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Abstract We introduce a new method for implicit structural modeling. The main
developments in this paper are the new regularization operators we propose by extend-
ing inherent properties of the classic one-dimensional discrete second derivative
operator to higher dimensions. The proposed regularization operators discretize nat-
urally on the Cartesian grid using finite differences, owing to the highly symmetric
nature of the Cartesian grid. Furthermore, the proposed regularization operators do not
require any special treatment on boundary nodes, and their generalization to higher
dimensions is straightforward. As a result, the proposed method has the advantage of
being simple to implement. Numerical examples show that the proposed method is
robust and numerically efficient.
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1 Introduction

Structural implicit modeling, in this paper, is defined as the interpolation of randomly
distributed, and possibly sparse, structural data. For simplicity, structural data, also
referred to as structural constraints, will be limited to the following.

value constraints : φ(x j ) = a j , (1)

orientation constraints : ∇φ(x j ) = ||∇φ(x j )||u j ; (2)

where φ(x) is the unknown function to be interpolated, x is a point in space, a is some
given scalar, and u is some given unit vector. We refer to Eq. (2) as the normal form of
an orientation constraint, which informs both about the direction and the norm of φ,
as opposed to the tangential form, which informs only about the orientation of φ. Let
u1 be a given unit vector, then there are N − 1 unit vectors {ul}l=N

l=2 such that {ul}l=N
l=1

forms an orthogonal basis in N ≥ 2 dimensions. In that case, the tangential form of
the normal orientation constraint ∇φ(x) = ||∇φ(x)||u1 is

ul · ∇φ(x) = 0, for l = 2, . . . , N . (3)

In implicit structural modeling, the object being modeled is obtained by extracting a
hypersurface along an iso-value of the interpolated function φ(x) (Newman and Yi
2006). This principle can be distinguished from explicit structural modeling, where
geological interfaces defined by a two-dimensional planar graph are embedded in
three-dimensional space (Caumon et al. 2009).

Implicit structural modeling has extensively been used in geosciences for contour
mapping (Briggs 1974; Mallet 1984; Smith and Wessel 1990; Wessel and Bercovici
1998), and for three-dimensional geological modeling (Lajaunie et al. 1997; Mallet
2004). The method presented here was developed mainly for geological modeling
applications, but it is suited for contour mapping as well. Most of the groundwork
of modern structural implicit modeling were developed in the 2000’s (Cowan et al.
2002; Ledez 2003; Chilès et al. 2005; Moyen 2005; Tertois 2007), starting with the
pioneering work of Lajaunie et al. (1997), to the theoretical framework developed by
Mallet (2004), all the way to the more application-ready works of Chilès et al. (2005)
and Frank (2007). Structural implicit models can be separated into two main classes
(Caumon et al. 2013): (1) methods based on dual Kriging and radial basis interpolation
(Lajaunie et al. 1997; Cowan et al. 2002; Chilès et al. 2005; Calcagno et al. 2008),
which yield a dense linear system whose size is mainly controlled by the number
of data, (2) and methods based on domain discretization (Mallet 2004; Frank 2007;
Caumon et al. 2013; Souche et al. 2013), which yield a sparse linear systemwhose size
is mainly controlled by size of discretization grid. Domain, in this paper, refers to the
volume of interest under investigation. Domain discretizationmethods are collectively
referred to as Discrete Smooth Interpolation (DSI) methods hereafter (Mallet 1989,
1992, 1997). The principle of DSI methods is to discretize all structural constraints on
a discrete domain, and assemble them into a least-squares system of linear equations
supplemented with smoothing regularization constraints (Mallet 1989, 1992, 1997).
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Implicit geological modeling is still an active area of research. Some authors
have shown that existing methods still present limitations caused by the smoothing
approaches and the discretization schemes currently used (Laurent 2016; Renaudeau
et al. 2017b). In addition, recent work started investigating stochastic modeling
approaches of geological structures geometry (Jessell et al. 2014; Cherpeau and Cau-
mon 2015; Godefroy et al. 2017) for which structural interpolation is becoming a
bottleneck. Computation times that used to be acceptable for building a single “best
model” are becoming far too long when considering stochastic approaches for sam-
pling uncertainty. Other recent research and advances in implicit modeling include
better modeling of folds (Laurent et al. 2016; Grose et al. 2017), automated building
of models that conform to seismic data (Wu 2017), more numerically efficient dis-
cretization schemes (Renaudeau et al. 2018), and many more (Mallet 2014; Hillier
et al. 2014; Gonçalves et al. 2017; Martin and Boisvert 2017; Renaudeau et al. 2019).
As we move towards an era of multi-realization structural modeling (Caumon 2010),
new challenges continuously emerge and motivate the quest for more robust and more
efficient structural implicit modeling schemes.

