation of the distributions q(ω̂3D), q(αt ), q(γ ), q(τ ), and
their expectations seems tedious, the iteration process described above is relatively
simple and straightforward. Furthermore, such an estimation procedure might lead to
smoothed results when compared with simulation methods, as previously discussed in
the literature (Yamamoto 2008). Note that the integration of the simulation methods
(e.g., sequential Gaussian simulation) with the proposed method might be computa-
tionally extensive for high-dimensional datasets (e.g., 3D datasets in this study) due
to the inverse of the estimated covariance structure, which has very high dimensions.
In contrast, the proposed method is computationally efficient (i.e., much faster than
simulations), particularly for high-dimension data. An estimation using the proposed
method is therefore adopted in this study, and the development of the methods in this
study with sequential Gaussian simulations will be explored in a future study to tackle
the computational efficiency problem for 3D datasets. In the next section, the proposed
method and procedure are demonstrated using a numerical example.

6 Numerical Example

In this section, the proposed method is illustrated using a simulated 3D dataset F of
a geo-quantity Q. The dataset F represents the variations of Q in a 3D field, which
has a length of 127 m over both the x- and y-directions and a depth of 15 m along the
z-direction. In this example, F has a resolution of 1 m in all directions. As a result, F
has 128×128×16�262,144 data points in total, as shown in Fig. 1. Note that F in
Fig. 1 is simulated from a 3D Gaussian random field with a non-stationary mean of
μQ �30−0.001(x −64)2 −0.0005(y −64)2 −0.05(z −8)2 and a constant SD σQ �
3, together with an anisotropic exponential auto-correlation function

ρ(�x,�y,�z) � exp

(
−2

√
(�x)2

λ2x
+
(�y)2

λ2y
+
(�z)2

λ2z

)
, (26)

where �x � (xi −xm), �y � (yj −yn), and �z � (zk − zl) represent the relative dis-
tances between two points F(i, j, k) and F(m, n, l) in the x-, y- and z-directions,
respectively, and λx, λy, and λz represent the correlation lengths within which the
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geo-quantity Q is highly auto-correlated. In this example, λx, λy, and λz are taken as
λx �λy �40 m and λz �4 m. The correlation lengths are consistent with those of
geo-quantities reported in the literature (Phoon andKulhawy 1999). Note that an expo-
nential auto-correlation function is adopted here because it is often used in practice
(Zhao andWang 2018b; Liu et al. 2018). Equation (26) is used only for illustration and
validation purposes (e.g., for simulating the 3D random field samples used for validat-
ing the proposed method). The proposed method also applies to other auto-correlation
functions. Given the above parameters and the auto-correlation function in Eq. (26),
F in Fig. 1 is obtained using a random field generator [e.g., a circulant embedded
algorithm by Dietrich and Newsam (1993) and Kroese and Botev (2015)]. This 3D
dataset F with 128×128×16�262,144 data points in total is denoted as the original
3D data hereafter. In this example,M �100 measurements y3D are taken as the input.
TheM �100 measurements are taken from 10 boreholes drilled along the z-direction,
with 10measurements obtained randomlywith depth in each borehole. Figure 3 shows
the locations of theM �100 measurements as open circles. The measurements versus
their locations are used as the input, and the original 3D dataset F (i.e., Fig. 1) is
used only for comparison and validation. Although the measurements used in this
example are taken borehole by borehole to mimic the commonly used procedure in
site investigation practice, this is not a requirement when using the proposed method.
The approach developed here is equally applicable to measurements distributed in
other patterns, e.g., at different depths. In addition, note that the F data in Fig. 1, with
dimensions of 128×128×16, are used only for illustration. The proposed method is
equally applicable to F data with other dimensions.

