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Abstract Abundant literature has been produced for the last two decades about
multiple-point statistics simulation, or MPS. The idea behind MPS is very simple:
reproduce patterns from a 2D, or most often a 3D, training image that displays the type
of geological heterogeneity deemed to be relevant to the reservoir or field under study,
while honoring local data. Replicating an image is a traditional computer science prob-
lem. Thus, it should come as no surprise if a growing number of publications on MPS
borrow ideas and techniques directly from computer vision and machine learning to
improve the reproduction of training patterns. However, quoting Andre Journel, “Geo-
statistics is not about generating pretty pictures.”Models have a purpose. For example,
in oil and gas applications, reservoir models are used to estimate hydrocarbon volumes
and book reserves, run flow simulations to forecast hydrocarbon production and ulti-
mate recovery, and make decisions about field development or optimal well drilling
locations. Specific key features such as the extent and connectivity of shale barriers
may have a major impact on the reservoir performance forecasts and the field develop-
ment decisions to be made. Those key features that need to be captured in the model,
along with the available subsurface data and constraints of the project, should be the
primary drivers in selecting the most appropriate modeling techniques and options to
obtain reliable results and make sound decisions. In this paper, the practitioners’ point
of view is used to evaluate alternative MPS implementations and highlight remaining
gaps.
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1 Introduction

The day I met Andre Journel for the first time at Stanford University in Spring 1997
changed the course of my life. I was passionate about statistics but had never heard
about geostatistics. Andre gave me a quick lecture and told me that, if I was interested
in joining his group, there was a very promising, but challenging, PhD topic I could
work on: multiple-point statistics, or MPS. With the full support of my future spouse
Audrey, who had already been instrumental in my application to Stanford, it did not
take me long to accept Andre’s offer.

At that time, traditional two-point variogram-based geostatistics was well estab-
lished. The theoretical foundations were solid, based on kriging equations (Goovaerts
1997), and an efficient public implementation was available in GSLIB (Deutsch and
Journel 1998). However, variogram-based models were unable to reproduce realistic
geological features, for example curvilinear features such as channels or lobes, which
are quite common in geological environments. Figure 1 illustrates that limitation: the
three binary facies models shown in that figure have very similar variograms, yet
they display very different patterns, resulting in different linear connectivity profiles.
Only the first model can be generated by the conventional variogram-based program
SISIM (Deutsch and Journel 1998). The two other models, generated by the object-
based programs FLUVSIM and ELLIPSIM (Deutsch and Tran 2002), display features
whose descriptions require going behind two-point correlation moments. Capturing
those features calls for inferring and reproducing specific higher-order, multiple-point
statistics. Andre Journel had a famous analogy: suppose that you are in the dark and
need to guess what object stands in front of you. Palpating that object with only two
fingers would make your guess much more uncertain than if you can use your ten
fingers to explore the shape of that object.

That inability of variogram-based geostatistics to model long-range curvilinear
features, hence to capture actual geological connectivity, is critical in numerous appli-
cations, especially when the geostatistical models are processed through a dynamic
flow simulator, for example in hydrocarbon and groundwater reservoir modeling stud-
ies.

Moving from two-point to multiple-point geostatistics was a major contribution
from Andre prior to retirement. The next section provides a brief history of the emer-
gence of MPS in the geostatistical toolbox. Today, however, a very large number of
MPS implementations are available, creating confusion among practitioners. To help
modelers choose what implementation to use, Andre’s motto has never been more rel-
evant: “Geostatistics is not about generating pretty pictures.” A geostatistical model
has a purpose: it can be estimating the ultimate recovery expected from a hydrocarbon
reservoir, or the risk of contamination of an aquifer. The objectives of the study should
always drive the choice of tools and workflows used to build the geostatistical models.
In this paper, we review a wide range of MPS implementation options: while some
address the constraints and priorities of most modeling applications, other, even if they
produce prettier pictures, suffer from important limitations that considerably reduce
their practical interest.
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Fig. 1 Binary facies models with similar variograms: a SISIM model; b ELLIPSIM model; c FLUVSIM
model; d–f Indicator variograms along the EW and NS directions, and linear connectivity function for the
SISIM (dashed line), ELLIPSIM (thin line), and FLUVSIM (thick line) models; from Strebelle (2000)