In this paper, we introduce a new approach based on finite differences; this method
belongs to the DSI class of methods. Most DSI methods, as applied in geological mod-
eling, rely on simplices (triangles in two-dimensions, tetrahedra in three-dimensions)
for domain discretization due to their geometrical flexibility. Because simplicial
meshes are unstructured and irregular, it is customary to discretize structural con-
straints and smoothing constraints using a piecewise linear approach (Frank 2007;
Caumon et al. 2013). The method we introduce is based on discretizing the domain on
Cartesian grids, and on discretizing structural constraints and smoothing constraints
using finite differences. Cartesian gridding and finite differences are arguably the
simplest discretizations possible for structural interpolation; as a result, the proposed
method is also easy to implement.Modern computing capabilities, particularly general
purpose GPU computing, make the method numerically efficient as well. A three-
dimensional implicit structuralmodeling example using the proposedmethod is shown
in Fig. 1.

Implicit structural interpolation on Cartesian grids using finite differences is not
new. Briggs (1974) solves the biharmonic equation in two-dimensions directly on the
Carstesian grid using finite differences. In Briggs (1974)’s formulation, assignment
constraints (Eq. (1)) are treated as internal boundary conditions. He also shows the
equivalence between the biharmonic equation and the minimization of the global
curvature of the implicit function. Wu and Hale (2015) use finite differences operators
onCartesian grids to create implicit functions on seismic images.Assuming that (1) the
normal of reflectors can be estimated at each point of the seismic image, and that (2) the
implicit function increases monotonically with seismic traveltime (or depth), they use
the normal form of orientation constraints (Eq. (2)) to assemble an overdetermined
system solved using least-squares. However, it is usually challenging to make an
accurate estimation of reflector dips at each grid point due to coherent noise in seismic
data (Chauris et al. 2002; Fehmers and Höcker 2003). As for the second assumption,
it is not always valid; the section from the Ribaute model (Caumon et al. 2009) in
Fig. 2 is an example of where this assumption does not hold. Wu (2017) addresses
this problem by first unfaulting and unfolding the seismic image before computing the
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(a) (b)

Fig. 1 Implicit structural modeling workflow. a Interpolation of input data to build a stratigraphic function
using the proposedmethod.bExtraction of implicit horizons from the isovalues of the stratigraphic function.
Data courtesy of total

(a) (b)
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Fig. 2 Implicit stratigraphic modeling of a section from the Ribaute model of Caumon et al. (2009). a
Input data, three faults and three horizons. b Resulting stratigraphic field. Only value constraints were used
in this experiment

implicit function. Mallet (1989) also proposed an interpolation method on Cartesian
grids using finite differences; the method proposed here resolves some issues raised by
Mallet (1989), as discussed in the section about discontinuities (Sect. 6). Furthermore,
unlike Mallet (1989), the method proposed here does not require input data to be
located at grid points.

We propose an alternative approach. Briggs (1974) noted that the one-dimensional
interpolation problemhadwell defined properties; his strategywas then to extend these
properties in two-dimensions by solving the equivalent continuous problem (partial
differential equation). Here, we notice that the one-dimensional discrete interpolation
problem has inherent properties that we wish to extend to high dimensional discrete
interpolation problems. The main new elements of our method are the regularization
operators we introduce. These operators discretize naturally on Cartesian grids: they
do not require any special treatment at boundary nodes, and their generalization to
higher dimensions is straightforward.

This paper is organized as follows. In Sects. 2 and 3 we present the basic theoretical
aspects of our method. We apply our method in two-dimensions in Sect. 4, and then
in three-dimensions in Sect. 5. We discuss how to handle discontinuities in Sect. 6
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before concluding with a discussion on the shortcomings of the proposed method in
Sect. 7.

2 Domain and Problem Discretization

2.1 Domain Discretization

Let Ω be the domain of definition of φ(x). Ω is discretized on a Cartesian grid,
therefore Ω can be seen as a collection of N grid points {xl}l=N

l=1 . We distinguish three
subdomains in Ω ,

Ω = {ΩE ∪ ΩB ∪ ΩI },
where ΩE is the set of external grid points, ΩB is the set of boundary grid points, and
ΩI is the set of internal grid points. An example of this discretization is illustrated
in Fig. 3. A more formal definition of these subdomains will be given shortly. The
computational domain ΩC is defined as

ΩC = {ΩB ∪ ΩI }. (4)

Each point in x j in ΩI has neighbors in ΩC , these neighbors define the neigh-
borhood N (x j ) of x j . Figure 4a and b illustrate the notion of neighborhoods in one
and two-dimensions; this figure also introduces directional vectors. For example, the
one-dimensional point x j has two neighbors

N (x j ) = {x j−1, x j+1} := {x j−d1, x j+d1};

that is, by definition, the one-dimensional directional vector d1 is [1]. In general, a
point x j always has two neighbors along a given direction: one neighbor in front, and

(a)

(b)

Fig. 3 aOne-dimensional domain discretization. b Two-dimensional domain discretization. The red nodes
are external nodes, the blue nodes are boundary nodes, and the black nodes are internal nodes.
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(a)

(b)