Given the M �100 data points measured from the 10 boreholes in Fig. 3, the
high-resolution and spatially varied 3D quantity Q can be interpolated, as shown in
Fig. 4(b). Figure 4(a) includes the original 3D dataset for comparison. Observe that the
distribution of color in Fig. 4(b) is globally similar to that in Fig. 4(a). This indicates
that the 3D dataset interpolated from the proposed method using sparse measurements
is consistent with the original dataset. To further evaluate the interpolated 3D dataset,
the population mean and SD are computed and compared with those of the original
dataset in Table 1. Table 1 shows that the population mean and SD of the original 3D
dataset are 26.88 and 3.59, respectively, and those of the interpolated data are 26.25 and
3.46, respectively. Table 1 also summarizes the absolute (relative) differences for the
population means and SDs. The absolute difference between the means is 0.63 (with
a relative difference of approximately 2.34%), and the absolute difference between
the population SDs is 0.13 (with a relative difference of approximately 3.62%). The
comparison suggests that the 3D dataset interpolated from the proposed method with
100 data points is reasonable.

To investigate further the results obtained using the proposed method, the residu-
als between the interpolated and original 3D dataset are computed at each location,
as shown in Fig. 4(c). Figure 4(c) shows that although the absolute differences are
relatively large in some locations, the magnitudes of most differences are generally
small relative to those of the original 3D dataset. The small differences at most loca-
tions further demonstrate that the 3D dataset interpolated from the proposed method
is reasonable and realistic. A close examination of Fig. 4(a) to (c) shows that some
local variations of the original 3D dataset are not well reflected in the interpolated
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Fig. 4 Results from the proposed method using M �100 measurements

Table 1 Population mean and
standard deviation (SD) of the
spatially varying 3D dataset

Statistics Mean SD

Original 3D dataset with 128×128×
16 data points

26.88 3.59

Interpolated 3D dataset from 100
data points

26.25 3.46

Absolute difference 0.63 0.13

Relative difference (%) 2.34 3.62

dataset. This is because the number of measurements used as the input in the proposed
method is very small, and significant interpolation uncertainty has been introduced
into the interpolation results. In the proposed method, this interpolation uncertainty is
explicitly quantified. Figure 4(d) shows the interpolation SD associatedwith the results
using Eq. (25). The magnitudes of the interpolation SD at most locations are slightly
larger than or comparable to those of the absolute differences shown in Fig. 4(c). This
implies a high probability that the true values of the original 3D dataset fall within
the range defined by the interpolated 3D dataset±1.96 interpolation SD (i.e., μF̂(i, j,
k)±1.96 σ F̂(i, j, k)). For instance, approximately 98% of the elements in the original
3D dataset F fall within the range defined by μF̂(i, j, k)±1.96 σ F̂(i, j, k) in this exam-
ple. Hence, the quantified interpolation SD can be used as an indicator to evaluate
the reliability of the obtained results. This is especially beneficial when the quantity
values at unsampled locations must be estimated (Zhao et al. 2018b).
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Fig. 5 Comparison between the original and interpolated profiles at boreholes H1, H2, H3 and H4

In addition to the above comparison, the variations of Q in four boreholes (H1–H4;
Fig. 3) are extracted from the interpolated 3D dataset and compared with those from
the original 3D dataset, as shown in Fig. 5(a) to (d), respectively. In Fig. 5, the
dashed line represents the interpolated profile from the proposed method, whereas
the solid line represents the original profile of Q at each corresponding borehole.
Figure 5 also includes the quantified interpolation SD in terms of the interpolated pro-
file± interpolation SD, using a pair of dotted lines. Note that no measurements were
taken along boreholes H1–H4. In Fig. 5, the dashed line is generally consistent with the
solid line, and most local variations of the solid lines fall within the region defined by
the two dotted lines. This agreement also indicates that the proposed method provides
a reasonable interpolation for Q at the locations with no available measurements by
using only a small number ofmeasurements. Furthermore, a close examination of each
subplot in Fig. 5 shows that the dashed lines in Fig. 5(a) to (b) (i.e., boreholes H1 and
H2) are plotted slightly closer to the solid line than those in the other two subplots.
This may be explained by noting that H1 and H2 are closer to the boreholes than H3
and H4, where measurements are available. The average distance between H1 or H2
and the three nearest boreholes where measurements are available is approximately
20.0 m or 20.8 m, respectively. In contrast, the average distance between H3 or H4
and the three nearest boreholes where measurements are obtained is approximately
25.6 m or 22.6 m, respectively, both of which are larger than both 20.0 m and 20.8 m.

