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Abstract One of the characteristics that struck me most about André when I first met
him in 1980 was the constant desire to expose, discuss and, above all, make accessible
the emerging ideas of geostatistics. It was easy for André’s first group of Stanford stu-
dents to learn and have a great deal of confidence in what they learned. It was clearly a
breakthrough in relation to the existing geostatistics teaching and research culture. It
was in this context that the Fourth International Geostatistics Conference was organ-
ised in 1992 in Tróia, and André was the main driving force in the organisation of
that event. It was an impressive showcase of the brilliant ideas of the newly created
Stanford Center for Reservoir Forecasting. The resolution of an inverse problem with
the integration of seismic in the high-resolution stochastic subsurface models was one
of the most remarkable nuggets presented at that conference. Louis Bortoli, Francois
Alabert, André Haas and André Journel are the authors of the seminal paper on geosta-
tistical inversion. As an interfacemethodology between two areas of knowledge, it was
not easy to get this new type of model accepted by the geophysics community, which
at the time was dominated by deterministic models of inversion. This paper presents
a summary of this path and the main geostatistical methods for seismic inversion that
have been developed since then, and which have today become a set of practical tools
for characterising mineral resources in the petroleum and mining industry.
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1 Geostatistical Culture After André Journel

In the 1970s, geostatistics, geomathematics, operational research and other applied
mathematics disciplines had a tremendous impact on the mining industry and, in
particular, on the mining engineering and geologist profiles.

For a young graduate in mining engineering like I was in the late 1970s, learn-
ing geostatistics was quite challenging—not because of the many new methods that
appeared, but because learning them was an initiation ritual. Geostatistical research
was practically confined to a small group, whose dissemination of emerging meth-
ods was not at the centre of their concerns. At that time, Fontainebleau (Centre de
Geostatistique et de Morphologie Mathématique de Fontainebleau) was a must-visit
for geostatistical courses and for the bookstore, which I visited many times. It was
where we looked for news, usually in the form of unfriendly texts in theNotes de Geo-
statistique. Presentations of new methods at conferences usually employed a closed
language that seemed designed to make life difficult for the audience. The exceptions
were application case studies, mostly mining applications that were presented and
published in the conference proceedings. As for the software, the environment was
similar: those who wanted to calculate a variogram first had to develop and write
the code. For me, a young initiate, these were the main impressions of the dominant
culture of the geostatistics research environment of that time.

In my opinion, one of the most innovative breakthroughs of André Journel’s sci-
entific life was precisely to promote and stimulate a movement against that dominant
culture, by constantly fighting to expound, discuss and make accessible his emerging
ideas about geostatistics.Mining Geostatistics (Journel and Huijbreghts 1978) was the
first book that contained both clear geostatistical concepts and the code to compute
variograms and kriging. In fact, it was the first open geostatistical source code to which
I had access.

There was the birth of geostatistics, to which the names of Georges Matheron and
the Fontainebleau school are linked; and there is geostatistics, after André Journel and
Stanford University opened the discipline to a broad range of applications and to a
diverse range of scientific communities.

2 Tróia Conference

It was in this context that the Fourth International Geostatistics Conference (Tróia
92) took place in 1992, with André one of the main driving forces behind the event’s
organisation. It was an impressive showcase of the brilliant ideas of the newly created
Stanford Center for Reservoir Forecasting (SCRF).

The solving of an inverse problem with the integration of seismic in high-spatial-
resolution stochastic models was among the more remarkable of the nuggets first
presented at that conference. Louis Bortoli, Francois Alabert, André Haas and André
Journel are the authors of the seminal paper on geostatistical inversion (Bortoli et al.
1992).