2 A Brief History of MPS

Once the need for multiple-point statistics to improve the reproduction of connected
patterns was identified by Journel and Alabert (1989), the very first challenge was
to infer those multiple-point statistics moments that characterize the complex object
shapes to be modeled. Inferring a two-point variogram from sparse conditioning data
was already arduous; going beyond the variogram was mission impossible. But then
came a simple and elegant idea: why not extract multiple-point statistics from an
analogous training image that would display those geological features the modeler
wants to capture? When I started my PhD in September 1997, the pioneers of that
idea had left the campus (Srivastava 2018). All that remained was an early attempt
to impose a limited number of multiple-point statistics moments through simulated
annealing (Deutsch 1992; Farmer 1992), and,most importantly, the foundational paper
fromGuardiano and Srivastava (1993) describing the actual firstMPS implementation:
ENESIM.

ENESIM is very close to SISIM: it is a direct sequential simulation algorithm
whereby unsampled locations are simulated along a random path, using initial hard
data and previously simulated locations as conditioning data. The difference from
SISIM is the inference of the conditional probability distribution at each unsampled
location. In SISIM, conditional probabilities are calculated from kriging equations
using the variogram model, whereas in ENESIM, they are inferred from the training
image by looking for replicates of the conditioning data event (same relative locations
and same data values as the conditioning data) and computing the distribution of
categorical values from the central locations of those training replicates. Then, in
ENESIM just like in SISIM, a simulated value is drawn by Monte-Carlo from the
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resulting cumulative probability conditional function andassigned to the locationbeing
simulated. However, inferring the local conditional probabilities in ENESIM required
scanning the full training image again every time a newunsampled locationwas visited,
which made the program extremely slow, quite impossible to use in practice.

Solving the computational limitation of ENESIM required several unforgettable
discussions with Andre, including diners at his place in Sunnyvale where the excel-
lent wine Andre was serving, and the poetry he was sharing, surely helped us to be
creative. In Fall 2000, I eventually defended my thesis, proposing an alternative, much
less computationally intensive, MPS implementation: SNESIM. The idea, again sim-
ple, as Andre liked them, was to introduce search trees to store all multiple-point
statistics from the training image for a data template corresponding to a given data
search window (Strebelle 2000). Prior to the simulation, the training image is scanned,
only once, with that data template, and all the training data events are stored in the
search tree. During the simulation, at each unsampled location, the conditional prob-
abilities can be quickly retrieved from that search tree, which made SNESIM much
faster than ENESIM. Because the size of the data template is limited for memory and
speed reasons, a multiple-grid approach, consisting in simulating nested, increasingly
finer, grids, and rescaling the data template proportionally to the node spacing of the
current nested grid, was introduced to capture long-range structures. A few years later,
the SNESIM implementation was further improved by optimizing the data template
definition and the multiple-grid simulation approach (Strebelle and Cavelius 2014).

The use of multiple-grid simulation is critical in SNESIM to capture long-range
connectivity patterns from the training image. However, nested grids are simulated
independently, one after another. To maintain the full consistency between small and
large-scale simulated patterns, the algorithm should remember what areas of the train-
ing image contain the multiple-point statistics moments that were used to simulate
the large-scale patterns, and then use only those areas to infer multiple-point statis-
tics moments needed to simulate small-scale patterns. Accounting for the relationship
between small- and large-scale patterns could be a subject of future research.

With multiple-point statistics, Andre’s research group, SCRF, entered a new area,
borrowing ideas, concepts and algorithms from computer vision andmachine learning.
Andre embraced that transformation (Journel 2004), encouraging his students to take
computer sciences classes, at the risk of seeing some of them called by the sirens of
Silicon Valley.

In the last 20 years, many alternative MPS implementations have been proposed.
Some of them were initiated or advised by Andre, more particularly the first pattern-
basedMPS implementations SIMPAT (Arpat and Caers 2007), or FILTERSIM (Zhang
et al. 2006; Wu et al. 2008). In pattern-based implementations, instead of simulat-
ing one grid cell at a time, a full set of cells are simulated, mimicking a jigsaw
approach. Better training image reproduction can be typically achieved using pattern-
based programs compared to the pixel-based programs ENESIM and SNESIM, but at
the expense of the perfect hard data conditioning allowed by the pixel-based approach.