Fig. 4 Notion of neighborhoods and directional vectors in one and two-dimensions. a One-dimensional
neighborhood: the neighborhood of the black node is made of the two (green) points that can be reached
from it by taking one step (one forward and one backward) along the one-dimensional directional vector. b
Two-dimensional neighborhood: the neighborhood of the black node is made of the eight (green) points that
can be reached from it by taking one step (one forward and one backward) along the four two-dimensional
directional vectors

one neighbor behind. For example in two-dimensions the two neighbors of the point
xi, j = xk along the direction d4 = [1 1] are

{xi−1, j−1, xi+1, j+1} := {xk−d4 , xk+d4}. (5)

In N dimensions, there are Mn = 3N − 1 points in the neighborhood N (x j ) of
x j ∈ ΩI , and there are Md = Mn

2 directions such that

N (x j ) =
{
x j±dk

∣∣ for k = 1, . . . , Md

}
, (6)

where dk is the kth directional vector, as illustrated for example in Fig. 4.
Let us come back to the discretization Ω = {ΩE ∪ΩB ∪ΩI }. Given a set of points

in ΩE , we formally define

ΩI =
{
x j |N (x j ) ∩ ΩE = ∅

}
. (7)

ΩB =
{
x j |N (x j ) ∩ ΩE �= ∅ ∧ N (x j ) ∩ ΩI �= ∅

}
. (8)

That is, a grid point that does not have a neighbor in ΩE is by definition a point in
ΩI , and a grid point that has at least one neighbor in ΩI and at least one neighbor in
ΩE is by definition a point in ΩB . Points in ΩE will usually be specified as inputs.
It should be noted that an internal grid point is never in contact with an external grid
point, there is always at least one boundary point between them.
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2.2 Problem Discretization

The implicit function φ(x) is evaluated on the discrete computational domain ΩC by
expansion into the series

φ(x) =
∑

x j∈ΩC

B(x, x j )φ(x j ) =
∑

x j∈ΩC

B(x, x j )φ j , (9)

where B(x, x j ) are some basis functions, and φ j are the unknown coefficients at
grid points. The basis functions B(x, x j ) are assumed to satisfy the Kronecker delta
property, that is for xi , x j ∈ ΩC ,

B(xi , x j ) =
{
1 if i = j
0 if i �= j

.

Let B(x, x j ) be 1st-order Lagrange basis functions, simplifying Eq. (9) to

φ(x) =
∑

x j∈N ′(xi )
B(x, x j )φ j , (10)

where xi ∈ ΩI is the closest internal grid point to x, and

N ′(xi ) := {N (xi ) ∪ xi };

it follows from the definitions in Eqs. (7) and (8) that x j ∈ ΩC . Using Eq. (10), the
first derivative along the kth direction is given by

∂kφ(x) =
∑

x j∈N ′(xi )
∂k B(x, x j )φ j . (11)

The constraints in Eqs. (1) and (3) can therefore be discretized in N ≥ 2 dimensions
as

φ(x) =
∑

x j∈N ′(xi )
B(x, x j )φ j = a, (12)

and

ul · ∇φ(x) =
N∑
k

ulk∂kφ(x)

=
N∑
k

ulk

( ∑
x j∈N ′(xi )

∂k B(x, x j )φ j

)
= 0, for l = 2, . . . , N . (13)
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Some constraints may involve second derivatives; this is typically the case for smooth-
ing regularization constraints. However, second derivatives of Eq. (10) cannot be
computed directly, as was the case for first derivatives, because of the use of 1st-
order Lagrange basis functions. The second derivative at a given point x is therefore
approximated by the finite-difference second derivative at xi ∈ ΩI , the closest internal
grid point to x. In particular, let dk denote the distance between two neighboring points
along the directional vector dk ; then, using the notation in the definition in Eq. (5), the
second derivative along the kth direction is given by

∂2k φ(x) ≈ ∂2k φ(xi ) = −2φi + φi+dk + φi−dk

d2k
, (14)

and the mixed derivative along two orthogonal directions k, l is given by

∂k∂lφ(x) ≈ ∂k∂lφ(xi ) = φi+dk+dl + φi−dk−dl − φi−dk+dl − φi+dk−dl

4dkdl
. (15)

In this paper, all constraints involving second derivatives are imposed strictly on grid
points; therefore, the approximation symbol ≈ in Eqs. (14) and (15) can be replaced
by the equality symbol =.