Note that an interpolation by ordinary kriging (OK) is also performed for com-
parison using the same dataset, as shown by the open circles in Fig. 3. When OK
is used for interpolation, the measurement data points should be stationary (e.g.,
without a trend). In such cases, de-trending should first be carried out on the mea-
sured data points, hoping that the residuals can be stationary. Suppose that the
correct function form of the trend function is known, i.e., μQ �a1 −a2(x−a3)2

−a4(y −a5)2 −a6(z −a7)2. Then, ai (i �1, 2, …, 7) are obtained as 31.375, 0.002,
70.577, 0.001, 78.171, 0.036, and 8.480 using a least square approach, from which
the trend function is plotted in Fig. 6(a). The parameters of the semi-variogram
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Fig. 6 a Trend function and b predicted mean from OK

ρ(�x,�y,�z) � σ 2 − σ 2 exp

(
−2

√
(�x)2

λ2x
+ (�y)2

λ2y
+ (�z)2

λ2z

)
are then obtained as

σ 2 �5.39, λx � λy � 0.90, and λz � 3.52 by minimizing the sum of the squared
difference between the experimental semi-variogram of the residuals and the theoret-
ical semi-variogram. To be consistent with the true semi-variogram used to simulate
the 3D F, assumptions favorable to the OK interpolation are adopted so that λx � λy

; the correct function form is known for the semi-variogram model and used herein.
With these obtained parameters, the OK can then be carried out to obtain predictions
at each location. Adding the trend function in Fig. 6(a) back to the mean from the
OK yields the final results, as shown in Fig. 6(b). There are only slight differences
between Fig. 6(a) to (b), particularly along the horizontal directions, indicating that
Fig. 6(b) mainly reflects the result of the trend function. This is expected because
the auto-correlation parameters λx � λy � 0.90 are severely underestimated in this
example when compared with the λx � λy �40 used in the simulation of the 3D
F. This finding demonstrates that when the number of data points is small, there is
a risk of severely underestimating the auto-correlation in the spatial direction (e.g.,
horizontal direction), even when the correct trend function form and semi-variogram
model are already known. It is worth pointing out that selecting the most appropriate
function form in 3D space from, say, 100 data points measured from 10 boreholes,
is not trivial. Different function forms for the trend function might lead to different
results (Fenton 1999a, b; Wang et al. 2019; Hu et al. 2020). The OK performance
improves significantly with an increasing number of data points due to the proper
estimation of the semi-variogram parameters. In contrast, de-trending is not required
in the proposedmethod, and the 100 data points versus their locations are used directly
as the input to produce the predictions, as discussed in detail in the previous section.
The results from the proposed method are generally consistent with those in Fig. 1,
although there are some local differences. The proposedmethod offers a supplement to
kriging, especially when the number of measurements is small and kriging parameters
cannot be reliably obtained.
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Fig. 7 Measurement locations and four boreholes under differentM scenarios in 3D space

7 Effect of Number of Measurements

In this section, the proposed method is applied to scenarios with different numbers of
measurements, e.g., M �500, 2,000, and 20,000, in addition to the M �100 exam-
ple in the previous section. The M �100, 500, 2000, and 20,000 measurements are
approximately 0.04%, 0.19%, 0.76%, and 7.63%, respectively, of the total number of
data points of F (262,144). Figure 7(a) to (d) show the measurement locations cor-
responding to M �100, 500, 2,000, and 20,000, respectively. Each subplot of Fig. 7
also includes four boreholes, H1–H4, for later comparison. Note that in all of the M
scenarios, no measurements were taken from boreholes H1–H4.

