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Abstract We study and compare five different combinations of finite element spaces
for approximating the coupled flow and solid deformation system, so-called Biot’s
equations. The permeability and porosity fields are heterogeneous and depend on
solid displacement and fluid pressure. We provide detailed comparisons among the
continuous Galerkin, discontinuous Galerkin, enriched Galerkin, and two types of
mixed finite element methods. Several advantages and disadvantages for each of the
above techniques are investigated by comparing local mass conservation properties,
the accuracy of the flux approximation, number of degrees of freedom (DOF), andwall
and CPU times. Three-field formulation methods with fluid velocity as an additional
primary variable generally require a larger number of DOF, longer wall and CPU
times, and a greater number of iterations in the linear solver in order to converge. The
two-field formulation, a combination of continuous and enriched Galerkin function
space, requires the fewest DOF among the methods that conserve local mass. More-
over, our results illustrate that three out of the five methods conserve local mass and
produce similar flux approximations when conductivity alteration is included. These
comparisons of the key performance indicators of different combinations of finite ele-
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ment methods can be utilized to choose the preferred method based on the required
accuracy and the available computational resources.

Keywords Poroelasticity · Biot’s equations · Local mass conservative · Finite
element · Two-field formulation · Three-field formulation

1 Introduction

Volumetric deformation of a porous medium caused by fluid pressure changes in pore
spaces may impact the hydraulic storability and permeability of a porous material,
which in turn influences the fluid flow field. This deformation mechanism is the cou-
pled process between fluid flow and solid deformation, and it can be captured through
the application of Biot’s equations of poroelasticity (Biot 1941; Biot andWillis 1957).
Biot’s equations can be solved analytically for simple geometries (Terzaghi 1951;
Wang 2017), but for complex geometries and boundary conditions, numerical approx-
imations such as finite volume discretization (Nordbotten 2014; Sokolova et al. 2019;
Honorio et al. 2018) and finite elementmethods (Choo and Lee 2018; Deng et al. 2017;
Haga et al. 2012; Liu et al. 2018; Murad et al. 2013; Salimzadeh et al. 2018; Wheeler
et al. 2014; Bouklas et al. 2015a) are commonly used. Recently, the possibility of
solving Biot’s equations using deep learning techniques was presented in Kadeethum
et al. (2020a, b). Biot’s equations are relevant for many applications, including land
subsidence by groundwater overexploitation, enhanced geothermal system and fossil
fuel production in deep and tight reservoirs, hydraulic fracturing-induced seismicity,
and biomedical engineering using porous hyperelastic material (Bisdom et al. 2016;
Kadeethum et al. 2019b, 2020d; Juanes et al. 2016; Lee et al. 2016; Nick et al. 2013;
Vinje et al. 2018; Bouklas et al. 2015b).

Specifically for the finite element method, Biot’s equations can generally be dis-
cretized using the two-field or three-field formulations (Haga et al. 2012; Phillips and
Wheeler 2007a, b). The two-field formulation uses fluid pressure and bulk deforma-
tion as the primary variables, while the three-field formulation adds fluid velocity
to the set of primary variables. For problems concerning incompressible material or
large strains, a four- or five-field formulation can be implemented (Kumar et al. 2020;
Zdunek et al. 2016). In this paper, we limit the scope of our study to two- and three-field
formulations.

Each of the formulationsmentioned above has its advantages and disadvantages. For
example, the two-field formulation, which employs a stable pair of continuous func-
tion spaces such as Taylor–Hood elements (Arnold et al. 1984) in its classical form, is
unable to provide solutions with local mass conservation or that are free of fluid pres-
sure oscillation atmaterial interfaceswith highpermeability contrast (Murad andLoula
1994; Scovazzi et al. 2017; Vermeer and Verruijt 1981). The three-field formulation,
which explicitly approximates fluid velocity, generally requires more computational
resources than the two-field formulation, especially in a three-dimensional domain
(Choo and Lee 2018; Kadeethum et al. 2019a, 2020c). Moreover, the three-field for-
mulation involves the inversion of the permeability tensor, leading to an ill-posed
problem (Choo and Lee 2018).
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There are many ways to compose two- and three-field formulations. For the
two-field formulation, both solid displacement and fluid pressure variables can be
approximated by the continuous Galerkin (CG)method (Deng et al. 2017; Salimzadeh
et al. 2018; Salimzadeh and Nick 2019). For a higher-order approximation, one may
employ a CG finite element space for the displacement field and a discontinuous
Galerkin (DG) or an enriched Galerkin (EG) finite element space for the fluid pressure
variable (Choo and Lee 2018; Kadeethum et al. 2019a; Liu et al. 2009). For three-
field formulation, one can use a mixed space of CG, the lowest Raviart–Thomas (RT),
and the lowest DG finite element spaces for displacement, velocity, and fluid pressure
fields, respectively (Haga et al. 2012; Phillips and Wheeler 2007a).

In this paper, we aim to provide quantitative comparisons of two- and three-field
formulations for solving linear and nonlinearBiot’s equations. Theflux approximation,
local mass conservation, number of Newton iterations, and required computational
time are used as comparison parameters. For the sake of simplicity, we solve Biot’s
equations using amonolithic approach instead of a sequentialmethod (White andBorja
2011), and no preconditioner is applied (White et al. 2016). A direct solver with lower–
upper decomposition (LU) is used inside each Newton iteration to reduce elimination
steps in the Gauss elimination (Balay et al. 2018). We note that this approach may
not yield the optimum results with regard to computational resource requirements for
each method. Advanced developments targeting each specific approach could result
in better computational time and memory management (Adler et al. 2019; Ayuso
et al. 2009; Lee and Wheeler 2018; White et al. 2016). An iterative scheme such as
a fixed-stress algorithm can also speed up the process and reduce the computational
cost significantly (Almani et al. 2016; Castelletto et al. 2015; Girault et al. 2019; Kim
et al. 2011).

We begin with model descriptions, mathematical equations, and model discretiza-
tions for both two- and three-field formulations. Subsequently, the solution strategy
is illustrated, including block structure and Newton iterations. Numerical results from
two- and three-field formulations are used to compare local mass conservation, flux
approximation, and computer processing time. We then provide guidelines for which
methods to use with respect to different model descriptions.

2 Mathematical Model

2.1 Governing Equations

We briefly recapitulate Biot’s equations for poroelasticity used in this paper. Let Ω ⊂
R
d (d ∈ {1, 2, 3}) be the computational domain, which is bounded by ∂Ω . The time

(t) domain is denoted by T = (0, T ], with T > 0. The coupling between the fluid
flow and solid deformation can be captured through Biot’s equations of poroelasticity,
which are the coupling between linear momentum and mass balance equations (Biot
1941).

The linear momentum balance equation can be written as

∇ · σ (u, p) = f , (1)

123



Math Geosci

where p(·, t) : Ω × (0; T ] → R is a scalar-valued fluid pressure, u(·, t) : Ω ×
(0; T ] → R

d is a vector-valued displacement, and f is a body force. For simplicity,
f is neglected in this study. Here, σ is total stress, which is defined as follows

σ := σ ′ − αp I, (2)

where I is the identity tensor and α is Biot’s coefficient, expressed as (Jaeger et al.
2009)

α := 1 − K

Ks
, (3)

with the bulkmodulus of a rockmatrix K and the solid grains modulus Ks . In addition,
σ ′ is an effective stress

σ ′(u) = λl(ε(u))I + 2μlε(u). (4)

where λl and μl are Lamé constants, and ε is the strain assuming infinitesimal dis-
placement

ε := ε(u) := 1

2

(∇u + (∇u)ᵀ
)
. (5)

Here, ∂Ω can be decomposed to displacement and traction boundaries, ∂Ωu and
∂Ωt , respectively. Linear momentum balance is supplemented by its boundary and
initial conditions, as shown below

∇ · σ ′(u) − α∇ · p I = f in Ω × T, (6)

u = uD on ∂Ωu × T, (7)

σ (u) · n = tD on ∂Ωt × T, (8)

u = u0 in Ω at t = 0, (9)

whereuD andσ D are the prescribeddisplacement and tractionquantities at boundaries,
respectively.