NewMPS implementations focus more and more on training pattern reproduction.
The resulting models look prettier and prettier, but they lose sight of the constraints
they should honor to be able to answer the questions raised in the study. For example,
recent MPS implementations based on machine-learning techniques are often limited
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to 2D applications or do not even allow any data conditioning. The next three sections
review the typical expectations of practitioners regarding geostatistical models and
discuss MPS implementation options that fulfil those expectations.

This paper focuses on the use of MPS to simulate categories, more particularly
geological facies, which remains today the main MPS application. However, most
observations made for categorical MPS implementations, and the conclusions drawn
about preferred options, can be easily extended to MPS for continuous variables.

3 Training Images

The training image is the central piece of MPS simulation, and yet, almost 30 years
after the advent of MPS, important questions persist about what makes a “good”
training image: How large should a training image be? What level of geological detail
should it contain? Can training images be non-stationary?

In the early days of MPS, photographs of outcrops, or simple sketches hand-drawn
by a geologist, were proposed as potential training images; see Fig. 2a. However,
not only do those images require a fair amount of tedious processing before they
can be used by MPS simulation algorithms, but, more importantly, they are only two-
dimensional, whilemost geostatistical applications are three-dimensional. Practice has
shown over the time that unconditional object-based modeling was the most straight-
forward method to generate training images; see Fig. 2b. Photographs of outcrops and
hand-drawn sketches, but also good quality seismic data and geological databases,
are particularly useful to set input parameters, such as object shapes, dimensions,
and orientation, in object-based modeling programs. Freed from any conditioning,
traditional object-based modeling algorithms can be easily extended to incorporate
additional geological features, for example channel avulsion or stacking patterns.
Finally, object-based training images are easy and fast to generate. Thus, alternative
training images can be quickly built to represent the full range of geological uncer-
tainty.

Object-based models are usually considered as simplistic representations of geo-
logical environments, but this turns out to be an advantage for MPS. Indeed, as
demonstrated by Emery and Lantuejoul (2014), to provide a statistically robust dis-
tribution of all possible multiple-point statistics patterns, the training image should
theoretically have an extremely large size, orders of magnitude larger than typical
multi-million cell training images. It is therefore critical to optimize the content of the
training image by displaying only those geological features that will have the most
important impact on the study objective, for example the continuity of sand chan-
nels or shale layers that have a first order impact on flow performance predictions in
hydrocarbon reservoir studies. Through their simplicity, object-based training images
reduce the diversity of patterns, allowing MPS simulation to focus on the geological
features that really need to be reproduced.

For that same reason, it is important to limit the number of categories to be mod-
eled, as the greater the number of categories, the higher the number of possible
multiple-point statistical moments. For example, in hydrocarbon reservoir modeling
applications, even if the geologist can provide a very detailed well log interpretation
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Fig. 2 Different types of training images: a 2D hand-drawn sketch; b Unconditional object-based model;
c Process-based model from Willis and Sun (2019)

consisting of many different facies, the modeler should try to combine facies with
similar petrophysical properties into a small number of classes, 2 to 4 ideally, that
capture the main subsurface heterogeneous features.

Compared to object-based modeling, process-based modeling allows generat-
ing much more geologically reasonable models; see Fig. 2c from Willis and Sun
(2019). However, not only are process-based models computationally intensive, but,
as explained above, because of their high level of geologic detail, reproducing patterns
from those models by MPS algorithms is also much more challenging. Process-based
models are still very useful in MPS because they mimic physical processes and gen-
erate physically plausible models. Thus, when mature reservoir analogs are difficult
to identify, process-based modeling can generate “digital” analogs. Parameters such
as object dimensions or sinuosity can be estimated from those digital analogs to build
simpler training images using object-based modeling.

Determining the minimum level of geological detail needed in the training image to
provide reliable answers to the questions under study is a complex task. A procycling
approach is recommended, whereby the simplest possible training image with a small
number of classes, two or three ideally, is used first, and then complexity is added
progressively until additional detail does not impact the results or conclusions of the
study (e.g. the ultimate recovery estimated from a hydrocarbon reservoir to assess
the optimal number of wells needed to develop that reservoir). Another procycling
approach can help to optimize the size of the training image by starting froma relatively
small training image, consisting of, say, less than one million cells, and increasing the
size of the training image until no further impact on the study can be observed.