Given the measurements for eachM scenario, the interpolated 3D dataset, absolute
difference between the interpolated and original 3D datasets, and interpolation SD
are obtained and shown in Figs. 8, 9 and 10, respectively, following the procedure
detailed in Sect. 5 and illustrated in Sect. 6. Figure 8(a) to (d) show that the 3D
datasets interpolated from the proposed method become increasingly similar to the
original dataset with increasingM, and an increasing degree of the local variations of
the original 3D dataset is reflected in the interpolation results. As a result, the absolute
differences between the interpolated and original 3D datasets become increasingly
small with increasingM, as shown in Fig. 9(a) to (d). WhenM is large (e.g., 20,000),
nearly all of the residuals approach zero. These observations indicate that the results
obtained from the proposed method become increasingly accurate with increasing

123



Math Geosci (2021) 53:1171–1199 1189

Fig. 8 Interpolated 3D dataset under differentM scenarios

M. This is reasonable because more information about the original 3D dataset is
available and used as the input with higherM. In addition, by respectively examining
Figs. 9(a) to (d) and 10(a) to (d), the interpolation SD obtained from the proposed
method is found to be slightly larger or comparable to the absolute residuals for each
M scenario. This further implies that the true values of the original 3D dataset likely
fall within the range defined by the interpolated 3D dataset±1.96 interpolation SD
(i.e., μF̂(i, j, k)±1.96σ F̂(i, j, k)) for eachM scenario, even at locations where no data
are available (Zhao et al. 2018b). Figure 10 shows that the interpolation SD at each
location significantly decreases with increasing M. When M is large (e.g., 20,000),
the SD obtained from the proposed method is reduced to a very small value. These
observations suggest that the results from the proposed method become increasingly
confident and reliable with increasing M.

Because it is difficult to visualize the variations of Q within the interpolated 3D
dataset, the variations ofQ from the four boreholes (H1–H4; Fig. 7) are extracted from
the 3D interpolation results for each M scenario. Figure 10(a) to (d) summarize the
interpolated Q profiles for boreholes H1–H4, respectively. In each subplot of Fig. 11,
the interpolated Q profile is shown as open circles, open squares, open triangles,
and crosses for theM �100, 500, 2,000 and 20,000 scenarios, respectively. Figure 11
generally shows that the interpolated profiles gradually converge to the original profile
with increasingM for each borehole. Consider, for example, the case of H2. WhenM
is small (e.g., 100), the interpolated profile (open circles) is plotted relatively far away
from the original profile (i.e., bold solid line) (Fig. 11b). However, the interpolated
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Fig. 9 Absolute difference between the original and the interpolated 3D dataset under differentM scenarios

profile rapidly approaches the original profile with increasing M. When M is large
(e.g., 20,000), the interpolated profile tends to overlap the original one (compare the
crosses with the bold solid line in Fig. 11b). Similar results are observed in Fig. 11(a),
(c), (d).

Figure 12(a) to (d) respectively plot the interpolation SDs at H1 to H4 for the four
M scenarios, using the same symbols as those in Fig. 11. Similar to the observations in
Fig. 10, the interpolation SD in each borehole is significantly reduced with increasing
M. WhenM is large, the interpolation SD at each location reduces to approximately 1.
This interpolation uncertainty is relatively small, compared with the mean, i.e., 26.88
of the original 3D dataset. A reduction of the interpolation uncertainty implies an
increase in the reliability of the interpolation results from the proposed method with
increasing M. The observations shown in Figs. 11 and 12 together provide further
evidence that both the interpolated 3D dataset and quantified estimation uncertainty
from the proposed method are reasonable.
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Fig. 10 Interpolation standard deviation (SD) associated with the 3D dataset under different M scenarios
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8 Conclusions

Anon-parametric method was proposed to statistically interpolate high-resolution and
spatially varied 3Dgeo-data from sparsemeasurements. The proposedmethod system-
atically integrates compressive sensing with VBI, and uses sparse measurements and
their 3D space locations as input to return a high-resolution 3D dataset together with
the quantified uncertainty at each location. The interpolated 3D dataset and quantified
uncertainty can be used further to achieve the desired design or analysis in geoscience.
Note that the proposed method is data-driven and non-parametric, and an estimation
of the correlation structure (e.g., semi-variogram) is not required. It may therefore be
used as a supplement to powerful existing methods (e.g., kriging or GPR) for spatial
interpolation, especially when the correlation structure among measurements cannot
be reliably estimated. It is worth pointing out that the proposed method does not con-
sider local variability during the interpolation, and sequential Gaussian simulations
may be integrated with the proposed method when local variability is of great concern.