Next, the mass balance equation is given as (Coussy 2004)

ρ

(
φc f + α − φ

Ks

)
∂

∂t
p + ρα

∂

∂t
∇ · u + ∇ · (ρv) = g in Ω × T. (10)

Here, ρ is fluid density, φ is initial porosity, c f is fluid compressibility, ∇ · u is
the volumetric deformation, and g is a sink/source. Velocity v is defined by Darcy’s
velocity

v := −N [κ]
ρ

(∇ p − ρg) in Ω × T, (11)
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where g is a gravitational vector, N [·] represents a nonlinear operator, and κ is

κ := ρkm
μ

, (12)

where μ represents fluid viscosity and km is a matrix permeability tensor defined as

km =
⎡

⎢
⎣

kxxm kxym kxzm
kyxm kyym kyzm

kzxm kzym kzzm

⎤

⎥
⎦ , (13)

and kxx , kyy , and kzz represent matrix permeability in the x-, y-, and z-directions,
respectively. In this study, we are dealing with two types of a system of equations
using different definitions of N [κ] as follows

N [κ] =
{

= κ, for a system of linear equations

= κ(u), for a system of nonlinear equations.
(14)

The boundary of mass balance equation ∂Ω is decomposed to pressure and flux
boundaries, ∂Ωp and ∂Ωq , respectively. The mass balance equation is then supple-
mented by the following boundary and initial conditions

p = pD on ∂Ωp × T, (15)

ρv · n = qD on ∂Ωq × T, (16)

p = p0 in Ω at t = 0, (17)

where pD and qD are the given pressure and flux, respectively.

Remark 1 The nonlinearity arising in Biot’s equations studied here is focused only in
the matrix permeability tensor, which is expressed as a function of the displacement
vector, see Eq. (14). This form of nonlinearity is not the only possible formulation.
The elastoplastic or visco-elastoplastic constitutive laws could also be introduced and
add sources of nonlinearity (Cao et al. 2016; Choo 2018; Macminn et al. 2016; Lewis
and Schrefler 1998).

2.2 Numerical Methods

LetTh be the shape-regular triangulationbya family of partitions ofΩ intod-simplices
T (triangles/squares in d = 2 or tetrahedral/hexahedra in d = 3). We let hT be the
diameter of T , and we set h = maxT∈Th hT . Also, we denote Eh to be the set of
all facets. Then let E I

h and E ∂
h be the collection of all interior and boundary facets,

respectively. The E ∂
h is decomposed into E D

h , the Dirichlet boundary faces, and E N
h ,

the Neumann boundary faces. The space Hs(Th) (s ∈ R) is the set of element-wise
Hs functions on Th , and L2(Eh) refers to the set of functions whose traces on the

123



Math Geosci

elements of Eh are square integrable. Let Qk(T ) represent the space of polynomials
of partial degree at most k.

Next, we briefly introduce several notations. Let

e = ∂T+ ∩ ∂T−, e ∈ Eh, (18)

where T+ and T− are two neighboring elements. We denote he by the length of
the facet e, and n+ and n− by the outward normal unit vectors to ∂T+ and ∂T−,
respectively (n± := n|T±). For any given function ξ and vector function ξ , defined on
the triangulation Th , let ξ± and ξ± be the restrictions of ξ and ξ to T±, respectively.
Next, we define the weighted average operator {·}δe for ζ ∈ L2(Th) and τ ∈ L2(Th)

d ,
where d ≥ 2

{ζ }δe = δeζ
+ + (1 − δe) ζ−, on e ∈ Eh, (19)

and

{τ }δe = δeτ
+ + (1 − δe) τ−, on e ∈ Eh, (20)

where δe is calculated by Ern et al. (2009), Ern and Stephansen (2008) and Kadeethum
et al. (2019a)

δe := κ−
e

κ+
e + κ−

e
. (21)

Here

κ+
e := (n+)ᵀ · κ+ · n+, and κ−

e := (n−)ᵀ · κ− · n−, (22)

where κe is a harmonic average of κ+
e and κ−

e expressed as

κe := 2κ+
e κ−

e(
κ+
e + κ−

e
) . (23)

On the other hand, for e ∈ E ∂
h , we set {ζ }δe := ζ and {τ }δe := τ . Jumps across interior

facets will be defined as

�ζ � = ζ+n+ + ζ−n− and �τ� = τ+ · n+ + τ− · n− on e ∈ Eh .

For e ∈ E ∂
h , we let �ζ � := ζn and �τ� := τ · n.

2.2.1 Finite Element Spaces

We employ five different finite element methods for the spatial discretization and
compare the performance for the given problem. The first three methods we consider
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Table 1 Two-field (u×p) and three-field (u×v×p) formulations presented with their choices of function
space

Formulation Mixed space Designated
name

Displacement Velocity Pressure

u×p CG2 × CG1 CG CG2 – CG1

CG2 × EG1 EG CG2 – EG1

CG2 × DG1 DG CG2 – DG1

u×v×p CG2 × RT1 × DG0 MFE-RT CG2 RT1 DG0

CG2 × CG2 × CG1 MFE-P2 CG2 CG2 CG1

CGk, EGk, DGk, and RTk refer to continuous Galerkin, enriched Galerkin, discontinuous Galerkin, and
Raviart–Thomas with polynomial degree k

are continuous Galerkin (CG) (Murad and Loula 1994; Deng et al. 2017), discon-
tinuous Galerkin (DG) (Liu et al. 2009; Riviere et al. 2017), and enriched Galerkin
(EG) (Lee and Wheeler 2018; Choo and Lee 2018; Kadeethum et al. 2019a; Lee and
Wheeler 2017; Lee and Woocheol 2019) methods, where the primary unknown vari-
ables are (u×p), i.e the displacement u(·, t) and the pressure p(·, t). These are known
as two-field formulations.

The next two methods are so-called three-field formulations, where the primary
unknown variables are (u×v×p), i.e the displacement u(·, t), the velocity v(·, t), and
the pressure p(·, t). For this case, we consider the Raviart–Thomas (RT) mixed finite
elementmethod (Pain et al. 2005;Castelletto et al. 2016; Phillips andWheeler 2007a, b)
and continuous mixed finite element method (Haga et al. 2012). The summary of each
method and its designated name for simplicity of presentation is presented in Table 1.

We also compare the number of unknowns, or degrees of freedom (DOF), among
thesemethods by setting k as shown in Table 1. Please see Fig. 1(a, b) for an illustration
of two- and three-dimensional cases. The CG method has the lowest number of DOF,
while MFE-P2 has the greatest. The DG and the MFE-RT methods have almost the
same number ofDOF, and theEGmethod has fewerDOF than theDGand theMFE-RT
methods.

2.2.2 Temporal Discretization

The time domain, T = (0, τ ], is partitioned into N open intervals such that 0 =: t0 <

t1 < · · · < t N := τ . The length of the interval, Δtn , is defined as Δtn = tn − tn−1,
where n represents the current time step. Δt0 is an initial Δt , which is defined as
t1 − t0, while the other time steps, Δtn , are calculated as follows

Δtn :=
{

Δtmult × Δtn−1 if Δtn ≤ Δtmax

Δtmax if Δtn > Δtmax,
(24)

where Δtmult is a positive constant multiplier, and Δtmax is a maximum of Δt . In this
study, implicit first-order time discretization is utilized for a time domain as shown
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(a) (b)

Fig. 1 Comparison of the DOF of the methods presented in Table 1 of (a) two-dimensional geometry, (b)
three-dimensional geometry. Note that the DG and MFE-RT results overlap each other in (a and b)

below for a given function X(·, t) at time tn

∂X(·, tn)
∂t

≈ X
n − X

n−1

Δtn
. (25)

The fully discretized formulations of each method in Table 1 are presented in the
appendices. Please note that to simplify the process used in this paper, we solve Biot’s
equations using amonolithic method, and only a direct solver is employed without any
preconditioner (Balay et al. 2018; White and Borja 2011; White et al. 2016). We note
that in recent years, iterative solvers have been introduced that can exploit the block
structure of the discrete problem and its intrinsic algebraic properties, which lead to
very efficient strategies (Castelletto et al. 2016; White et al. 2016; Ferronato et al.
2010; Lee et al. 2017; Frigo et al. 2019; Ferronato et al. 2019). Additionally, each of
the methods presented in Table 1 can be optimized; for example, there is a fast solver
technique available for the EG method (Lee and Wheeler 2018). A decomposition of
the linear DG space into a Crouzeix–Raviart (C–R) space and a complementary space
can be used as a block preconditioner for the DG method (Lee and Wheeler 2018;
Ayuso et al. 2009). New robust solvers and preconditioners for three-field formulations
have also recently been proposed (Adler et al. 2019; Frigo et al. 2019). Moreover, a
fixed-point iteration approach, such as the fixed-stress split, can be employed instead
of themonolithic approach in order to speed up the process (Almani et al. 2016; Girault
et al. 2019; Castelletto et al. 2015; Kim et al. 2011).

3 Numerical Examples

We compare four factors among the five methods listed in Table 1. The flux approxi-
mation, local mass conservation property, DOF, and required computational time are
the comparison factors. We begin with a simple one-dimensional linear consolidation
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problem in homogeneous and heterogeneous porous materials. We then present two-
and three-dimensional nonlinear Biot’s systems in homogeneous and heterogeneous
materials.

Throughout this paper, matrices and vectors are built using the FEniCS form com-
piler (Alnaes et al. 2015). The block structure is assembled using the multiphenics
toolbox (Ballarin and Rozza 2019). Solvers are employed from the PETSc package
(Balay et al. 2018). The random fields porosity (φ) and permeability (km0) are popu-
lated using the SciPy package (Virtanen et al. 2020). The penalty parameter (β) is set
at 1.1 and 1.0 for the DG and EG methods, respectively.