2.3 Solving the Discrete Problem

The system of Eqs. (12)–(13), can be written in the more compact matrix form

¯̄AΦ̄ = f̄a . (16)
¯̄UΦ̄ = 0̄. (17)

In practice, the system above is usually underdetermined and we have to regularize

it with some smoothing constraints of the form ¯̄RΦ̄ = 0̄. That is, the solution Φ̄ is
obtained by solving ⎡

⎢⎣
¯̄A
¯̄U
¯̄R

⎤
⎥⎦ [

Φ̄
] =

⎡
⎣
f̄a
0̄
0̄

⎤
⎦ (18)

in a least-squares sense. Convenient choices for ¯̄R will be proposed later in the paper.
The matrices involved in Eq. (18) are very sparse, making it possible to efficiently
solve the least-squares system with sparse conjugate gradient solvers.
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3 Interpolation in One-dimension: Problem Formulation

3.1 Interpolation in One-dimension

The structural interpolation problem can be described as a problem of finding a smooth
function φ(x) that interpolates a given set of structural data. The smoothness is typ-
ically achieved by minimizing the function’s roughness R(φ) (Mallet 1989). It is
unclear what the definition of roughness is, precisely; roughness is usually understood
to be related to the notion of curvature. In one-dimension, a widely accepted definition
of roughness is the second derivative operator (Mallet 1997)

R(φ) := ∂2xφ(x); (19)

Minimizing the second derivative in one-dimension minimizes the curvature of the
function; this statement is unambiguous because there is only one way to define cur-
vature in one-dimension. The one-dimensional smoothing constraint, defined only on
grid points, can therefore be discretized using Eq. (14) to give

R(φ j ) = −2φ j + φ j+1 + φ j−1

|dx |2 = 0, (20)

for every grid point x j ∈ ΩI .

3.2 Problem Formulation

In higher dimensions, minimizing the roughness of a function becomes ambiguous:
there are infinitely many candidate roughness operators in higher dimensions that
reduce to Eq. (19) in one-dimension. The standardway of overcoming this ambiguity is
to explicitly give a physical meaning to Eq. (19). For example, Briggs (1974) and Levy
(1999) explicitly look for a function φ(x) that minimizes the global (mean) curvature;
in that case, it becomes clear that the extension of Eq. (19) in higher dimensions is

R(φ) = Δφ(x), (21)

which is unambiguous since the Laplacian operator Δ has a precise definition in all
dimensions. Another common choice is to seek for a function φ(x) that minimizes the
bending energy (see for example Renaudeau et al. 2019, and references therein).

In this paper, we take a different approach to determine the equivalent of Eq. (19)
in higher dimensions. We find inherent properties of the one-dimensional discrete
Eq. (20) that we consider to be practical, from an implementation point of view,
then we look for an equivalent discrete equation in higher dimensions which has the
same properties. The resulting discrete operator in higher dimensions can then be
transformed back to the continuous version if needed.

A very practical property of sparse data interpolation using Eq. (20) is that it does
not require boundary conditions. We define a boundary condition as any constraint
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imposed on a grid point x ∈ ΩB . In the absence of discontinuities, a regularization

matrix ¯̄R built by imposing Eq. (20) on all grid points x ∈ ΩI , has a rank(
¯̄R) = M−2,

for a one-dimensional problem with M degrees of freedom (i.e. M grid points inΩC ).

The property rank( ¯̄R) = M−2 highlights the fact that a minimum of two independent
points are required to define a function in one-dimension. In general, R(φ j ) will
be said to satisfy the maximum-rank property if, in the absence of discontinuities,

rank( ¯̄R) = M − (N + 1); where ¯̄R is the regularization matrix built by imposing
R(φ j ) = 0 for all grid points x j ∈ ΩI , for a problem with M degrees of freedoms
in N dimensions. Our aim is to look for roughness operators R(φ j ) that satisfy the
maximum-rank property in higher dimensions.

The maximum-rank property can be extended to higher dimensions if the high
dimensional equivalent of Eq. (20) has the following properties:

Property 1 R(φ j ) should include all grid points in the neighborhood of x j , and x j

itself.

Property 2 R(φ j ) should smooth independently along all directional vectors at x j .

The two properties above are inherent in the one-dimensional discrete problem,
as it can be observed by looking at Eq. (20) and Fig. 4a. Therefore, we propose to
generalize these two properties to higher dimensions. As we increase dimensions, the
first property will guarantee that every degree of freedom is taken into account, and
the second property will guarantee that there are “enough” equations to constrain all
the degrees of freedom.

3.3 Towards Interpolation in Higher Dimensions

We propose two strategies for extending Eq. (20) to higher dimensions. The first one
is to generalize the one-dimensional smoothing constraint

R(φ j ) = ∂2xφ j = 0

as a minimization of second directional derivatives of φ j along all directional vectors,
that is:

R(φ j ) = ∂2k φ j = 0,∀ directional vectors dk at x j . (22)

The second approach is to generalize the one-dimensional smoothing constraint

R(φ j ) = ∂2xφ j = ∂x (∂xφ j ) = 0

as a minimization of mixed derivatives of φ j as follows

R(φ j ) = ∂k(∂lφ j ) = 0,

∣∣∣∣
∀ axis-aligned directional vectors dk , and
∀ directional vectors dl s.t. dl = dk or dl ⊥ dk .