The equations are derived stepwise, and the procedure is illustrated using a series
of numerical examples. The results show that the 3D dataset interpolated using the
proposed method is consistent with the original dataset, and the quantified interpola-
tion uncertainty is reasonable, even when the measurements are relatively sparse and
limited. The interpolation uncertainty may be used as an indicator to evaluate the reli-
ability of the interpolation results. The effect of the number of measurements is also
investigated. The findings show that the interpolation results gradually converge to the
original 3D dataset as the number of measurements increases, and the interpolation
uncertainty is substantially reduced.
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Appendix A: Construction of B−3D
t

In this appendix, the 3D basis function B3D
t is reconstructed from columns of three

independent 1D basis function matrices, i.e., B1, B2, and B3, which have dimensions
of N1 ×N1, N2 ×N2, and N3 ×N3, respectively. The columns of B1, B2, and B3

represent orthonormal basis functions, e.g., discrete cosine functions. B1, B2, and B3

can be obtained using the formula for discrete cosine functions (see Salomon 2007) or
constructed readily using a built-in function in commercial software, such as “dctmtx”
in MATLAB (Mathworks 2020), which requires only N1, N2, and N3 as the input.
A 3D basis function is then constructed as B3D

i, j,k � b1i ⊗ b2j ⊗ b3k (i �1, 2, …, N1;

j �1, 2, …, N2; k �1, 2, …, N3). The subscript of B3D
i, j,k , i.e., “i, j, k” changes

to “t” later in this paragraph. b1i , b
2
j , and b3k represent the ith, jth, and kth columns

of B1, B2, and B3, respectively; “⊗” represents an outer product and an element of
B3D
i, j,k , such as the element indexed by (m, n, l), i.e., B3D

i, j,k(m, n, l), is expressed as

B3D
i, j,k(m, n, l) � b1i (m)b2j (n)b

3
k (l) (Kroonenberg 2008). b1i (m), b2j (n), and b3k (l) are

the mth, nth, and lth elements of b1i , b
2
j , and b3k , respectively. After the construction

of B3D
i, j,k , the subscript “(i, j, k)” of B3D

i, j,k changes to t for derivation convenience.
“t” is numbered in increasing order of i, followed by j and k, respectively. It is worth
noting that although the discrete cosine function is adopted in this study to construct
the 3D basis function, other basis functions (e.g., wavelets functions) can also be used
in the proposed method. The discrete cosine function is adopted here because it has
analytical function forms and the basis function can be readily obtained.

Appendix B: Derivation of Eq. (15)

The expression of KL divergence defined in Eq. (14) is expanded to

K L(q||p) � −
∫

q(ω̂3D
,α, γ, τ ) ln

p(ω̂3D
,α, γ, τ | y3D)

q(ω̂3D
,α, γ, τ )

dω̂3Ddαdγ dτ

� −
∫

q(ω̂3D
,α, γ, τ )[ln p(ω̂3D

,α, γ, τ | y3D)
− ln q(ω̂3D

,α, γ, τ )]dω̂3Ddαdγ dτ. (27)
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In accordance with the rules of conditional probability, p(ω̂3D
,α, γ, τ | y3D) �

p(ω̂3D
,α, γ, τ, y3D)/p( y3D). Substituting this expression into Eq. (27) and rearrang-

ing the terms lead to

K L(q||p) � −
∫

q(ω̂3D
,α, γ, τ )[ln p(ω̂3D

,α, γ, τ, y3D)

− ln q(ω̂3D
,α, γ, τ ) − ln p( y3D)]dω̂3Ddαdγ dτ. (28)

Note that ln[p(y3D)] is independent of the distribution q(ω̂3D
,α, γ, τ ). Therefore,∫

q(ω̂3D
,α, γ, τ ) ln p( y3D)dω̂3Ddαdγ dτ � ln p( y3D). As a result, Eq. (28) is sim-

plified as

K L(q||p) � −
∫

q(ω̂3D
, α, γ, τ )

[
ln

p(ω̂3D
,α, γ, τ, y3D)

q(ω̂3D
, α, γ, τ )

]
dω̂3Ddαdγ dτ + ln p( y3D).