3.1 A Consolidation Benchmark Problem with Homogeneous Material

Weverify the numericalmethodsCG, EG,DG,MFE-RT, andMFE-P2 using an analyt-
ical solution known as Terzaghi’s one-dimensional consolidation problem (Terzaghi
1951). Examples 1 and 2 are similar to examples employed by Choo and Lee (2018)
and Kadeethum et al. (2019a), but here we also include MEF-RT and MFE-P2, the
mixed finite element methods, for validation and comparison. We consider the linear
case with N [κ] = κ and assume the domain is homogeneous, isotropic, and satu-
rated with a single-phase fluid. The computational domain and boundary conditions
are presented in Fig. 2.

The nondimensional parameters are defined as follows (Terzaghi 1951; Choo and
Lee 2018; Kadeethum et al. 2019a)

p∗ := p

σ
, z∗ := z

H
, t∗ := cv

H2 t, (26)

where p is the fluid pressure, σ is the far-field stress or external load, z is the distance
from the drainage boundary, and H is the domain thickness. In addition, cv is the
coefficient of consolidation calculated by

cv = 3K

(
1 − v

1 + v

)
km,y

μ
, (27)

where km,y is the matrix permeability in the y-direction. Subsequently, the analytical
pressure solution of Terzaghi’s one-dimensional consolidation is written as follows

p∗ (z∗, t∗
) =

∞∑

m=0

2

M
sin
(
Mz∗

)
e−M2t∗ , (28)

where M = π(2m + 1)/2. Input parameters are σ D = [0, 1] kPa, pD = 0 Pa,
km = 10−12 I m2, μ = 10−6 kPa s, ρ = 1,000 kg/m3, K = 1,000 kPa, mesh
size(h) = 0.05 m, Ks ≈ ∞ kPa, which leads to α ≈ 1, and v = 0.25, Δt0 = 1.0 s,
Δtmult = 1.0, Δtmax = 1; λl and μl are calculated by the following equations

λl = 3Kv

1 + v
, and μl = 3K (1 − 2v)

2(1 + v)
. (29)

123



Math Geosci

Fig. 2 Example 3.1: A setup for
the one-dimensional
consolidation problem in a
homogeneous material

Fig. 3 Example 3.1: The
pressure values for the
one-dimensional consolidation
problem in a homogeneous
material. The results from all
CG, EG, DG, MFE-RT, and
MFE-P2 methods are illustrated.
The new results for the mixed
methods (MFE-RT, MFE-P2)
are similar to CG, DG, and EG,
which were also shown in Choo
and Lee (2018) and Kadeethum
et al. (2019a)

Fig. 4 Example 3.2: A setup for
the one-dimensional
consolidation problem in a
two-layered material

We use the direct solver with lower–upper decomposition (LU) in this problem
(Balay et al. 2018). The results of the five different methods are presented in Fig. 3.
We observe reasonable matches between analytical and numerical solutions for all
time steps, 25, 50, 100, and 250 s. Moreover, the solutions of CG, EG, DG, MFE-RT,
and MFE-P2 methods are approximately identical for this problem.
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(a) (b)

Fig. 5 Example 3.2: The pressure values for the one-dimensional consolidation problem in a two-layered
material is illustrated. (a) presents the pressure results of the CG, EG, and DG methods, (b) shows the
pressure results of the MFE-RT and MFE-P2 methods. The new results for the mixed methods (MFE-RT,
MFE-P2) are similar to CG, DG, and EG, which were also shown in Choo and Lee (2018); Kadeethum
et al. (2019a)

3.2 A Consolidation Problem with Two-Layered Material

Next, we evaluate the fluid pressure, p, in a Two-layered material (Choo and Lee
2018; Kadeethum et al. 2019a). Figure 4 presents a geometry and boundary conditions
utilized in this problem. Most of the input parameters, mesh size, and solvers are the
same as in the previous example, but in this example, km = k1 I, if 1 > x > 0.5 and
km = k2 I, if 0.5 > x > 0, and k1 = 10−12 m2 and k2 = 10−16 m2.

The pressure values, p, are presented in Fig. 5(a, b) for theCG,EG, andDGmethods
and the MFE-RT and MFE-P2 methods, respectively. In this heterogeneous material,
we observe unphysical (spurious) pressure oscillations at the interface when the CG
and MFE-P2 methods are used, because it is well known that the classical CG method
does not conserve mass locally (Haga et al. 2012; Choo and Lee 2018; Kadeethum
et al. 2019a; Choo 2019; Choo and Borja 2015; Hong and Kraus 2017; Honorio et al.
2018; Lee et al. 2017; Rodrigo et al. 2018; White and Borja 2008).This oscillation
may lead to incorrect fluid flux calculation and incorrect permeability alteration, since
κ is a function of u as described in Eq. (14), and u is strongly coupled with p. Hence,
suitable modifications are required to overcome this issue. On the other hand, we
do not observe any oscillations for the EG, DG, or MFE-RT methods. The pressure
solutions of these methods are smooth for all the time steps.

3.3 A Flow Problem in Two-Dimensional Deformable Media

In this example, we consider the system of nonlinear equations by assumingN [κ] =
κ(u) in the computational domainΩ = [0, 1]2. For the nonlinear case, the volumetric
displacement can cause the matrix permeability alteration, and km is defined as Du
and Wong (2007) and Abou-Kassem et al. (2013)
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Fig. 6 Example 3.3: A setup for the flow problem in a two-dimensional deformable media. (a) Mass
boundary conditions and (b) force boundary conditions are illustrated

Table 2 Example 3.3: Degrees
of freedom (DOF) comparison
among CG, EG, DG, MFE-RT,
and MFE-P2 methods

Model Total Displacement Velocity Pressure

CG 19,582 17,370 – 2,212

EG 23,844 17,370 – 6,474

DG 30,156 17,370 – 12,786

MFE-RT 28,105 17,370 6,473 4,262

MFE-P2 36,952 17,370 17,370 2,212

km = km0

(
1 + εv

φ

)3

1 + εv

, (30)

where k0m represents the initial rockmatrix permeability.Here, εv is the total volumetric
strain

εv := tr(ε) =
d∑

i=1

εi i . (31)

Throughout this problem, we assume that ρ andμ are constants; thus, κ varies only
as a function of km. The details for the setup and the boundary conditions are shown
in Fig. 6.

The physical parameters are given as σ D = [0, 20]MPa, pD = 1MPa, p0 =
10MPa, α = 0.79, K = 8.0 GPa, Ks is then calculated by Eq. (3), c f = 1 ×10−10

Pa, ρ = 1,000 kg/m3,μ = 10−6 kPa s, h = 0.025m, and v = 0.2. The rock properties
are selected for a sandstone example (Jaeger et al. 2009). In addition, λl , and μl are
calculated by Eq. (29). Finally, the numerical parameters are set as Δt0 = 1.0 s,
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Δtmult = 1.5, Δtmax = 2.5 s. We have two different cases of the φ and km for this
example.

This example is used to compare the flux approximation, property of local mass
conservation, and the number of Newton iterations. First, the number of DOF for five
different methods is presented in Table 2. As we discussed before, we observe that the
CG method has the fewest DOF. The DG and MFE-RT methods have approximately
the same number of DOF, while MFE-P2 has the highest number of DOF.

The local mass conservation of each cell at each time step, rnmass, is calculated by

rnmass :=
∫

T
ρ

(
φc f + α − φ

Ks

)
pn − pn−1

Δtn

+ρα∇ · u
n − un−1

Δtn
dV +

∑

e∈Eh

∫

e
vn · n|e dS, (32)

and the numerical flux, vn · n|e, is defined by

vn · n|e = − {κ(unh)
(∇ pnh − ρg

) · n}+ β

he
κ(unh)�p

n
h� ∀e ∈ E I

h , (33)

vn · n|e = qD ∀e ∈ E N
h , (34)

vn · n|e = −κ(unh)
(∇ pnh − ρg

) · n + β

he
κ(unh)

(
pnh − pD

) ∀e ∈ E D
h . (35)

For the comparison, we evaluate the maximum value of rnmass at each time step,
max(rmass). For the flux approximation, we use a recovery factor (RF), which is an
industry standard (Peaceman 2000; Abou-Kassem et al. 2013; Chen 2007), and it is
defined at each time step as follows

RFn :=
∑tn

t=0
∑

e∈Eh
∫
e vn · n|e dS

ρV0φ
, (36)

where V0 is an initial reservoir volume. In this example, vn · n|e is calculated for all
outlet surfaces.