An important, but unfortunately often discarded, step before running MPS simu-
lation is to check the consistency of the training image with the conditioning data.
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Different consistency measures have been proposed (Boisvert et al. 2007). The most
basic one consists of comparing the variogram computed from the training image with
the experimental variogram estimated from the conditioning data.

4 Data Conditioning

In many applications, honoring hard conditioning data is an absolute necessity. For
example, in hydrocarbon or groundwater studies, not honoring the facies conditioning
data from available well logs leads to facies mismatches at well locations that make
flow performance predictions unreliable. Perfect data conditioning has been a strength
of conventional variogram-based programs such as Sequential Indicator Simulation
(SIS), whereas it has regularly been pointed out as a major limitation of object-based
programs. The original MPS implementations ENESIM and SNESIM provide the
same rigor as SIS in terms of data conditioning. If no replicate of the conditioning
data event can be found in the training image, the furthest away conditioning data
are dropped until at least one replicate of the reduced conditioning data event can be
found. This could alter the quality of the reproduction of the training patterns, but
it is generally the preference of practitioners to honor all conditioning data rather
than reproduce patterns from an uncertain, size-limited, training image. In addition,
postprocessing techniques have been proposed to identify and re-simulate patterns in
the MPS model that are not consistent with the training image (Strebelle and Remy
2004).

Pattern-based implementations do not offer that same guaranty of perfect data
conditioning. They indeed use a rigid data template, and none of the training patterns
corresponding to that template may be consistent with the conditioning data, resulting
in potential local mismatches like those observed in object-based modeling. A hybrid
solution combining a pixel-based implementation in the vicinity of conditioning data,
and a pattern-based implementation in the areas free of conditioning data is however
possible (Tahmasebi 2017).

In the last few years, some new implementations based on advanced computer
vision techniques have been proposed. They offer fast and efficient training pattern
reproduction, for example the implementation based on spatial generative adversar-
ial networks (SGAN) proposed by Laloy et al. (2018). Unfortunately, a lot of those
techniques completely ignore any form of conditioning or only offer very limited con-
ditioning capabilities, and one could question the interest that practitioners may find
in those solutions.

5 Non-stationary Constraints

Most events in nature are not stationary. There are always spatial constraints influ-
encing the distribution of the properties to be modeled. For example, when modeling
depositional facies, spatial constraints may be the source and concentration of sedi-
ments, the local topography, and/or the sea level. Inmost studies, soft data are available
to inform the modeler about the presence of such non-stationarity. For example, in
subsurface modeling, seismic data can provide an idea about the distribution of sand
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and shale. In the presence of good quality soft data, a calibration can be performed
using the available collocated hard data to estimate facies probabilities at each loca-
tion (Strebelle 2000). Different methods, such as the tau-model proposed by Journel
(2002), can be used to combine such a soft data-derived probability cube with the
training image-derived probabilities in pixel-based MPS implementations. In pattern-
based implementations, the integration of soft probabilities is less straightforward. As
the quality of the soft data becomes poorer, qualitative trends can be interpreted and
used as an uncertainty parameter in MPS.

Even in the absence of soft data, it is often important to generate soft constraints to
model the potential spatial distribution of the properties to be simulated byMPS. Such
trends can be computed from hard conditioning data using block kriging or derived
from the interpretation of the depositional environment. Building a stationary model,
without considering any uncertainty about potential trends, is a very strong decision
that can lead to the wrong conclusions.

In hydrocarbon or groundwater reservoir modeling, the spatial distribution of petro-
physical properties is likely to have a major influence on the flow behavior of the
reservoir. Attention should be brought to vertical trends, and more specifically to the
presence of extended layers with extreme property values, such as low porosity/low
permeability shale layers. Continuous shale layers indeed form flow barriers, isolating
reservoir compartments from each other. Identifying these layers can be challenging
since the grid layering may not be perfectly consistent with the actual reservoir stratig-
raphy, and correlative shale data from different wells may not correspond to the same
grid layer. Lateral trends away from conditioning data also needs special attention due
to risky extrapolation effects. Alternative interpretations away from conditioning data
control need to be considered, based on experience and analogs.