(29)

Let L(q) � ∫
q(ω̂3D

,α, γ, τ ) ln
(
q(ω̂3D

,α,γ,τ, y3D)
q(ω̂3D

,α,γ,τ )

)
dω̂3Ddαdγ dτ . Equation (29) can

then be rewritten as KL(q||p)�−L(q)+ ln[p(y3D)]. Subsequently, ln[p(y3D)]�L(q)+
KL(q||p), i.e., Equation (15) can be obtained.

Appendix C: Derivation of q(ω̂3D), q(α), q(γ ), and q(τ )

In this appendix, the framework for using VBI to derive the tractable distribution
is introduced. Let Θ � [θ1, θ2, …, θn]T represent a set of random variables and
“p(�|Data)” represent the true posterior PDF of Θ updated by “Data.” Suppose that
“p(�|Data)” has no analytical solution and VBI is adopted to seek an approximate dis-
tribution q(Θ) that can properly represent p(�|Data). As mentioned in the main text,
q(Θ) is usually factorized as q(Θ) � ∏n

i�1 q(θi ). In accordance with the derivation
by Bishop (2006) (pp. 461–517), the q(θ i) that minimizes the KL divergence between
q(Θ) and p(�|Data) is then expressed as

ln[q(θi )] �
∫

q(Θ−i ) ln p(Θ, Data)dΘ−i + const

�
∫

q(Θ−i ) ln[p(Data|Θ)p(Θ)]dΘ−i + const, (30)

where Θ−i represents Θ with θ i removed and “const” represents a term that ensures
that the integration of q(θ i)�1.

In this paper, the random variables of interest are ω̂
3D ,α, γ , and τ , and their approx-

imate distribution can be individually derived using Eq. (30). Consider, for example,
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q(ω̂3D). In accordance with Eq. (30), q(ω̂3D) is expressed as Eq. (17). Substituting
Eqs. (6), (8–11), and (18) into Eq. (17) leads to

ln[q(ω̂3D)] �
∫

q(α)q(γ )q(τ ) ln p(ω̂3D
,α, γ, τ, y3D)dαdγ dτ + const1

�
∫

q(τ ) ln p( y3D|ω̂3D
, τ )dτ +

∫
q(α) ln p(ω̂3D|α)dα + const2,

(31)

where “const2” represents the term that does not involve ω̂
3D . Note

that q(α) and q(γ ) are independent of ln p( y3D|ω̂3D
, τ ). Therefore,∫

q(α)q(γ )q(τ ) ln p( y3D|ω̂3D
, τ )dαdγ dτ � ∫

q(τ ) ln p( y3D|ω̂3D
, τ )dτ . Similarly,∫

q(α)q(γ )q(τ ) ln p(ω̂3D|α)dαdγ dτ � ∫
q(α) ln p(ω̂3D|α)dα. Subsequently, sub-

stituting Eqs. (6) and (8) into Eq. (31) and rearranging the terms lead to

ln[q(ω̂3D)] �
∫

q(τ ) ln p( y3D|ω̂3D
, τ )dτ +

∫
q(α) ln p(ω̂3D|α)dα + const2

� − E(τ )( y3D − Aω̂
3D)T ( y3D − Aω̂

3D)

2
− (ω̂3D)T E(Dα)T ω̂

3D

2
+ const3,

(32)

where “const3” represents the terms that do not involve ω̂
3D . Completing the square

for ω̂
3D in Eq. (32) and rearranging the terms lead to

ln[q(ω̂3D)] � − (ω̂3D)T [ATAE(τ ) + E(Dα)]ω̂3D − 2(ω̂3D)TAT y3DE(τ ) + ( y3D)T y3DE(τ )
2

+ const3.