Throughout this example, theNewton iteration is used to solve the system of nonlin-
ear equations, and a direct solver with lower–upper decomposition (LU) is employed
for each Newton iteration (Balay et al. 2018). The absolute tolerance is set as 1×10

−6,
relative tolerance is set as 1 × 10

−16, the maximum number of Newton iterations is
100, and the relaxation parameter is 0.75. All simulations are run on a Xeon E5-2650
v4 processor with a single thread.

3.3.1 Homogeneous Rock Matrix Porosity and Permeability

In this case, we consider that km0 is isotropic and homogeneous, and the value is set to
km0 = 10−12 I . Figure 7 illustrates the comparison of the RF, max(rmass), and number
of Newton iterations for the different methods.

123



Math Geosci

(a) (b)

(c)

Fig. 7 Example 3.3.1: Comparison of the values of (a) RF, (b) max(rmass), and (c) number of Newton
iterations among the CG (green line), EG (black line), DG (red line), MFE-RT (magenta line), and MFE-P2
(blue line) methods. Note that all results overlap each other in (a), and the CG and EG results overlap in
(c)

First, we note that all the methods present approximately the same RF results.
However, the value for max(rmass) shows different behavior for each method. The
EG, DG, and MFE-RT methods conserve the local mass, with the value of max(rmass)

always less than the absolute tolerance of 1 × 10
−6, whereas the CG and MFE-P2

methods do not conserve the local mass, and the max(rmass) value is not bounded.
Figure 7(c) shows that theCGandEGmethods require the fewestNewton iterations,

while the DG, MFE-RT, and MFE-P2 require approximately the same number of
Newton iterations.

The summaries of total wall and CPU times are presented in Table 3 for all methods.
This table shows that the CGmethod requires the least total wall and CPU time, while
the MFE-RT method requires the most. This result indicates that the total computa-
tional time is not directly determined by the number of DOF presented in Table 2 and
the number of Newton iterations shown in Fig. 7(c). Thus, more detailed information
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Table 3 Example 3.3.1:
Comparison of the total wall and
CPU times

Model Wall time (s) CPU time (s)

CG 263 248

EG 280 264

DG 316 308

MFE-RT 389 382

MFE-P2 326 311

Table 4 Example 3.3.1: Comparison of the average wall time for each operation

Summary of timings Average wall time (s)

CG EG DG MFE-RT MFE-P2

Assemble cells 6.28E−03 5.97E−03 6.31E−03 6.64E−03 7.34E−03

Assemble exterior facets 1.84E−04 1.79E−04 1.77E−04 1.66E−04 1.69E−04

Assemble interior facets – 7.88E−03 7.87E−03 – –

Assemble system 8.45E−02 9.18E−02 9.48E−02 1.30E−01 1.92E−01

Build sparsity 1.48E−03 1.26E−03 1.53E−03 1.36E−03 1.44E−03

Delete sparsity 1.51E−06 1.37E−06 1.40E−06 1.38E−06 1.45E−06

DirichletBC compute 5.25E−05 5.12E−05 5.27E−05 4.32E−05 5.78E−05

Init dof vector 4.64E−04 4.11E−04 4.58E−04 4.10E−04 4.85E−04

Init dofmap 7.50E−03 8.07E−03 8.63E−03 5.82E−03 8.75E−03

Init tensor 4.99E−04 4.49E−04 4.80E−04 4.97E−04 5.23E−04

LU solver 1.91E−01 2.33E−01 2.68E−01 6.06E−01 3.08E−01

regarding the required computational time used by each operation is presented in Table
4.

In Table 4, we observe that the LU solver and assemble system operations are the
main contributors to the wall time. Note that for the CG, MFE-RT, and MFE-P2, there
is no computational time for assembling the interior facets because there is no interior
facet integral term in their discretizations. As expected, the more DOF the method
has, the more time it needs to assemble the system. The two-field formulation, CG,
EG, and DG methods, requires less time to solve a linear system than the three-field
formulation, MFE-RT and MFE-P2 methods, because the two-field formulation has
one fewer primary variable than the three-field formulation. Even though the assembly
time of the MFE-P2 method is higher than that of the MFE-RT method, the LU solver
operation takes twice as long for the MFE-RT method as that of the MFE-P2 method.
This leads to the longer total wall and CPU time taken by the MFE-RT method.

3.3.2 Heterogeneous Rock Matrix Porosity and Permeability

In this example, the heterogeneous φ and κ0 values are considered as shown in Fig.
8(a, b), respectively. In particular, the heterogeneous fields are generated using the
following specifications: φ̄ = 0.2, var(φ) = 0.01, φmin = 0.001, φmax = 0.4,
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Fig. 8 Example 3.3.2: Heterogeneous rock matrix porosity and permeability values based on normal and
log-normal distributions. (a) φ field and (b) log10(κ0) field

κ̄0 = 1.2×108 s, var(κ0) = 1.4×10−16 s2, κmin
0 = 1.2×10−13 s, and κmax

0 = 1.2×
10−6 s. Here (·) denotes an arithmetic average, var(·) is the variance, and (·)min and
(·)max are the minimum and maximum values, respectively. The values φ̄, φmin, φmax,
κ̄0,κmin

0, andκmax
0 are selected based on the reported values for shales and sandstones

from Jaeger et al. (2009). Note that κ̄0, κmin
0, and κmax

0 reflect the ¯km0, kmmin
0,

and kmmax
0 values of 1.2 × 10−14, 1.2 × 10−19, and 1.2 × 10−12 m2, respectively.

Additionally, these two heterogeneous fields are populated independently (i.e., there
is no correlation between φ and κ0). All the other input parameters are assigned the
same values in the previous homogeneous example (Sect. 3.3.1).

In Fig. 9, the results of the RF, max(rmass), and number of Newton iterations are
illustrated. In this case, the EG, DG, and MFE-RT methods provide approximately
the same RF result, but the CG and MFE-P2 results are significantly different. Similar
to the homogeneous case, the max(rmass) of the EG, DG, and MFE-RT methods is
always less than the absolute tolerance of 1 × 10

−6. This shows that the EG, DG,
and MFE-RT have the property of local mass conservation. The CG and MFE-P2
methods, on the other hand, do not conserve local mass. Figure 9(c) illustrates that
the CG and EGmethods require the lowest number of Newton iterations, and the two-
field formulation requires fewer Newton iterations than the three-field formulation.
The MFE-RT method has the highest number of Newton iterations.

The summary of the total wall and CPU times of the heterogeneous case for all
methods is illustrated in Table 5. The result agrees with the previous case in Sect.
3.3.1. The CG method requires the least wall and CPU time, while the MFE-RT
method requires the most wall and CPU time.

More detailed analysis of the computational time of each operation is summarized
in Table 6. Similar to Sect. 3.3.1, the LU solver and assemble system operations take
most of the wall time used by each simulation. The two-field formulation requires
less time to solve a linear system than the three-field formulation. As expected, the
more DOF the method has (Table 2), the more time it needs to assemble the system.
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(a) (b)

(c)

Fig. 9 Example 3.3.2: Comparison of the values of (a) RF, (b) max(rmass), and (c) number of Newton
iterations among the CG (green line), EG (black line), DG (red line), MFE-RT (magenta line), and MFE-P2
(blue line) methods. Note that the EG, DG, and MFE-RT results overlap each other in a

Table 5 Example 3.3.2:
Comparison of the total wall and
CPU times

Model Wall time (s) CPU time (s)

CG 357 344

EG 455 442

DG 543 524

MFE-RT 1,221 1,201

MFE-P2 792 773

Moreover, as mentioned in the homogeneous case, the LU solver operation of the
MFE-RT method takes twice as much time as the MFE-P2. This leads to the longer
total wall and CPU times of the MFE-RT method.
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Table 6 Example 3.3.2: Comparison of the average wall time for each operation

Summary of timings Average wall time (s)

CG EG DG MFE-RT MFE-P2

Assemble cells 6.25E−03 5.95E−03 6.35E−03 6.44E−03 7.44E−03

Assemble exterior facets 1.83E−04 1.81E−04 1.90E−04 1.66E−04 1.72E−04

Assemble interior facets – 7.79E−03 8.10E−03 – –

Assemble system 1.28E−01 1.41E−01 1.56E−01 2.45E−01 3.92E−01

Build sparsity 1.47E−03 1.26E−03 1.56E−03 1.21E−03 1.44E−03

Delete sparsity 1.43E−06 1.63E−06 1.59E−06 1.59E−06 1.42E−06

DirichletBC compute 5.26E−05 5.42E−05 5.61E−05 4.33E−05 5.79E−05

Init dof vector 5.13E−04 4.53E−04 5.77E−04 4.13E−04 4.75E−04

Init dofmap 7.78E−03 8.05E−03 9.01E−03 5.97E−03 8.78E−03

Init tensor 5.02E−04 4.84E−04 5.03E−04 4.89E−04 5.05E−04

LU solver 3.05E−01 4.07E−01 4.53E−01 1.41E+00 6.26E−01

3.4 A Flow Problem in Three-Dimensional Deformable Media

This example extends the previous study in the two-dimensional domain to a three-
dimensional domain. The computational domain is given as Ω = [0, 1]3. The
geometry andboundary conditions are presented inFig. 10(a). The input parameters are
similar to those of the previous two-dimensional problem. For the heterogeneous case,
the φ and κ0 fields are constructed by the same specifications as the two-dimensional
problem, as illustrated in Fig. 10(b, c). Here, the σ D value is set as σ Dx = [10, 0, 0],
σ Dy = [0, 10, 0], and σ Dz = [0, 0, 10]MPa.