Based on a forward physical model that converts acoustic impedance (linked
directly to the petrophysical properties one intends to model) into amplitude, the idea
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was to solve an inverse problem: from a set of indirect measurements of subsurface
properties, the real seismic cube, one intends to predict the spatial distribution of the
acoustic impedancemodels that generate a synthetic seismic volume similar to the real
seismic. The purpose of that paper’s algorithm (Bortoli et al. 1992) was to solve this
inverse problem by following a sequential simulation approach: (i) in a random path,
a set of realisations of the same seismic trace were simulated; (ii) after calculating
the deviations between the synthetic seismic trace of the different realisations and the
corresponding real seismic trace, the trace with the smallest deviations was selected
and retained as ‘experimental’ data. In this way, one succeeds in generating a set of
impedance models that are conditioned by well and seismic data.

The algorithm contained convergence problems with respect to the intended solu-
tion, but the brilliance of that workflow was that it created a stochastic framework for
the seismic inversion problem while opening the door to other geostatistical seismic
inversion alternatives.

Here we aim to present the latest advances in seismic inversion, most of which are
supported by André Journel’s scientific legacy.

3 Integration of Seismic Data in Stochastic Models

3.1 Forward Models for Integrating Seismic Data

The integration of auxiliary variables as full images in geostatistical models has gained
great potential for application following the stochastic simulation methods with col-
located co-kriging and Markov approximations described in Xu et al. (1992). In this
context, seismic reflection data was soon viewed as a privileged window for the char-
acterisation of subsurface properties, since it has high spatial representativeness that
covers the full 3D spatial extent of the area of interest. Several studies were based
on a forward simulation approach: the joint simulation of petrophysical properties
with seismic reflection data (or any other seismic attribute like, for example, acoustic
impedance) as a secondary variable (Dubrule 2003; Doyen 2007). However, the results
of most of these studies did not meet expectations, largely because seismic reflection
has much greater support compared to well log data, and much higher uncertainty,
resulting in a poor relationship between co-variables which are crucial for the joint
simulation outline.

3.2 Seismic Inversion

Seismic inversion is an approach that integrates seismic data into a stochastic model
of subsurface properties by the solution of an inverse problem. In an inverse physical
problem, such as the seismic inversion problem, we know only the response of the
Earth to a limited set of indirect measurements (i.e., the seismic data), and we try
to infer from this the model parameters—rock properties such as porosity, acoustic
impedance—of the system being examined giving rise to the observed data (Tarantola
2005).

123



214 Math Geosci (2021) 53:211–226

Geophysical inverse problems seek to imply the physical properties of the sub-
surface geology, the model parameters (m ∈ Rn), from a set of indirect geophysical
measurements/observations (dobs ∈ Rs), which are normally contaminated by mea-
surement errors (e) from different sources. The observed data (dobs) and the subsurface
properties of interest (m) are related by a forward model (F). If the forward models
can be mathematically described and the model parameters are known, the observed
data may be synthesised by Eq. (1) (Tarantola 2005).

dobs � F (m) + e. (1)

Concerning the case of seismic inversion problems, dobs represents the recorded
seismic reflection data and available well log data, andm is the model parameter space
for the properties to invert. These properties depend on the object of the inversion:
acoustic and/or elastic impedance or density, P-wave and S-wave velocity models. The
forward model, F, can be described in the following form.

A � r ∗ w, (2)

where A is the recorded seismic amplitude obtained by the convolution of r, the
subsurface reflection coefficients, which are dependent on the elastic properties (P-
wave and S-wave velocities and density) of the subsurface geology, with an estimated
wavelet w.

Although this paper is focused on stochastic inversion methods anchored on the
seminal idea of Bortoli’s paper (Bortoli et al. 1992), it is worth mentioning different
alternative approaches, namely the stochastic seismic inversion algorithms based on
linearized Bayesian inverse methodologies. These are based on a particular solution of
the inverse problemusing theBayesian framework and assuming themodel parameters
and observations as multi-Gaussian-distributed as well as the data error, which allows
the forward model to be linearized (Buland and Omre 2003; Eidsvik et al. 2004;
Hansen et al. 2006; Grana and Della Rossa 2010; Grana et al. 2017; Grana et al. 2017;
De Figueiredo et al. 2018, 2019).