(23)

Both Eqs. (22) and (24) satisfy the properties imposed in the last paragraph; these two
equations lead to different roughness operators.
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4 Interpolation in Two-dimensions

Let us introduce the two-dimensional Cartesian-axes matrix ¯̄C2 and the two-
dimensional diagonal-axes matrix ¯̄D2 defined as

¯̄C2 =
[
1 0
0 1

]
, ¯̄D2 = 1√

2

[
1 −1
1 1

]
. (24)

Each row of these matrices is a directional vector on the two-dimensional grid as
defined in Fig. 4b. The two-dimensional full direction matrix is defined as

¯̄F2 =
[ ¯̄C2¯̄D2

]
, (25)

its rows give all the directions available, locally, on a two-dimensional grid.

4.1 Directional Second Derivatives

From the directional second derivative point of view (Eq. (22)), the two-dimension
version of Eq. (20) is

R(φ j ) = ∂2k φ j = −2φ j + φ j+dk + φ j−dk

d2k
= 0, ∀ dk rows of ¯̄F2. (26)

(a)

(b)

0

2

1

(c)

Fig. 5 Implicit stratigraphic modeling of a modified section from one of the two-dimensional benchmark
models of Renaudeau et al. (2017a). a Input data, two horizons. b Resulting stratigraphic field using the
proposed regularization operator. c Resulting stratigraphic field using the Laplacian operator. Only value
constraints were used in this experiment
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Each of these directional derivatives ∂2k φ j can be written analytically using the two-
dimensional Hessian matrix

¯̄H2 =
[
∂x (∂xφ) ∂x (∂zφ)

∂z(∂xφ) ∂z(∂zφ)

]

as ∂2k φ = dk ¯̄H2dTk . It follows that a two-dimension version of the roughness operator
(19) that satisfies the maximum-rank property is

R(φ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂2[1 0]φ = [
1 0

] ¯̄H2

[
1
0

]
= ∂2xφ

∂2[0 1]φ = [
0 1

] ¯̄H2

[
0
1

]
= ∂2z φ

∂2[1 −1]φ = 1
2

[
1 −1

] ¯̄H2

[
1

−1

]
= 1

2 (∂
2
x + ∂2z − 2∂x∂z)φ

∂2[1 1]φ = 1
2

[
1 1

] ¯̄H2

[
1
1

]
= 1

2 (∂
2
x + ∂2z + 2∂x∂z)φ

. (27)

The roughness operator (27) is discretized exactly as the one-dimensional version. Let
¯̄R denote the regularization matrix resulting from Eqs. (26)/(27), then the j th row of

the least-squares matrix ¯̄Rt ¯̄R is a finite-difference approximation of

[(
∂2[1 0]

)2 + (
∂2[0 1]

)2 + (
∂2[1 −1]

)2 + (
∂2[1 1]

)2]
φ j . (28)

It is interesting to note that Eq. (28) equates to

[(
∂2x

)2 + (
∂2z

)2 + 2
(
∂x∂z)

2
]
φ j + 1

2

[(
∂2x

)2 + (
∂2z

)2 + 2∂2x ∂
2
z

]
φ j , (29)

where the first term is the bending energy of Enriquez et al. (1983); Turk and O’Brien
(2002); Renaudeau et al. (2019), and the second term is half the squared (mean) cur-
vature of Briggs (1974), also known as the squared Laplacian (Levy 1999). Figure 5b
shows an example using the roughness operator (26)/(27) to a modified version of a
two-dimensional benchmark model proposed by Renaudeau et al. (2017a). For com-
parison, Fig. 5c shows the implicit function obtained using the Laplacian operator
(Eq. (21)); note the saddle point in Fig. 5c, which is physically impossible from a
stratigraphic modeling point of view.
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4.2 Mixed Derivatives

From the mixed derivative point of view (Eq. (24)), another roughness operatorR(φ)

that satisfies the maximum-rank property is

R(φ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂[1 0]
(
∂[1 0]φ

) = [
1 0

] ¯̄H2

[
1
0

]
= ∂x

(
∂xφ

)

∂[0 1]
(
∂[0 1]φ

) = [
0 1

] ¯̄H2

[
0
1

]
= ∂z

(
∂zφ

)

∂[1 0]
(
∂[0 1]φ

) = [
1 0

] ¯̄H2

[
0
1

]
= ∂x

(
∂zφ

)

∂[0 1]
(
∂[1 0]φ

) = [
0 1

] ¯̄H2

[
1
0

]
= ∂z

(
∂xφ

)

, (30)

which, using ∂x (∂z) = ∂z(∂x ), becomes

R(φ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂[1 0]
(
∂[1 0]φ

) = ∂2xφ

∂[0 1]
(
∂[0 1]φ

) = ∂2z φ

√
2∂[1 0]

(
∂[0 1]φ

) = √
2∂x

(
∂zφi

)
. (31)

The factor
√
2 comes from noticing that

(
∂[1 0]

(
∂[0 1]

))2
φ j +

(
∂[0 1]

(
∂[1 0]

))2
φ j =

(√
2∂[1 0]

(
∂[0 1]

))2
φ j ;

as in the previous paragraph, the reason for equating squares of operators is because
the problem is solved by least-squares. The complete sum of squares of terms in this
operator equates to the first term on the right hand side of Eq. (29). The first two terms
of Eq. (30) are discretized using Eq. (14) and the remaining terms are discretized using
Eq. (15).