This problem also assumes the nonlinear relation N [κ] = κ(u) in Eq. (14). The
definition of Eq. (30) used in the two-dimensional case is again utilized in this problem.
First, the summary of the number of DOF among different methods is presented in
Table 7. Similar to the previous problem, we can observe that the CG method has the
fewest DOF. The DG and MFE-RT methods have approximately the same number of
DOF, while MFE-P2 has the highest number of DOF.

Again, throughout this problem, the Newton iteration is used to solve the system
of nonlinear equations, and a direct solver with lower–upper decomposition (LU) is
employed for each Newton iteration (Balay et al. 2018). The absolute tolerance is set
as 1 × 10

−6, relative tolerance is set as 1 × 10
−16, the maximum number of Newton

iterations is 100, and the relaxation parameter is 0.75. All simulations are computed
on a Xeon E5-2650 v4 processor with a single thread.

3.4.1 Homogeneous Rock Matrix Porosity and Permeability

In this example, we consider that km0 is isotropic and homogeneous, and its value
is assigned as km0 = 10−12 I m2. The results of the RF, max(rmass), and number of
Newton iterations are presented in Fig. 11. We observe that all methods except the CG
method present approximately the same RF results. Similar to the two-dimensional
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Fig. 10 Example 3.4: A setup for the three-dimensional problem. a Geometry and boundary conditions.
Besides the surface that is imposed by the constant pressure boundary, other surfaces are imposed by the
zero-flux boundary. Also, the surfaces that are opposite the stress boundaries are imposed with zero normal
displacement). b Illustration of φ and c log10(κ0) fields

Table 7 Example 3.4:
Comparison of degrees of
freedom (DOF) among CG, EG,
DG, MFE-RT, and MFE-P2
methods

Model Total Displacement Velocity Pressure

CG 21,969 20,901 – 1,068

EG 26,064 20,901 – 5,163

DG 37,281 20,901 – 16,380

MFE-RT 33,923 20,901 8,927 4,095

MFE-P2 42,870 20,901 20,901 1,068

case, the EG,DG, andMFE-RTmethods show the property of localmass conservation,
while the CG and MFE-P2 methods do not. Figure 11(c) illustrates that the CG and
EG methods require the fewest Newton iterations. Unlike the two-dimensional case,
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(a)

(c)

(b)

Fig. 11 Example 3.4.1: Comparison of the values of (a) RF, (b) max(rmass), and (c) number of Newton
iterations among the CG (green line), EG (black line), DG (red line), MFE-RT (magenta line), and MFE-P2
(blue line) methods. Note that all results overlap each other in (a), and the CG and EG results are overlapped
in (c)

the DG method requires fewer Newton iterations than both the MFE-RT and MFE-P2
methods, and the MFE-RT method requires the highest number of Newton iterations.

A summary of the total wall and CPU times for all methods is presented in Table
8. We observe that the CG method requires the least wall and CPU time, while the
MFE-P2 method requires the most. This result may be related to the number of DOF
presented in Table 2 and the number of Newton iterations shown in Fig. 11(c).

A more detailed comparison of the required computational time for each operation
is summarized in Table 9. Similar to all previous cases, the main contributors to the
wall time are the LU solver and assemble system operations. However, the difference
in this three-dimensional case is that the assemble system operation sometimes takes
more time than the LU solver for the MFE-RT and MFE-P2 methods. This is a visible
result, since it is clear that the greater the number of DOF the method has, the more
time it requires to assemble the system. As in the three-dimensional case, the three-
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Table 8 Example 3.4.1:
Comparison of the total wall and
CPU times

Model Wall time (s) CPU time (s)

CG 1,481 1,461

EG 2,045 2,018

DG 3,251 3,230

MFE-RT 24,983 24,952

MFE-P2 41,602 41,562

Table 9 Example 3.4.1: Comparison of the average wall time for each operation

Summary of timings Average wall time (s)

CG EG DG MFE-RT MFE-P2

Assemble cells 8.29E−03 8.19E−03 7.73E−03 7.99E−03 1.02E−02

Assemble exterior facets 2.70E−04 2.64E−04 2.64E−04 2.31E−04 2.43E−04

Assemble interior facets – 1.10E−02 1.18E−02 – –

Assemble system 2.17E+00 2.42E+00 2.46E+00 5.47E+01 1.14E+02

Build sparsity 1.06E−02 9.33E−03 1.14E−02 5.44E−03 1.01E−02

Delete sparsity 1.73E−06 1.61E−06 1.56E−06 1.46E−06 1.47E−06

DirichletBC compute 2.76E−04 2.89E−04 2.90E−04 2.18E−04 5.15E−04

Init dof vector 7.66E−04 7.24E−04 6.76E−04 7.76E−04 6.88E−04

Init dofmap 1.66E−02 1.85E−02 1.89E−02 1.26E−02 2.30E−02

Init tensor 8.13E−04 7.85E−04 7.06E−04 8.29E−04 8.07E−04

LU solver 2.76E+00 4.89E+00 7.06E+00 1.33E+01 7.99E+00

formulation DOF increases dramatically compared to the two-dimensional case. The
two-field formulation, CG, EG, and DG methods, requires less time to solve a linear
system than the three-field formulation MFE-RT and MFE-P2 methods because the
two-field formulation has one fewer primary variable than the three-field formulation.
The computational time required by the LU solver operation of the MFE-RT is twice
that of the MFE-P2 one. Thus, we observe that the LU solver operation is not always
proportional to the number of DOF. The computational time required to assemble the
system also increases significantly for the MFE-P2 case, which leads to the longer
total wall and CPU times relative to the MFE-RT method.

3.4.2 Heterogeneous Rock Matrix Porosity and Permeability

In this example, we illustrate the results obtained with the heterogeneous materials.
In Fig. 12, the results of the RF, max(rmass), and number of Newton iterations are
presented. Similar to the heterogeneous case in the two-dimensional domain, the RF
results of the EG, DG, and MFE-RT methods are almost identical, while the CG and
MFE-P2 RF results are significantly different. Moreover, the EG, DG, and MFE-RT
methods show the property of localmass conservation, since (max(rmass) is always less
than the absolute tolerance of 1×10

−6). As expected, the CG andMFE-P2methods do
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(a)

(c)

(b)

Fig. 12 Example 3.4.2: Comparison of the values of (a) RF, (b) max(rmass), and (c) number of Newton
iterations among the CG (green line), EG (black line), DG (red line), MFE-RT (magenta line), and MFE-P2
(blue line) methods. Note that the EG, DG, and MFE-RT results overlap each other in (a)

not conserve the local mass. Figure 12(c) shows that the CG and EG methods require
the fewest Newton iteration, and the two-field formulation requires fewer Newton
iterations than the three-field formulation. In the three-dimensional case, the MFE-RT
method has the highest number of Newton iterations instead of the MFE-P2 method.

A summary of the totalwall andCPU times for the three-dimensional heterogeneous
case for all methods is illustrated in Table 10. The result is similar to the previous
homogeneous case in Sect. 3.4.1. The CG method requires the least wall and CPU
time, while the MFE-P2 method requires the most wall and CPU time.