4 Geostatistical Seismic Inversion

4.1 Trace-by-Trace Seismic Inversion

Deterministic algorithms were the first attempt to solve Eq. (1), such as ‘band-limited’
or the integration of seismic trace (Lindseth 1979), coloured inversion (Lancaster and
Whitcombe 2000), sparse-spike and model-based (Russel 1988). These frameworks
usually result in a smooth representation of the Earth’s subsurface properties, with
much less spatial variability compared to the real and complex petrophysical and
geological subsurface properties (Russell and Hampson 1991).

The first geostatistical seismic inversion methodology was introduced in the sem-
inal paper by Bortoli et al. (1992), in which the solution of Eq. (1) is based on the
sequential simulation approach. They proposed a sequential trace-by-trace approach:
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at each step along the random path, a set of Ns realisations of one acoustic impedance
trace is simulated using sequential Gaussian simulation (Deutsch and Journel 1996),
taking the well log data and previously visited/simulated traces into account. Then, for
each individual simulated impedance trace, the corresponding reflection coefficient is
derived and convolved by a wavelet according to Eq. (2), which results in a set of
Ns synthetic seismic traces. Each of the Ns synthetic traces is compared in terms of
a mismatch function with the recorded/real seismic trace. The acoustic impedance
realisation that produces the best match between the real and the synthetic seismic
traces is retained in the reservoir grid as conditioning data for the simulation of the
next acoustic impedance trace at the new location following the pre-defined random
path.

This SCRF group’s simple idea was the first successful attempt to generate one
solution of acoustic impedance within a stochastic model framework, allowing for
the assessment of uncertainty associated with the most probable images of subsurface
properties (e.g., acoustic impedance, porosity).

The algorithm contained convergence problems in relation to the intended solu-
tion, minimum deviations to the real seismic in regions of poor signal-to-noise ratio
(Azevedo and Soares 2017). More recent versions of trace-by-trace models try to
overcome this drawback by avoiding noisy areas in the early stages of the inversion
procedure (Grijalba-Cuenca and Torres-Verdin 2000; Connolly and Hughes 2016).

However, the idea of the workflow opened the door to other geostatistical seismic
inversion alternatives.

4.2 Geostatistical Seismic Inversion

Soares et al. (2007) introduced the global stochastic inversion methodology based on
an iterative approach that, in each iteration, generates, by stochastic simulations and
co-simulation, a new ensemble of full 3D models. Convergence is assured iteratively
through an optimiser towards the desired solution.

The general outline of this new family of geostatistical inversion algorithms is
synthesised in Fig. 1. The acoustic impedance model generation and perturbation is
performed, recurring to direct sequential simulation and co-simulation (Soares et al.
2007; Caetano 2009). At each iteration after the misfit, between synthetic and real
seismic, an optimisation is calculated based on cross-over genetic algorithms that
ensure the next generation of simulated models are closer to the desired objective
function.

4.2.1 The Use of Direct Sequential Co-simulation for Global Transformation
of Subsurface Earth Models

The geostatistical inversion uses the sequential direct co-simulation as the method of
perturbing 3D impedance models in the iterative process. The global and local correla-
tion coefficients between the transformed traces and the real seismic traces of different
simulated models are used as the affinity criterion between real and inverted seismic
reflection data to create the next generation of models. The iterative procedure contin-
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Fig. 1 General outline for iterative geostatistical seismic inversion methodologies with a global approach

ues until a stopping criterion is reached: frequently the global correlation coefficient
between real and inverted seismic reflection data.

The direct sequential simulation (DSS)methodwas born from one of André’s ideas.
In 1994, Journel showed that in a sequential simulation, the covariancemodel is always
reproduced if, at each step, the value generated centres on a local mean and variance
that is identified by the simple kriging estimator and estimation variance, regardless
of the cumulative distribution function used at that point (Journel 1994). The first step
was taken towards a simulation method that did not require a Gaussian transformation
of the data. The reproduction of the probability distribution function derived from the
experimental data, the second-most important aim of any existing spatial simulation
method, remained unresolved.