5 Interpolation in Three-Dimensions

The three-dimensional Cartesian-axes matrix ¯̄C3 and diagonal-axes matrix ¯̄D3 are

¯̄C3 =
⎡
⎣
1 0 0
0 1 0
0 0 1

⎤
⎦ , ¯̄D3 = 1√

3

⎡
⎢⎢⎣
1 −1 −1
1 −1 1
1 1 −1
1 1 1

⎤
⎥⎥⎦ . (32)
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We also introduce the three-dimensional extended-diagonal-axes matrix ¯̄E3 defined as

¯̄E3 = 1√
2

⎡
⎢⎢⎢⎢⎢⎢⎣

0 1 −1
0 1 1
1 0 −1
1 0 1
1 −1 0
1 1 0

⎤
⎥⎥⎥⎥⎥⎥⎦

. (33)

The three-dimensional extended-diagonal matrix ¯̄E3 is obtained by inserting an extra

zero at different positions of each row of the two-dimensional diagonal matrix ¯̄D2.
The full three-dimensional direction matrix is defined as

¯̄F3 =
⎡
⎢⎣

¯̄C3¯̄D3¯̄E3

⎤
⎥⎦ , (34)

and its rows give all the directions available, locally, on a three-dimensional grid.

Following the same reasoning as in Sect. 4, we use the direction matrix ¯̄F3 to
propose the following choices for the roughness operators

R(φ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂2[1 0 0]φ

∂2[0 1 0]φ

∂2[0 0 1]φ

∂2[0 1 −1]φ

∂2[0 1 1]φ

∂2[1 0 −1]φ

∂2[1 0 1]φ

∂2[1 −1 0]φ

∂2[1 1 0]φ

∂2[1 −1 −1]φ

∂2[1 −1 1]φ

∂2[1 1 −1]φ

∂2[1 1 1]φ

, (35)
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and

R(φ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂2[1 0 0]φi
)

∂2[0 1 0]φi
)

∂2[0 0 1]φi
)

√
2∂[1 0 0]

(
∂[0 1 0]φ

)
√
2∂[1 0 0]

(
∂[0 0 1]φ

)
√
2∂[0 1 0]

(
∂[0 0 1]φ

)
√
2∂[1 0 0]

(
∂[0 1 1]φ

)
√
2∂[1 0 0]

(
∂[0 1 −1]φ

)
√
2∂[0 1 0]

(
∂[1 0 1]φ

)
√
2∂[0 1 0]

(
∂[1 0 −1]φ

)
√
2∂[0 0 1]

(
∂[1 1 0]φ

)
√
2∂[0 0 1]

(
∂[1 −1 0]φ

)

. (36)

Equation (35) comes from the directional second derivative approach (Eq. (22)) and
Eq. (36) comes themixed derivatives approach (Eq. (23)). It is also possible to combine
these two approaches to get a third hybrid operator that satisfies the maximum-rank
property (Sect. 3.2); in particular

R(φ) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂2[1 0 0]φ

∂2[0 1 0]φ

∂2[0 0 1]φ√
2∂[1 0 0]

(
∂[0 1 0]φ

)
√
2∂[1 0 0]

(
∂[0 0 1]φ

)
√
2∂[0 1 0]

(
∂[0 0 1]φ

)

∂2[1 −1 −1]φ

∂2[1 −1 1]φ

∂2[1 1 −1]φ

∂2[1 1 1]φ

. (37)

The analytic expressions of each term in these operators are given in the Appendix.
While these operators may look complex as we increase dimensions, their discretiza-
tions remain straightforward: all the second derivative terms are discretized using
Eq. (14), and all the mixed derivatives terms are discretized using Eq. (15). This
means that the operator in Eq. (35) is implemented exactly as its two-dimensional
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(a)

(b)
(c)

0

2

1

Fig. 6 Implicit stratigraphic modeling of the Balzes fold model of Ramón et al. (2015). a Input data
consisting of horizon points picked along two horizons. b Solid view of the resulting stratigraphic field. c
Section view of the resulting stratigraphic field. Only value constraints were used in this experiment

(Eq. (26)), and its one-dimensional (Eq. (20)) version. The only thing that changes
is the number of directional vectors and their dimension. Figure 6 shows an example
using this smoothing operator to the Balzes model of Ramón et al. (2015).