The required computational time for each operation is summarized in detail in Table
11. As shown in all the previous cases, the main contributors to the wall time are LU
solver and assemble system operations. Also, the assemble system operation for the
three-field formulation takes more time than the LU solver operation. As mentioned in
the previous case, the LU solver operation of theMFE-RT requires twice the wall time
as that of the MFE-P2 method, while the assembly operation of the MFE-P2 method
is 2.5 times that of the MFE-RT method.
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Table 10 Example 3.4.2:
Comparison of the total wall and
CPU times

Model Wall time (s) CPU time (s)

CG 3,466 3,444

EG 5,449 5,414

DG 9,748 9,733

MFE-RT 141,983 141,960

MFE-P2 351,577 351,547

Table 11 Example 3.4.2: Comparison of the average wall time for each operation

Summary of timings Average wall time (s)

CG EG DG MFE-RT MFE-P2

Assemble cells 8.18E−03 7.57E−03 7.90E−03 7.98E−03 1.03E−02

Assemble exterior facets 2.56E−04 2.58E−04 2.51E−04 2.36E−04 2.49E−04

Assemble interior facets – 1.10E−02 1.07E−02 – –

Assemble system 3.04E+00 3.49E+00 4.07E+00 8.60E+01 1.97E+02

Build sparsity 1.05E−02 9.21E−03 1.11E−02 5.51E−03 1.02E−02

Delete sparsity 1.67E−06 1.45E−06 1.50E−06 1.47E−06 1.56E−06

DirichletBC compute 2.70E−04 2.74E−04 2.70E−04 2.02E−04 4.90E−04

Init dof vector 7.84E−04 6.67E−04 8.08E−04 7.54E−04 8.79E−04

Init dofmap 1.57E−02 1.66E−02 1.69E−02 1.27E−02 2.36E−02

Init tensor 7.78E−04 6.98E−04 7.91E−04 8.14E−04 9.74E−04

LU solver 4.77E+00 8.64E+00 8.86E+00 2.93E+01 1.55E+01

4 Discussion

We compared and illustrated the performance of five finite element approximations,
CG, EG, DG, MFE-RT, and MFE-P2, shown in Table 1 using examples that span one-
to three-dimensional geometries and homogeneous to heterogeneous materials. Each
numerical method gives pressure solutions for linear one-dimensional consolidation
models that are almost the same as Terzaghi’s analytical solution, with less than 1%
difference. Where these methods diverge is when local mass conservation must be
enforced across all interfaces, especially those with high conductivity contrasts. In this
case, the CG andMFE-P2methods might produce spurious oscillations at the material
interface (see Sect. 3.2), suggesting they may not be good representations of the linear
Biot system in a heterogeneous material. It is well known that the CG and MFE-P2
methods without appropriate stabilization produce spurious pressure oscillations, and
these oscillations can be eliminated by introducing stabilization terms (Choo 2019;
Choo and Borja 2015; Hong and Kraus 2017; Honorio et al. 2018; Lee et al. 2017;
Rodrigo et al. 2018; White and Borja 2008). As expected, the spurious oscillations do
not occur in EG, DG, or MFE-RT methods (Choo and Lee 2018; Haga et al. 2012;
Kadeethum et al. 2019a; Liu et al. 2009; Phillips and Wheeler 2007a).
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The recovery factor (RF), Newton iteration, average wall time for assembling a sys-
tem, andLUsolver operations are computed for the suite of two- and three-dimensional
numerical examples to be used in quantitative comparisons of all themethods presented
in Table 1. Results from each method are compared to those of the CG method using
a relative change calculation, presented in Table 12. The CG method is used as the
base case because it is the most classic finite element method. There is a small dif-
ference between each method for the RF results in a two-dimensional homogeneous
case (Sect. 3.3.1). The maximum difference is only 0.07%. For heterogeneous cases,
however, themaximum difference in RF results is at least 10%.We find that the RF dif-
ferences among the EG, DG, and MFE-RT methods are minimal, within 2%. The RF
results show that the MFE-P2 method is 10.09% different from the CG method and is
approximately 5% different from the group of EG, DG, and MFE-RT methods. There
are two main explanations for this behavior. The first is that the EG, DG, andMFE-RT
methods do not produce spurious oscillations at material interfaces. Therefore, they
provide more accurate flux calculation and conductivity alteration (Eqs. 14, 12, 30).
The second reason is that these three methods provide local mass conservation, which
leads to more accurate flux approximations.

For the three-dimensional homogeneous material example, the RF results from the
EG, DG, MFE-RT, and MFE-P2 methods differ by 7 to 10% from the RF results with
the CG method. The differences become more significant for models with heteroge-
neous material, such that the relative change from the CG method for the other four
methods ranges from 28 to 40%. The RF result of theMFE-P2methods using homoge-
neous material is similar to the results for the EG, DG, andMFE-RT, but the difference
becomes more significant for models with heterogeneous material. We can see that the
methods that have the property of localmass conservation (i.e., EG,DG, andMFE-RT)
can provide more robust flux approximation, especially for heterogeneous materials.

An examination of the overall trend reveals that the two-field formulation requires
fewer Newton iterations than the three-field formulation because it has fewer pri-
mary variables, which leads to faster convergence behavior. The EG method does not
require a significantly higher number of Newton iterations than the CG method, and
EG requires the fewest Newton iterations among the methods with local mass conser-
vation. The number of Newton iterations increases when a material is heterogeneous.
The number of Newton iterations can influence the total wall time required by the
simulation. As discussed in Sect. 3, the number of Newton iterations is not the only
factor that affects the simulation time. The assembly operation is also a major con-
tributor to the wall time. As expected, the higher the number of DOF, the greater the
time required to assemble the system. Hence, the assembly time for the three-field
formulation is significantly greater than that of the two-field formulation, especially
for three-dimensional examples.

For the LU solver operation inside each nonlinear iteration, the three-field for-
mulation methods generally require longer wall time than the two-field formulation
methods. The MFE-RT method requires the longest wall time, while the CG method
requires the least time. The time required for the LU solver operation is significantly
increased when modeling heterogeneous materials. Among the methods that have the
local mass conservation property, the EG method requires the least time for the LU
solver operation.
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5 Conclusions

We evaluate the performance of five different finite element approximations for flow
in deformable porous media. Here, we solve Biot’s system, which involves multi-
physics processes coupling fluid flow and bulk deformation problems. The numerical
results and comparisons provided aid users in their selection of an appropriate method
that best suits the desired accuracy of their results and their access to computational
resources. This approach could be applied to many different studies, including land
subsidence by groundwater overexploitation, enhanced geothermal systems and fossil
fuel production in deep and tight reservoirs, hydraulic fracturing-induced seismic-
ity, and biomedical engineering involving porous hyperelastic material. In particular,
we present quantitative comparisons of flux approximation, local mass conservation
property, degrees of freedom, and computation time between five different two- and
three-field formulations for solving linear and nonlinear Biot systems. The approx-
imated fluxes from the five methods are similar (less than 10% relative difference)
for the linear Biot system with homogeneous material properties. However, at least
10% relative difference in flux approximation is observed in cases with heterogeneous
material. Here, the accurate approximation of the fluxes is crucial to conserve the
local mass and to avoid spurious oscillations. However, longer wall and CPU times
are required due to the larger number of degrees of freedom and Newton iterations for
local mass conservation methods.
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Appendices

In these appendices, we describe the fully discretized formulation of each method
listed in Table 1.

A Continuous Galerkin (CG) Method

Webegin by defining the finite element space for the continuousGalerkin (CG)method
for a vector-valued function

U CGk
h (Th) :=

{
ψu ∈ C

0(Ω;Rd) : ψu|T ∈ Qk(T ;Rd),∀T ∈ Th

}
, (37)

where k indicates the order of polynomials, C0(Ω;Rd) denotes the space of vector-
valued piecewise continuous polynomials, andQk(T ;Rd) is the space of polynomials
of degree at most k over each element T . For our problem, the vector-valued displace-
ment field is approximated using CG space. Next, the CG space for scalar-valued

123



Math Geosci

functions is defined as

PCGk
h (Th) :=

{
ψp ∈ C

0(Ω) : ψp
∣∣
T ∈ Qk(T ),∀T ∈ Th

}
, (38)

for the pressure solution.
Thus, we seek the approximated displacement solution (uh) by discretizing the

linear momentum balance Eq. (6) employing the above CG finite element spaces as
done in Choo and Lee (2018), Kadeethum et al. (2019a) and Vik et al. (2018). The
fully discretized linear momentum balance Eq. (6) can be defined using the following
forms

Au
(
(unh, p

n
h),ψu

) = Lu (ψu) , ∀ψu ∈ U CG2
h (Th) , (39)

at each time step tn , where

Au
(
(unh, p

n
h),ψu

) =
∑

T∈Th

∫

T
σ ′ (uh) : ∇sψu dV −

∑

T∈Th

∫

T
αph I : ∇sψu dV,

(40)

and

Lu (ψu) =
∑

T∈Th

∫

T
fψu dV +

∑

e∈E N
h

∫

e
σ Dψu dS, ∀ψu ∈ U CG2

h (Th) . (41)

Here, ∇s is a symmetric gradient operator. We can split

Au
(
(unh, p

n
h),ψu

) := a
(
unh,ψu

)+ b
(
pnh ,ψu

)
, (42)

by using

a
(
unh,ψu

) :=
∑

T∈Th

∫

T
σ ′ (unh

) : ∇sψu dV, (43)

b
(
pnh ,ψu

) :=
∑

T∈Th

∫

T
−αpnh I : ∇sψu dV . (44)

For the approximated pressure solution (ph), we solve the mass balance Eq. (10)
combined with Eqs. (11) and (25) as follows

Ap
(
(unh, p

n
h), ψp; unh

) = Lp
(
ψp; unh

)
, ∀ψp ∈ PCG1

h (Th) , (45)
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for each time step tn , where

Ap
(
(unh, p

n
h), ψp; unh

)