Soares (2001) proposes a direct sequential simulation (DSS) method containing the
solution of both issues: the reproduction of variogrammodels and the global cdfs. The
use of direct sequential simulation and co-simulation as the model parameter space
perturbation during the iterative geostatistical seismic inversion procedure is a key
concept in all geostatistical seismic inversion methodologies presented here.

4.2.2 Global Geostatistical Inversion

The global stochastic inversion (GSI; Soares et al. 2007; Caetano 2009) allows the
inversion of post-stack seismic reflection data for acoustic impedance (Ip) models.

The general outline of the global stochastic inversion can be described in the fol-
lowing sequence of steps, illustrated in Fig. 2:

(i) For the entire seismic grid, use DSS to simulate a set of Ns acoustic impedance
models that are conditioned to the available acoustic impedance well log data
and which assume a spatial continuity pattern as revealed by a variogrammodel.

(ii) Derive a set Ns of synthetic seismic volumes by calculating the corresponding
normal incidence reflection coefficients (RC) from the impedance models simu-
lated in the previous step (Eq. 3); convolve these RC with an estimated wavelet
for that particular seismic dataset.

RC � Ip2 − Ip1
Ip2 + Ip1

. (3)
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Fig. 2 Schematic representation of the global stochastic acoustic inversion methodology

(iii) Each seismic trace from the Ns synthetic seismic volumes is then compared in
terms of correlation coefficient against the real seismic trace from the same loca-
tion. Two auxiliary volumes are created: one with the best acoustic impedance
traces; the other with the corresponding local correlation coefficients. These are
used as secondary variables and as local regionalised models for the generation
of the new set of acoustic impedance models for the next iteration.

The new set of Ns acoustic impedance models is created using direct sequential
co-simulation.

The iterative procedure stops when the global correlation coefficient between the
full synthetic and real stacked seismic volumes is above a certain threshold (see details
of the method in Azevedo and Soares 2017).

The GSI methodology allows the retrieval of high-resolution Ip models honouring
the distribution function as estimated from the available well log data and the spatial
continuity model as retrieved from a variogram model. It has been tested successfully
on seismic datasets from very different geological contexts with diverse qualities.

The GSI outline was generalised for the characterisation of elastic properties, direct
inversion of petrophysical properties, integration of rock physics relationship, and
seismic and electromagnetic jointmodelling, by taking advantage of the characteristics
of direct sequential simulation of the joint simulation of multiple distributions (Horta
and Soares 2010) and simulations with local probability distribution functions (Soares
et al. 2017).
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4.2.3 Geostatistical Elastic Inversion

The acoustic inversion algorithmwas extended for the simultaneous inversion of partial
angle stacks, for acoustic and elastic impedance models resulting in richer subsurface
models. Acoustic and elastic impedance, Ip and Is, are jointly simulated (step i of
the previous outline and co-simulated by using the direct sequential simulation with
joint distributions of probability (Horta and Soares 2010). This simulation method
succeeds in reproducing the bivariate distribution function (Ip, Is) as estimated from
the experimental log data. Detailed application examples of this method can be found
in the studies by Nunes et al. (2012) and Azevedo and Soares (2017).

4.2.4 Pre-stack Seismic AVA Inversion

The quality of seismic reflection data has increased enormously in recent decades,
together with a reduction in the costs of acquisition. Pre-stack seismic data with high
signal-to-noise ratio and considerably high fold is a reality nowadays, and one that
enables better subsurface characterisation. Pre-stack seismic data is achieved by inter-
preting the changes in amplitude versus the offset (AVO), orwith the angle of incidence
(AVA). Geostatistical seismic AVA inversion (Azevedo et al. 2018a, b) relies on an
identical general framework, but with the perturbation of the model parameters for
density and P-wave and S-wave velocities performed sequentially using stochastic
sequential co-simulation with joint distributions (Horta and Soares 2010). Details of
the method and application results in real case studies can be found in Azevedo et al.
(2018a, b, 2019).