(33)

Let �
ω̂3D � [ATAE(τ ) + E(Dα)]−1. Equation (33) is rewritten as

ln[q(ω̂3D)] � − (ω̂3D)T (�
ω̂3D )−1ω̂

3D − 2(ω̂3D)T (�
ω̂3D )−1�

ω̂3DAT y3DE(τ )

2
+ const4, (34)

where “const4” is a term that incorporates “const3” and new terms that do not involve
ω̂
3D . Let μ

ω̂3D � �
ω̂3DA y3DE(τ ). Equation (34) is rewritten as

ln[q(ω̂3D)] � − (ω̂3D)T (�
ω̂3D )−1ω̂

3D − 2(ω̂3D)T (�
ω̂3D )−1μ

ω̂3D + (μ
ω̂3D )T (�ω̂3D )−1μ

ω̂3D

2

+
(μ

ω̂3D )T (�ω̂3D )−1μ
ω̂3D

2
+ const4

� (ω̂3D − μω̂3D )T (�ω̂3D )−1(ω̂3D − μ
ω̂3D )

2
+ const5, (35)
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where
(μ

ω̂3D
)T (�

ω̂3D
)−1μ

ω̂3D

2 is incorporated into the term “const5”. Therefore, q(ω̂
3D)

can be derived as

q(ω̂3D) � 1√
(2π )N det(�

ω̂3D )
exp

[
− (ω̂3D − μ

ω̂3D )T (�ω̂3D )−1(ω̂3D − μ
ω̂3D )

2

]

×
√
(2π )N det(�

ω̂3D ) exp(const5), (36)

A close examination of Eq. (36) shows that 1√
(2π )N det(�

ω̂3D
)

exp
[
− (ω̂3D−μ

ω̂3D
)T (�

ω̂3D
)−1(ω̂3D−μ

ω̂3D
)

2

]
is the multivariate normal distribution,

and its integration with respect to ω̂
3D is therefore 1. In addition, note that

q(ω̂3D) is a PDF, which leads to
∫
q(ω̂3D)dω̂3D � 1. As a result, the term

“
√
(2π )N det(�

ω̂3D ) exp(const5)” in Eq. (36) is equal to 1. In such a case, Eq. (36) is

simplified as Eq. (19) in the main text.
Similarly, q(α) is derived as

q(α) �
N∏

t�1

exp

[
−atαt + btα

−1
t

2

]
(αt )

p−1 × (at/bt )p/2

2Kp(
√
atbt )

�
N∏

t�1

q(αt ), (37)

where at � E[(ω̂3D
t )2], bt � E(γ ), p �−1/2, and q(αt ) �

exp
[
− atαt+btα

−1
t

2

]
(αt )p−1 × (at/bt )p/2

2Kp(
√
at bt )

, which is a generalized inverse Gaus-

sian (GIG) PDF (Zhao et al. 2015; Dumitru 2017). The mean or expectation of αt is
shown in Eq. (21a). In addition, note that E(α−1

t ) is needed in the proposed method
[see Eq. (24)], which cannot be directly evaluated even if q(αt) is available. This is
because 1/αt is a non-linear function of αt . To address this problem, the PDF of 1/αt ,
i.e., q(α−1

t ) is derived as (Ang and Tang 2007)

q(α−1
t ) � (at/bt )p/2

2Kp(
√
atbt )

exp

[
−atα

−1
t + btαt

2

]
(α−1

t )p−1 ×
∣∣∣∣∣
d(α−1

t )

αt

∣∣∣∣∣

� (at/bt )p/2

2Kp(
√
atbt )

exp

[
−atα

−1
t + btαt

2

]
(α−1

t )−p−1. (38)

Equation (38) shows that (1/αt) follows a GIG with parameters bt , at , and −p. The
mean of (1/αt), i.e., E(α

−1
t ), is obtained as Eq. (24).

In a manner similar to the derivation of q(ω̂3D) and q(α), both q(τ ) and q(γ )
are derived to follow a Gamma distribution, which is shown in Eqs. (39) and (40),
respectively
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q(τ ) � (dn)cn

Γ (cn)
τ cn−1 exp(−τdn), (39)

q(γ ) � (γb)γa

Γ (γa)
γ (γa−1) exp(−γ γb). (40)
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