:=
∑

T∈Th

∫

T
ρα∇ · unhψp dV +

∑

T∈Th

∫

T
ρ

(
φc f + α − φ

Ks

)
pnhψp dV

+ Δtn
∑

T∈Th

∫

T
κ(unh)

(∇ pnh − ρg
) · ∇ψp dV

− Δtn
∑

e∈E D
h

∫

e

{
κ(unh)

(∇ pnh − ρg
)}

δe
· �ψp� dS

− Δtn
∑

e∈E D
h

∫

e

{
κ(unh)∇ψp

}
δe

· �pnh� dS

+ Δtn
∑

e∈E D
h

∫

e

β

he
κ(unh)e�p

n
h� · �ψp� dS, (46)

Lp
(
ψp; unh

)

:=
∑

T∈Th

∫

T
ρα∇ · un−1

h ψp dV +
∑

T∈Th

∫

T
ρ

(
φc f + α − φ

Ks

)
pn−1
h ψp dV

+ Δtn
∑

T∈Th

∫

T
gψp dV + Δtn

∑

e∈E N
h

∫

e
qDψp dS

− Δtn
∑

e∈E D
h

∫

e
κ(unh)∇ψp · pDn dS

+ Δtn
∑

e∈E D
h

∫

e

β

he
κ(unh)e�ψp� · pDn dS. (47)

Here, again, we can split

Ap
(
(unh, p

n
h), ψp; unh

) := c
(
unh, ψp

)+ d
(
pnh , ψp; unh

)
, (48)

with

c
(
unh, ψp

) :=
∑

T∈Th

∫

T
ρα∇ · unhψp dV, (49)

d
(
pnh , ψp; unh

) :=
∑

T∈Th

∫

T
ρ

(
φc f + α − φ

Ks

)
pnhψp dV

+ Δtn
∑

T∈Th

∫

T
κ(unh)

(∇ pnh − ρg
) · ∇ψp dV
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− Δtn
∑

e∈E D
h

∫

e

{
κ(unh)

(∇ pnh − ρg
)}

δe
· �ψp� dS

− Δtn
∑

e∈E D
h

∫

e

{
κ(unh)∇ψp

}
δe

· �pnh� dS

+ Δtn
∑

e∈E D
h

∫

e

β

he
κ(unh)e�p

n
h� · �ψp� dS. (50)

We note that the symmetric internal penalty approach is employed toweakly impose
the Dirichlet boundary condition (Bazilevs and Hughes 2007; Nitsche 1971; Hansbo
2005). The interior penalty parameter β and he characteristic length are calculated as

he := meas
(
T+)+ meas

(
T−)

2meas(e)
. (51)

The system of equations is nonlinear (the nonlinear variable being reported after a
semicolon for the sake of clarity). Thus, Newton’s method is employed in this work.
The Jacobian matrix that arises from Eqs. (39) and (45) is

[
Juu Jup

Jpu Jpp

]{
δuh
δph

}
= −

{
Ru

Rp

}
, (52)

where

Juu := ∂a
(
unh,ψu

)

∂unh
, Jup := ∂b

(
pnh ,ψu

)

∂pnh
,

Jpu := ∂c
(
unh, ψp

)

∂unh
, Jpp := ∂d

(
pnh , ψp; unh

)

∂pnh
,

(53)

and the residual vector is defined as

Ru := a
(
unh,ψu

)+ b
(
pnh ,ψu

)− Lu (ψu) ,

Rp := c
(
unh, ψp

)+ d
(
pnh , ψp; unh

)− Lp
(
ψp; unh

)
.

(54)

Here, δuh and δph are Newton increments of the uh and ph , respectively. The block
structure for the CG method arises as follows

[
J CG2×CG2

uu J CG2×CG1
up

J CG1×CG2
pu J CG1×CG1

pp

]{(
δunh
)CG2

(
δpnh
)CG1

}

= −
{
RCG2
u

RCG1
p

}

. (55)

B Discontinuous Galerkin (DG) Method

For the discontinuous Galerkin (DG) method presented in Table 1, we approximate
the uh using the CG finite element space, Eqs. (37) and (39), but we utilize the DG
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finite element space to approximate the ph . The DG finite element space with the
polynomial order k is given as

PDGk
h (Th) :=

{
ψp ∈ L2(Ω) : ψp

∣
∣
T ∈ Qk(T ),∀T ∈ Th

}
, (56)

where L2(Ω) is the space of the square integrable functions. This nonconforming
finite element space allows us to consider discontinuous coefficients and preserves the
local mass conservation. We then discretize Eqs. (10), (11), and (25) as

Bp
(
(unh, p

n
h), ψp; unh

) = Lp
(
ψp; unh

)
, ∀ψp ∈ PDG1

h (Th) , (57)

for each time step tn , where

Bp
(
(unh, p

n
h), ψp; unh

)

:=
∑

T∈Th

∫

T
ρα∇ · unhψp dV +

∑

T∈Th

∫

T
ρ

(
φc f + α − φ

Ks

)
pnhψp dV

+ Δtn
∑

T∈Th

∫

T
κ(unh)

(∇ pnh − ρg
) · ∇ψp dV

− Δtn
∑

e∈E I
h ∪E D

h

∫

e

{
κ(unh)

(∇ pnh − ρg
)}

δe
· �ψp� dS

− Δtn
∑

e∈E I
h ∪E D

h

∫

e

{
κ(unh)∇ψp

}
δe

· �pnh� dS

+ Δtn
∑

e∈E I
h ∪E D

h

∫

e

β

he
κ(unh)e�p

n
h� · �ψp� dS.

(58)

The Lp
(
ψp; unh

)
term is similar to Eq. (47) as presented in the previous section.

Next, we split

Bp
(
(unh, p

n
h), ψp; unh

) := c
(
unh, ψp

)+ e
(
pnh , ψp; unh

)
. (59)

We utilize the same definition for c
(
unh, ψp

)
from the CGmethod, Eq. (49), but we

define e
(
pnh , ψp; unh

)
as
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e
(
pnh , ψp; unh

) :=
∑

T∈Th

∫

T
ρ

(
φc f + α − φ

Ks

)
pnhψp dV

+ Δtn
∑

T∈Th

∫

T
κ(unh)

(∇ pnh − ρg
) · ∇ψp dV

− Δtn
∑

e∈E I
h ∪E D

h

∫

e

{
κ(unh)

(∇ pnh − ρg
)}

δe
· �ψp� dS

− Δtn
∑

e∈E I
h ∪E D

h

∫

e

{
κ(unh)∇ψp

}
δe

· �pnh� dS

+ Δtn
∑

e∈E I
h ∪E D

h

∫

e

β

he
κ(unh)e�p

n
h� · �ψp� dS.

(60)

Compared to Ap
(
(unh, p

n
h), ψp; unh

)
from the CG method, we note that there

are additional surface integral terms
∫
e · dS on the interior faces (e ∈ E I

h ) in
Bp

(
(unh, p

n
h), ψp; unh

)
. This results in more demanding computational time when

the matrix is assembled.
Again, we note that this system of equations are nonlinear forms in the displacement

unh . We form the Jacobian matrix that arises from Eqs. (39) and (57) as follows

[
Juu Jup

Jpu Jpp

]{
δuh
δph

}
= −

{
Ru

Rp

}
, (61)

where

Juu := ∂a
(
unh,ψu

)

∂unh
, Jup := ∂b

(
pnh ,ψu

)

∂pnh
,

Jpu := ∂c
(
unh, ψp

)

∂unh
, Jpp := ∂e

(
pnh , ψp; unh

)

∂pnh
,

(62)

and the residual vector is defined as

Ru := a
(
unh,ψu

)+ b
(
pnh ,ψu

)− Lu (ψu) ,

Rp := c
(
unh, ψp

)+ e
(
pnh , ψp; unh

)− Lp
(
ψp; unh

)
,

(63)

at each time step tn . The block structure for the DG method arises as follows

[
J CG2×CG2

uu J CG2×DG1
up

J DG1×CG2
pu J DG1×DG1

pp

]{(
δunh
)CG2

(
δpnh
)DG1

}

= −
{
RCG2
u

RDG1
p

}

. (64)
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C Enriched Galerkin (EG) Method

For the EG method presented in Table 1, we define the EG finite element space with
the polynomial order k as

PEGk
h (Th) := PCGk

h (Th) + PDG0
h (Th) , (65)

where the CG finite element space is enriched byPDG0
h (Th), the piecewise constant

functions. As in the previous section, we approximate the displacement (uh) using the
CG finite element space Eq. (39), but here the ph is approximated by the EG finite
element space Eq. (65). Thus, we seek ph by solving

Bp
(
(unh, p

n
h), ψp; unh

) = Lp
(
ψp; unh

)
, ∀ψp ∈ PEG1

h (Th) . (66)

We note that the EG method employs the same bilinear Bp
(
(unh, p

n
h), ψp; unh

)
and

linearLp
(
ψp; unh

)
forms as the DG method. Since the EG space Eq. (65) only takes

piecewise constants (DG0) to enforce the discontinuity, several terms involving the
derivatives in Bp

(
(unh, p

n
h), ψp; unh

)
and Lp

(
ψp; unh

)
become zero. Thus, not only

does the EG method have fewer degrees of freedom than DG, but it requires less
computational time for assembling the matrix.