Developed in the early days of MPS, but still a common practice, the use of one-
dimensional vertical proportion curves, two-dimensional horizontal proportion maps,
or three-dimensional probability cubes, allow imposing non-stationarity features in
MPSmodels (Harding et al. 2004). Although this is the simplest practice, as it requires
only one stationary training image, the problem is ill-posed: in a facies model, local
proportions higher than the training image proportions can mean either a local density
of facies geobodies higher than the training image, or the local presence of facies
geobodies larger than in the training image. In a lot of cases, the modeler does not
have the answer to that question, and will let the MPS simulation program provide the
answer, most likely something in-between higher density of objects and larger objects.

Two solutions exist, however, for the modeler to control the outcome of the simu-
lation. In one solution, several training images can be generated with different facies
proportions, and regions can be defined in the simulation grid to let MPS use the most
appropriate training image in each region. In the alternative, a non-stationary training
image displaying regions with variable facies proportions can be provided, as well
as an auxiliary property that will restrict the selection of training patterns to the spe-
cific regions of the training image with similar proportions (Chugunova and Hu 2008;
Honarkhah and Caers 2012).

Geometrical constraints corresponding to variable geobody dimensions and/or
directions can be easily processed in pixel-basedMPS implementations through a sim-
ple affinity transform (rotation and/or stretching) of the training image (Strebelle and
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Zhang 2004). In this case, a two-dimensional or three-dimensional variable azimuth
field, or variable object size field, comprise the only input data needed by the MPS
algorithm. That approach can be extended to pattern-based MPS implementations.
However, more recent MPS implementations, borrowed from computer vision where
non-stationarity is not a concern, do not allow such constraints; this severely limits,
once again, the range of applications of those implementations.

6 Practical Considerations

MPS is a fabulous, still largely unexplored, research territory. While the theory behind
variogram-based geostatistics is well established with the kriging equations, MPS is
still an experimental field where results largely depend on implementation details
rather than theoretical rationale. Because of the inability of variogram-based geo-
statistics to reproduce realistic geological features and the limitations of object-based
approaches regarding hard and soft data conditioning, MPS simulation has become a
very attractive intermediary solution for practitioners, and it is now available in most
commercial geomodeling programs. As in any other software program, one critical
condition for the adoption of a specific MPS implementation by a large population
of modelers, is the user-friendliness of that implementation and the robustness of the
results.

6.1 User-Friendliness Through Default Input Parameters

In most MPS implementations, a data template must be specified by the user, which is
similar to the search neighborhood used in variogram-based simulation programs. In
theGSLIB library, several input parameters need to be set to define the search neighbor-
hood in sequential simulation programs (Deutsch and Journel 1998): the maximum
number of original data, the maximum number of previously simulated nodes, the
number of data per octant, and the dimensions and potential anisotropy of the search
neighborhood. In most commercial packages, parameter values are automatically esti-
mated (e.g. search neighborhood dimensions derived from variogram ranges) or set
by default, and they can be modified by the user only in an expert or advanced mode.
Therefore, the practitioners can focus on the inference of the variogram and possi-
ble non-stationarity constraints, instead of dealing with obscure parameters whose
influence on the final geostatistical realizations is hard to predict and analyze.

The situation is similar for the data template in MPS. Expecting non-expert users
to define the size and geometry of that data template only leads to misunderstand-
ing and frustration. In the original pixel-based MPS implementations ENESIM and
SNESIM, the conditioning data event is reduced by dropping the furthest conditioning
data whenever no replicate of that conditioning data event can be found in the training
image. Considering a relatively high template size in SNESIM, say 50 nodes, as a
default value is a conservative, safe, choice; increasing that value would slow down
theMPS simulation, as more conditioning data would need to be dropped, but it would
not fundamentally modify the quality of the reproduction of the training patterns. Fur-
thermore, Strebelle and Cavelius (2014) proposed amethod to automaticallyminimize
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the size of the data template based on the MPS moments that could be inferred from
the training image. The anisotropy of the template also can be automatically inferred
from the training image.