6 Handling Discontinuities

Discontinuities are often encountered in geological structural modeling. They usually
consist of faults, unconformities and intrusive bodies. We propose a simple way to
handle discontinuities: grid points affected by a discontinuity, after its rasterization, are
tagged as external grid points (grid points inΩE ). Consider for example the illustration
in Fig. 7: the discontinuity represented by the red line is rasterized to obtain the red
external grid points, then boundary grid points are obtained from the definition in
Eq. (8). In fact, handling discontinuities in this manner was the main motivation for
most of the formalism presented earlier such as the definitions in Eqs. (6), (7), (8), and
themaximum-rankproperty of Sect. 3.2. This formalism resolves some issues raised by
Mallet (1989),Mallet (1989) cautioned that the discretization of the roughness operator
R(φ) may require special attention at model boundaries and near discontinuities. No
special treatment is required at boundaries here, since the roughness operator is only
discretized on internal grid points. For the illustration in Fig. 7, the solution would
be obtained everywhere except at the red grid points, which belong to ΩE . Values at
the red grid points may be estimated by extrapolation as a post-processing step. As
an example, tagging grid points rasterized by the fault in Fig. 8a as points in ΩE ,
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Fig. 7 Domain discretization in
the presence of a discontinuity.
The red line and nodes represent
a discontinuity and its
rasterization. Red nodes are
tagged as external nodes. Blue
nodes are boundary nodes, and
black nodes are internal nodes

(a) (b)

0

2

1

Fig. 8 Implicit stratigraphicmodeling ofmodel in Figure 5, in the presence a discontinuity. a Input data, two
horizons and one fault. b Resulting stratigraphic field. Only value constraints were used in this experiment

changes the stratigraphic field from Fig. 5b to the stratigraphic field in Fig. 8b. This
straightforward approach has proven capable of handling quite complex fault networks
as shown in Fig. 9. It also generalizes to higher dimensions as demonstrated by the
three-dimensional example in Fig. 10.

7 Limitations and Discussion

7.1 Large Thickness Variations

When a layer exhibits large thickness variations, the resulting implicit field can have
strong artifacts. For example, Fig. 11a shows an implicit function obtained using
Eq. (27) when stratigraphic layers have strong thickness variations; the resulting func-
tion contains loops, which is physically impossible from a stratigraphicmodeling point
of view. A more stratigraphically admissible implicit function is shown in Fig. 11c.
Handling such large thickness variations automatically, as done in Fig. 11c, is still an
active area of research (Laurent 2016; Renaudeau et al. 2017b); we defer that discus-
sion for further investigation. The problem highlighted by Fig. 11a is common to most
implicit modeling techniques. According to Smith and Wessel (1990), this problem
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0

2

1

(a) (b)

Fig. 9 Implicit stratigraphic modeling in a highly faulted model. a Input data, 1400 data points and 50
faults. b Resulting stratigraphic field. Only value constraints were used in this experiment. Synthetic data
courtesy of ExxonMobil

(a)

(b) (c)

0

2

1

Fig. 10 Implicit stratigraphic modeling of the three-dimensional sandbox model of Chauvin et al. (2018).
a Input data consisting of 27 fault surfaces and horizon points picked along 6 horizons. b Solid view of the
resulting stratigraphic field. c Section view of the resulting stratigraphic field. Only value constraints were
used in this experiment. Initial CT data courtesy of IFPEN and C&C Reservoirs

seems to come from our need to look for functions with continuous second derivatives
everywhere.

7.2 Discontinuities

Themethod proposed to handle discontinuities in Sect. 6 can be numerically inefficient
in some cases. If two faults are very close to one another, and there are some data
between them, we are forced to use a fine grid in order to take into account those
points. This can dramatically increase both the computational time and the computer
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20 1

(a)

(c)

(b)

Fig. 11 Implicit modeling of the large thickness variation benchmark model of Renaudeau et al. (2017b).
a Resulting implicit function using value constraints. b Estimation of stratigraphic orientation vectors. c
Resulting implicit function using value and orientation constraints

memory required to solve the system depending on how close the faults are. One
strategy to address this resolution limitation in finite difference implicit modeling
would be to use additional degrees of freedoms on nodes adjacent to faults as done
for example in the extended finite element method (Moes and Belytscheko 2002), and
also recently used in structural modeling (Renaudeau et al. 2018).

7.3 Performance

Weuse amulti-grid conjugate gradient solver running onGPUon a computer equipped
with a 3.5 GHz core and a Quadro M4000 GPU. The two-dimensional problem takes
about a second for a problem with 250 K grid points, and 3–4 s for a problem with 1M
grid points. The three-dimensional problem takes about 10–12 s for a problemwith 1M
grid points, and about 50 s for a problem with 5M grid points. Figure 12 suggests that
the running time is a quasi-linear function of the grid gize. Future researchmay include
trying to improve performance by preconditioning our solver; some preconditioners
for such a problem can be found inWu andHale (2015). One limitation of the proposed
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(a) (b)
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Fig. 12 Interpolation of a complex surface using value constraints and gradient constraints (i.e.∇φ = g
||g|| ,

for a gradient vector g). a Input data: 3400 points (black) and 675 gradient vectors (red). b Resulting
stratigraphic field. c The running time is a quasi-linear function of grid size

method is the high memory requirement for three-dimensional problems; if the first
roughness operator from Eq. (35) is used, each grid point has a memory cost of at
least

13 equations × 3 nonzeros

×(1 row id + 1 column id + 1 value )

×4 bytes = 468 bytes.