We again note that this system of equations are nonlinear forms in the displacement
unh . We employ the same Jacobian matrix, Eqs. (61) and (62), and residual vector, Eq.
(63), built for the DG method. The block structure used for the DG method Eq. (64),
however, is decomposed into

⎡

⎢
⎣
J CG2×CG2

uu J CG2×CG1
up J CG2×DG0

up

J CG1×CG2
pu J CG1×CG1

pp J CG1×DG0
pp

J DG0×CG2
pu J DG0×CG1

pp J DG0×DG0
pp

⎤

⎥
⎦

⎧
⎨

⎩

(
δunh
)CG2

(δ phn)
CG1

(δ phn)
DG0

⎫
⎬

⎭
= −

⎧
⎪⎨

⎪⎩

RCG2
u

RCG1
p

RDG0
p

⎫
⎪⎬

⎪⎭
,

(67)

to satisfy Eq. (66).

D Raviart–Thomas Mixed Finite Element (MFE-RT) Method

For the MFE-RT method presented in Table 1, we also approximate the uh using the
CG finite element space [Eqs. (37) and (39)]. The mass balance Eq. (10) for the MFE-
RTmethod is discretized by using the piecewise constant (i.e., DG finite element space
Eq. (56) with k = 0).

Thus, we seek ph by solving

Cp
(
(unh, p

n
h , v

n
h), ψp

) = Mp
(
ψp
)
, ∀ψp ∈ PDG0

h (Th) , (68)
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for each time step tn , where

Cp
(
(unh, p

n
h , v

n
h), ψp; unh

) :=
∑

T∈Th

∫

T
ρα∇ · unhψp dV

+
∑

T∈Th

∫

T
ρ

(
φc f + α − φ

Ks

)
pnhψp dV

+ Δtn
∑

T∈Th

∫

T
∇ · (ρvnh

)
ψp dV,

(69)

and

Mp
(
ψp; unh

) :=
∑

T∈Th

∫

T
ρα∇ · un−1

h ψp dV

+
∑

T∈Th

∫

T
ρ

(
φc f + α − φ

Ks

)
pn−1
h ψp dV

+ Δtn
∑

T∈Th

∫

T
gψp dV .

(70)

Here, we can split Eq. (69) as

Cp
(
(unh, p

n
h , v

n
h), ψp

) := f
(
unh, ψp

)+ g
(
pnh , ψp

)+ h
(
vnh, ψp

)
, (71)

where

f
(
unh, ψp

) :=
∑

T∈Th

∫

T
ρα∇ · unhψp dV, (72)

g
(
pnh , ψp

) :=
∑

T∈Th

∫

T
ρ

(
φc f + α − φ

Ks

)
pnhψp dV, (73)

and

h
(
vnh, ψp

) := Δtn
∑

T∈Th

∫

T
∇ · (ρvnh

)
ψp dV . (74)

For the velocity approximation (vh), we use the RT finite element space, which is
defined as

V RTk
h (Th) :=

{
ψv ∈ C

0(Ω) : ψv|T ∈ Qk(T )m + xQk(T ),∀T ∈ Th

}
, (75)
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q(x) =

⎛

⎜⎜⎜
⎝

q1(x)
q2(x)

...

qm(x)

⎞

⎟⎟⎟
⎠

+ q0(x)

⎛

⎜⎜⎜
⎝

x1
x2
...

xm

⎞

⎟⎟⎟
⎠

∀x := (x1, x2, . . . , xm)T ∈ Ω , q(x) ⊂

Qk(T )m , and q0(x) ⊂ Qk(T ). We then solve the following Darcy velocity Eq. (11) to
obtain vnh by

Cv

(
(vnh, p

n
h),ψv; unh

) = Mv (ψv) , ∀ψv ∈ V RT1
h (Th) , (76)

where

Cv

(
(vnh, p

n
h),ψv; unh

) :=
∑

T∈Th

∫

T
pnh∇ · ψv dV +

∑

T∈Th

∫

T
ρκ(unh)

−1vnhψv dV,

(77)

and

Mv (ψv) := −
∑

e∈E D
h

∫

e
pDψv · n dS. (78)

Here, we can split

Cv

(
(vnh, p

n
h , ),ψv; unh

) := i
(
pnh ,ψv

)+ j
(
vnh,ψv; unh

)
, (79)

where

i
(
pnh ,ψv

) :=
∑

T∈Th

∫

T
pnh∇ · ψv dV, (80)

and

j
(
vnh,ψv; unh

) :=
∑

T∈Th

∫

T
ρκ(unh)

−1vnhψv dV . (81)

Similar to the CG, DG, and EG methods, we note that this system of equations are
nonlinear forms for the displacement unh . We then form the Jacobian matrix that arises
from Eqs. (39), (68), and (76) as follows

⎡

⎣
Juu Jup Juv

Jpu Jpp Jpv

Jvu Jvp Jvv

⎤

⎦

⎧
⎨

⎩

δuh
δph
δvh

⎫
⎬

⎭
= −

⎧
⎨

⎩

Ru

Rp

Rv

⎫
⎬

⎭
, (82)
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where δvh is the Newton increments of the vh and

Juu := ∂a
(
unh,ψu

)

∂unh
, Jup := ∂b

(
pnh ,ψu

)

∂pnh
, Juv := 0,

Jpu := ∂ f
(
unh, ψp

)

∂unh
, Jpp := ∂g

(
pnh , ψp

)

∂pnh
, Jpv := ∂h

(
vnh, ψp

)

∂vnh
,

Jvu := 0, Jvp := ∂i
(
pnh ,ψv

)

∂pnh
, Jvv := ∂ j

(
vnh,ψv; unh

)

∂vnh
,

(83)

and the residual vector is defined as

Ru := a
(
unh,ψu

)+ b
(
pnh ,ψu

)− Lu (ψu) ,

Rp := f
(
unh, ψp

)+ g
(
pnh , ψp

)+ h
(
vnh, ψp

)− Mp
(
ψp; unh

)
,

Rv := i
(
pnh ,ψv

)+ j
(
vnh,ψv; unh

)− Mv (ψv) .

(84)

The block structure of the MFE-RT method arises as
⎡

⎢⎢
⎣

J CG2×CG2
uu J CG2×DG0

up 0

J CG2×DG0
pu J DG0×DG0

pp J DG0×RT1
pv

0 J RT1×DG0
vp J RT1×RT1

vv

⎤

⎥⎥
⎦

⎧
⎨

⎩

(
δunh
)CG2

(δ phn)
DG0

(δvh
n)RT1

⎫
⎬

⎭
= −

⎧
⎪⎨

⎪⎩

RCG2
u

RDG0
p

RRT1
v

⎫
⎪⎬

⎪⎭
. (85)

E Continuous Mixed Finite Element (MFE-P2) Method

For the MFE-P2 method presented in Table 1, we utilize a similar system of equations
as employed by the MFE-RT method. The displacement uh is approximated by the
CG finite element space, which is the same as the CG method Eq. (39). The ph in this
method is approximated by using the CG finite element space Eq. (38) with k = 1

Cp
(
(unh, p

n
h , v

n
h), ψp

) = Mp
(
ψp
)
, ∀ψp ∈ PCG1

h (Th) . (86)

Here, the approximated velocity vh is also discretized by the vector-valuedCGfinite
element space Eq. (37) but with higher-order k = 2. Thus, we obtain the following
for vh

Cv

(
(vnh, p

n
h),ψv; unh

) = Mv (ψv) , ∀ψv ∈ U CG2
h (Th) . (87)

As a result, the block structure of the MFE-RT method Eq. (85) is modified to

⎡

⎢
⎣
J CG2×CG2

uu J CG2×CG1
up 0

J CG1×CG2
pu J CG1×CG1

pp J CG1×CG2
pv

0 J CG2×CG1
vp J CG2×CG2

vv

⎤

⎥
⎦

⎧
⎨

⎩

(
δunh
)CG2

(δ phn)
CG1

(δvh
n)CG2

⎫
⎬

⎭
= −

⎧
⎪⎨

⎪⎩

RCG2
u

RCG1
p

RCG2
v

⎫
⎪⎬

⎪⎭
.

(88)
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Remark 2 For both two- and three-field formulations, the Neumann boundary condi-
tion is naturally applied on the boundary faces, e ∈ E N

h . For the two-field formulation,
the Dirichlet boundary condition is weakly enforced on e ∈ E D

h , for all CG, EG,
and DG methods. On the other hand, the three-field formulation strongly applies the
Dirichlet boundary conditions.
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