4.2.5 Joint Inversion of Seismic and Electromagnetic Data

This geostatistical seismic inversion framework was extended for the joint inversion of
seismic and electromagnetic data in which rock properties, such as porosity and water
saturation, are simulated and co-simulated through direct sequential simulation and
co-simulation (Horta and Soares 2010). Ensuring the complex relationships between
rock properties per facies is key to the success and plausibility of the inverted models.
These are converted into elastic properties using pre-calibrated rock physicsmodelling
that links the rock and elastic domains. Properties from both domains are then forward-
modelled into synthetic seismic and electromagnetic data. Each geophysical data uses
a specific forward model. The mismatch between observed and synthetic geophysical
data is used to update simultaneously all the rockproperties of interest in the subsequent
iteration.

The advantages of this method lie in the fact each data type is sensitive to a different
but complementary petro-elastic property (i.e., electromagnetic data in relation to the
type of pore fluid and seismic in relation to elastic properties).
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Fig. 3 E-type of the ensemble of 100 realizations of a stochastic simulation

5 Seismic Inversion with Self-Updating Local Models

5.1 Conditional Simulations to Update Local Models

Direct sequential simulationmethodswith local probability distribution functionmod-
els (Soares et al. 2017) enabled conditional simulations to be viewed as methods for
updating these statistics and integrating them into the simulation process.

A sequential simulation begins with global variogram and pdf models, which can
change locally during the conditioning process. The main idea in this approach [pre-
sented by Soares et al. (2017)] is to use these local models rather than the global
models to generate a new set of realisations. For example, Fig. 3 represents the aver-
agemodel of the ensemble of 100 realisations of a soil contaminant concentration (Pb),
generated via a stochastic sequential simulation and based on an estimated probability
distribution function with the experimental soil data set (Fig. 4).

The conditioning effect of the experimental data reproduces local zones of high val-
ues and variability and other zones with low values that are spatially homogeneous.
Figure 5 shows the variance map of the same set of realizations and the histograms
for two different local areas. Since the conditioning information (i.e., the experimen-
tal data samples) generates simulated realisations with different local models, the
main propose of this algorithm is to generate a new set of realisations by using these
local models. This self-updating framework is illustrated in two different geostatisti-
cal seismic inversion approaches: one with self-updating local distributions; the other
updating local anisotropy variogram models.
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Fig. 4 a Experimental data location and b corresponding histogram

5.2 Seismic Inversion with Self-Updating Local Distributions

The methods presented above, chapter 4.2, share a common misfit control between
seismic and seismograms through the correlation coefficients or equivalent misfitmea-
sures. In some applications these methods can reach a roadblock: high correlation
coefficients may be critical when they happen at early stages of the iterative proce-
dure, which may drive the convergence process towards local minima that are far from
the global minimum solution. To overcome this, Azevedo et al. (2020) suggest using
simulations with local distributions rather than the co-simulations to generate—for
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Fig. 5 a Variance model of ensemble of realizations. Red circles show the approximate location of the
histograms of Pb shown in (b) and (c)
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Fig. 6 a True Ip model; bmean model from global iterative geostatistical seismic inversion; c mean model
from geostatistical seismic inversion with self-updating Ip distributions

example in geostatistical acoustic inversion—another realisation of Ip models in each
iteration. Themain idea behind this model is to update the local impedance pdfs during
the iterative process. Hence, after the misfit evaluation, the best elastic samples (i.e.,
the elastic samples that result in lowest misfit) are used to build local elastic pdfs at
each location x0 : FIp (x0) . In the next iteration, a sequential simulation with local
probabilities is used to generate the next set of models. Basically, at each location x0,
a simulated value is drawn from the local distribution FIp (x0), rather than from the
global pdf, as in ordinary stochastic sequential simulation. In this way, local distribu-
tions of the main variables Ip, FIp (x0), are updated with the optimisation procedure
and condition of the subsequent models of Ip. This self-updating model with seismic
data integration can be summarised in the following sequence of steps:

(i) Generate a set of Ns realisations of Ip (x) with stochastic sequential simulation
with global statistics;

123



Math Geosci (2021) 53:211–226 223

Fig. 7 Templates with different
directions and angles of
anisotropy are tested for each
spatial location, and the best is
chosen based on minimum
variance of the point values
inside the template

(ii) Follow steps (ii) to (iv) of the sequence of point three;
(iii) Create or update local pdfs with the best Ip values of this iteration;
(iv) Calculate a new set of Ns realisations of Ip (x) by using direct sequential simu-

lation with local distributions;
(v) Repeat steps (ii) to (iv) until the global correlation coefficient between the syn-

thetic and the real full-stack volumes reaches the desired threshold.