7.4 Beyond Three-Dimensions

Sections 4 and 5 gave particular applications of Eqs. (22) and (24) in two and three-
dimensions. While the formulas for the roughness operatorR(φ) appeared to become
more complex as we went from one, to two, to three-dimensions, the discrete version
of the roughness operator did not change. The only change was in the size of the full

directional matrix ¯̄F. It is reasonable to expect that this remains true for all higher
dimensions N > 3. That is, all we need for an N-dimensional interpolation problem

is to determine the N-dimensional directional matrix ¯̄FN. In general, the directional
matrix is given by

¯̄FN =
⎡
⎢⎣

¯̄CN¯̄DN¯̄EN

⎤
⎥⎦ ,

123



Math Geosci (2021) 53:785–808 805

with the understanding that the diagonal-axis matrix ¯̄DN only exists for N > 1, and

the extented-diagonal-axis matrix ¯̄EN only exists for N > 2. The Cartesian-axis and
diagonal-axis matrices are given by

¯̄CN(i, j) = δi j .

¯̄DN(i, j) = (−1)f(i, j), with f(i, j) = (2 · i)( j+1−N).

The extended-diagonal-axis matrix ¯̄EN is obtained by inserting a zero at different
positions of each row of the matrix

[ ¯̄DN-1¯̄EN-1

]
,

in a similar way that we obtained ¯̄E3 from ¯̄D2 in Sect. 5. ¯̄FN has 3N−1
2 rows and N

columns.

8 Conclusions

Wehave introduced a new technique for implicitmodeling onCartesian grids.We iden-
tified inherent practical properties of thewell behavedone-dimensional discrete second
derivative operator classically used to regularize interpolation in one-dimension, and
then we designed higher dimensional discrete regularization operators with the same
properties. In doing so, we obtained regularization operators that discretize naturally
on the Cartesian grid: the operators do not require special treatment on boundary
nodes, and they generalize to higher dimensions easily. Discarding boundary condi-
tions allowed us to handle discontinuities by simply surrounding them with boundary
nodes. As a result, our method is easy to implement, even in the presence of disconti-
nuities. Numerical experiments demonstrate the robustness and numerical efficiency
of the proposed method.
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Appendix

The analytic expressions of terms appearing in the formulas forR(φ), as proposed in
Sect. 5, are given below

∂2[1 0 0]φ = ∂2xφ,

∂2[0 1 0]φ = ∂2yφ,

∂2[0 0 1]φ = ∂2z φ,
√
2∂[1 0 0]

(
∂[0 1 0]φ

) = √
2∂x

(
∂yφ

)
,

√
2∂[1 0 0]

(
∂[0 0 1]φ

) = √
2∂x

(
∂zφ

)
,

√
2∂[0 1 0]

(
∂[0 0 1]φ

) = √
2∂y

(
∂zφ

)
,

√
2∂[1 0 0]

(
∂[0 1 1]φ

) = ∂x
(
∂yφ + ∂zφ

)
,

√
2∂[1 0 0]

(
∂[0 1 −1]φ

) = ∂x
(
∂yφ − ∂zφ

)
,

√
2∂[0 1 0]

(
∂[1 0 1]φ

) = ∂y
(
∂xφ + ∂zφ

)
,

√
2∂[0 1 0]

(
∂[1 0 −1]φ

) = ∂y
(
∂xφ − ∂zφ

)
,

√
2∂[0 0 1]

(
∂[1 1 0]φ

) = ∂z
(
∂xφ + ∂yφ

)
,

√
2∂[0 0 1]

(
∂[1 −1 0]φ

) = ∂z
(
∂xφ − ∂yφ

)
,

∂2[0 1 −1]φ = 1
2

(
∂2y + ∂2z − 2∂y∂z

)
φ,

∂2[0 1 1]φ = 1
2

(
∂2y + ∂2z + 2∂y∂z

)
φ,

∂2[1 0 −1]φ = 1
2

(
∂2x + ∂2z − 2∂x∂z

)
φ,

∂2[1 0 1]φ = 1
2

(
∂2x + ∂2z + 2∂x∂z

)
φ,

∂2[1 −1 0]φ = 1
2

(
∂2x + ∂2y − 2∂x∂y

)
φ,

∂2[1 1 0]φ = 1
2

(
∂2x + ∂2y + 2∂x∂y

)
φ,

∂2[1 −1 −1]φ = 1
3

(
∂2x + ∂2y + ∂2z − 2∂x∂y − 2∂x∂z + 2∂y∂z

)
φ,

∂2[1 −1 1]φ = 1
3

(
∂2x + ∂2y + ∂2z − 2∂x∂y + 2∂x∂z − 2∂y∂z

)
φ,

∂2[1 1 −1]φ = 1
3

(
∂2x + ∂2y + ∂2z + 2∂x∂y − 2∂x∂z − 2∂y∂z

)
φ,

∂2[1 1 1]φ = 1
3

(
∂2x + ∂2y + ∂2z + 2∂x∂y + 2∂x∂z + 2∂y∂z

)
φ.
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