Regarding the multiple-grid simulation approach, the number of nested, increas-
ingly finer, grids can be set by the user in SNESIM. On the one hand, an insufficient
number of nested grids may prevent MPS models from reproducing large-scale struc-
tures from the training image. On the other hand, an excessive number of nested grids
requires additional simulation time, but it does not entail any deterioration of the MPS
models. Thus, the number of nested grids should be set to a conservative value on the
high side. For example, the default value can be simply computed such that the extent
of the rescaled data template corresponding to the first, coarser, grid, covers the whole
simulation grid. In summary, default values to define the data template and the num-
ber of multiple-grids can be automatically estimated, which allows the user to focus
on the fundamental inputs of MPS simulation: the training image and the condition-
ing constraints. In contrast, pattern-based implementations and other computer vision
derived implementations, such as the wavelet-decomposition based method proposed
by Gloaguen and Dimitrakopoulos (2009), provide results that highly depend on vari-
ous parameters, more particularly the choice of the data template. The extensive tuning
of parameter values required to obtain reasonable results always make practitioners
quite uncomfortable.

6.2 Target Proportions

A debate exists among researchers working on MPS regarding the need to impose
target categorical proportions on MPS models. In SIS, discrepancies between target
proportions and simulated proportions are usually accepted, as they correspond to
ergodic fluctuations due to the limited size of the simulation grid. InMPS, the simulated
proportions highly depend on algorithm details. In applications where volumes are
computed fromMPS models, those arbitrary fluctuations in the simulated proportions
are unacceptable. Target proportions must be honored by the MPS models, using for
example the servosystem proposed in SNESIM (Strebelle 2000): the current simulated
proportions are computed as the simulation progresses from one unsampled location
to the next, and local conditional facies probabilities inferred from the training image
are slightly increased to boost the simulation of those facies for which the current
simulated proportions are significantly lower than the target proportions.

Evaluating the target proportions is a critical step, since it has a direct impact
(e.g. hydrocarbon volume) or indirect impact (flow performance forecasts) on the
conclusions of the study. That evaluation requires not only checking and correcting for
any potential bias in the data locations, but also assessing the uncertainty about those
proportions. Many different methods have been proposed for quantifying probabilistic
distributions associated with target proportions uncertainty (Haas and Formery 2002;
Caumon et al. 2004; Hadavand and Deutsch 2017). Whatever the method selected
by the modeler, target facies proportions can be randomly drawn from the resulting
probabilistic distribution usingMonte-Carlo simulation, and then the servosystemwill
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help match those target facies proportions. Repeating that experience several times
allows building a set of models that span the full facies proportions uncertainty range.

Some MPS implementation options make it difficult, however, to impose target
proportions. This is the case for MPS implementations using the raster path. The
raster path consists of simulating all the unsampled locations along a path cycling
through one axis at a time (e.g. x-axis, then y-axis, and finally z-axis) instead of
using a traditional random path. By simulating consecutive nodes, the raster path
significantly improves the reproduction of training patterns (Daly 2004). While the
servosystem works very well with random paths as the current facies proportions are
computed from a random set of locations, a bias may exist along a raster path as the
current facies proportions are computed from the specific area where the raster path
started, which could have locally lower or higher proportions than the global target
proportions.

7 Conclusions

Multiple-point statistics simulation has opened a new area in geostatistics, an area
where connections to computer vision were identified very early and continue to be
investigated today. It is important, however, to understand the specificities of geosta-
tistical applications compared to computer vision, and make sure that the techniques
borrowed from computer vision are consistent with the expectations of users of geo-
statistical tools. Hard and soft conditioning, as well as non-stationarity features, are
fundamental components of geostatistical modeling that should never be overlooked.
MPS implementations that have trouble honoring conditioning data or non-stationary
constraints are likely to be ignored by practitioners. User-friendliness, which primarily
consists of minimizing the number of input parameters and providing robust results
that do not require extensive fine tuning, is critical for practitioners. Close reproduc-
tion of training image features becomes important only when those features play a
critical role in the results and conclusions of the study. Fit-for-purpose options may be
worth developing for common applications ofMPS simulation. For example,MPS has
been quite extensively used for the simulation of channel reservoirs, where long-range
channel connectivity is a critical factor impacting the reservoir flowbehavior. Yet, none
of the numerous MPS implementations developed to date guarantees the perfect con-
nectivity of the simulated channels as displayed in the training images in the resulting
MPS models, not even in two-dimensional models. The solution may be directly part
of the simulation process, or it could consist in a customized post-processing. More
generally, a vast avenue of research exists in identifying the multiple-point statistics
moments that are important to filter from the training image, and to make sure that
those moments are indeed reproduced in the MPS models. This would be a major step
towards generating useful images to make the right project decisions instead of just
pretty pictures.
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