Figure 6 shows a vertical section retrieved from a synthetic application and com-
pares the average model for Ip calculated from 32 realisations of Ip after six iterations.
The true Ip model is compared with inverted sections retrieved from global iterative
geostatistical acoustic inversion and the self-updating model and the true Ip model.
The update of the local distributions allows one to better predict the shape, boundaries
of the channels and the absolute values within the sand bodies. These effects are better
observed when the true Ip model has contradictory dips.

5.3 Self-Updating of Local Models of Covariance to Enhance Non-stationary
Geological Patterns

In non-stationary geological patterns, such as meander-form sand channels, after a set
of realisations using a global model of covariance, through the inversion procedure
the seismic data is able to update local spatial trends as they are quantified by local
variogram anisotropies.

In the misfit evaluation step of the seismic inversion workflow, local variograms are
calculated with the best images (best misfit). Basically, an image analysis algorithm
is applied to evaluate the ellipsoid that has a minimum variance of all points inside
it, see the sketch of a xoy map of Fig. 7. This ellipsoid of covariance will replace
the global model of covariance in the next iterations. The co-simulations with local
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Fig. 8 a Real seismic data; b true Ip showing the low-impedance sand channels; c synthetic seismic of the
final iteration; d Ip model obtained with self-learning algorithm

models of anisotropy follow the methods proposed by Soares (1990) and Luis and
Almeida (1997).

Assuming θ (x0) are the local covariance model parameters (directions and
anisotropy ratio) at location x0, the local mean and variance at x0 are estimated by a
simple kriging (SK). Here, in Eq. (1), the SK mean is represented in its dual form

z (x0) ∗ �
∑

α

δαCθ (x0, xα) , (4)

where the weights δα are the product of the data vector, and the covariance matrix
between samples is constructed with the model Cθ (h) of x0. Local models Cθ (h) are
updated in each iteration, thereby revealing the non-stationary geological features.

This methodology was tested in a two-dimensional example of a synthetic case
study. Figure 8 shows a two-dimensional horizontal section of the seismic cube of a
turbidite reservoir; the true Ip model and the final Ip model obtained with the acoustic
inversion with self-updating of local covariance models. The final synthetic seismic
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matches, satisfactorily, the real seismic. The spatial connectivity of sand channels
is very well reproduced with the proposed algorithm, which is shown to be a very
promising technique for characterizing these non-stationary environments.

6 Final Remarks

One final remark must be made about the geostatistical seismic inversion methods that
can be considered a game changer in subsurface characterisation methods. They have
a high potential for integrating geophysical data (e.g., seismic and electromagnetic)
into stochastic models of rock properties. Geomechanical models can also be derived
from velocity models, after inversion (Gray et al. 2012). Seismic inversion allows the
integration of rock physics models with new insights in rock-typing (Azevedo et al.
2019), a final word to emphasise the potential applications of these methodologies to
other fields like seismic oceanography (Azevedo et al. 2018a, b).

But the entire set of geostatistical seismic inversion methods presented in this paper
are, by some means, the result of André’s ideas. Moreover, this is just a small sam-
ple—an example—of his influence over an entire range of geostatistical methods for
the evaluation of natural resources. In fact, when we think of geostatistics as it is today,
it necessarily means remembering André Journel’s unique role in transforming geo-
statistics into a widely recognised modern discipline supporting a set of efficient tools
for solving practical problems within a wide range of natural resource applications.
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