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Abstract The state of nature is uncertain. André G. Journel championed the concept
that we must quantify our uncertainty, then make a risk-qualified decision. The theory
for this concept applied to the earth sciences was developed by André and others over
the past four decades. Theory is unquestionably important, but the implementation
of theory in algorithms and practical workflows has always been an essential aspect
of geostatistics. This motivated the geostatistical software library and other computer
codes. The effort remains unfinished. The workflows for the quantification of geo-
logical uncertainty and risk-qualified decision making are achievable to a select few
who are comfortable bending arcane software to their will. The routine calculation of
probabilistic resources and risk qualified decision making requires a clarity of vision
or, as André was fond of saying, an understanding of the essence. The essential steps
required for constructing numerical models that effectively quantify our state of nature
have emerged. The concepts for risk-qualified decision making are clear. Practitioners
have technical solutions to quantify and manage geological risk, thus reducing the lost
opportunity cost of low-quality geological models and inferior decisions
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1 Introduction

This is a technical paper with a clear message to practitioners of numerical geological
modeling for resource and reserve evaluation. This is also a personal viewpoint that
reflects the author’s experience. An important text that consolidated developments
in the mid 1980s was Geostatistics in Five Lessons (Journel 1989): It is my opinion
that the main contribution of geostatistics has been and still is implementation, an
essential follow-up step much too often forsaken by theoreticians. The geostatistical
software library and user’s guide (GSLIB) (Deutsch and Journel 1992) was written
to showcase the essence of geostatistical implementation. The efforts did not start
there. The Fortran code from Mining Geostatistics (Journel and Huijbregts 1978)
was punched in by many early practitioners including the author of this paper. Many
others have advanced André’s vision for implementation including SGeMS (Remy
et al. 2011). The probabilistic view to geological uncertainty has extended to many
disciplines including geophysics (Azevedo and Soares 2017). André’s vision was an
integrated theoretical/practical framework that leads to an understanding of geological
variability, estimates of resources, a quantification of uncertainty at all relevant scales
and support for decisions with a clearly specified position on risk.

André’s vision is not fully implemented. Certain aspects were implemented almost
immediately and the fingerprint of GSLIB has been found onmany geostatistical stud-
ies; however, there were gaps in theory and practical understanding. The importance of
parameter uncertainty was not understood; it is essential in practice. Without parame-
ter uncertainty small scale variations cancel out and large-scale uncertainty is severely
underestimated. The importance of a hierarchical workflow without branching in the
simulation workflow was not understood. This criticism is not entirely fair; the one-
for-one notion of sequential sampling was understood. Nevertheless, the interaction
between parameters, data, surfaces, boundaries, categories and multivariate continu-
ous properties was not formulated clearly. The challenge of decision making in the
presence of uncertainty was underestimated. The use of a single kriged, localized or
P50model runs rampant decades after it should have been extinct. Finally, the required
software environment for defendable and actionable models was not understood. A
collection of student-driven incompletely-tested software should not be sent to the
front line of modeling.

This paper consolidates selected practical developments since the 1980s that make
it possible to realize André’s vision. Quantifying geological uncertainty and mak-
ing a risk-qualified decision are possible. Future theory will be developed and novel
computational platforms will emerge, but a consolidated framework is available for
practitioners. Future trends are likely to include extensive automation, implicit mod-
eling, and real time updating with a wide variety of data. Machine learning and other
data-driven quantitative tools developed in other fields will be adopted, but aspects
of model-driven geostatistics will remain given (1) the wide spacing of drilling in
most resource estimation projects, and (2) our general understanding of geological
processes and analogue information from similar geological settings.

Some longstanding concepts of uncertainty quantification are recalled andpresented
in a modern geostatistical context. Implementation details for an accurate and precise
quantification of uncertainty are reviewed. The disclosure of resource uncertainty is
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clarified. Decision making in presence of uncertainty is reviewed. The thinking in the
1980s, led by André, was that the conversion to a probabilistic world view was just
around the corner. The practical implementation of the required tools took longer than
expected.

2 Concepts

Geological uncertainty is a consequence of geological variability at all scales and
sparse sampling; it is inevitable. This uncertainty does not depend on the importance
of any decision, but it can be reduced by careful consideration of all general and site-
specific information. Predicting the uncertainty of one-offs with no context or history
is challenging. Every deposit is unique and, in some sense, a one-off; however, our
understanding of geological processes, availability of multiple drill data, and reconcil-
iation with actual results makes the quantification of geological uncertainty more akin
to a repeated event. The procedures to quantify geological uncertainty are understood
and practical.

Many probabilistic predictions are for single events such as a politician being
elected. A geological resource consists of many variables at many locations. The total
number of random variables easily exceeds a million. The transfer of multivariable
multilocation uncertainty through to resource uncertainty must be done with simula-
tion, that is, the sampling of realizations. A large enough number of realizations are
created and processed through resource calculations. The relationships between all
variables and all locations are reproduced by the realizations. Simulation is the only
viable approach to transfer geological uncertainty through to larger practical scales of
relevance. The full combinatorial space of uncertainty is too large to consider. Between
50 to 10000 realizations are often considered to quantify uncertainty; 200 is suggested
for large scale resource modeling.

Checking uncertainty is essential. Resource and reserve estimates may form the
basis of decisions with large economic value. Checking should be done in hindsight as
new data and production becomes available; however, checking of local uncertainty
is possible with a ”leave some out” approach. K-fold validation is commonly used.
The data are divided into K folds (typically 5 or 10), then modeling proceeds K
times leaving one fold of data out at a time. Good uncertainty is accurate and precise.
Accuracy relates to correctness or closeness to the truth. For example, there should
be 50% of the true values within the predicted interquartile range. Precision relates to
the repeatability or narrowness of the predicted probability distributions. This could
be assessed, for example, by variance or entropy. Once uncertainty is calculated and
checked, a final set of realizations conditioned to all available data is constructed and
passed forward.

Considering multiple realizations in all calculations is straightforward. There are
two main applications (1) the calculation of resource and reserve estimates, and (2)
optimization. Resource or reserve calculations are repeated on each realization. The
expected value is taken at the end. The resource estimate is a single number that can be
reported with the correct significant digits. A measure of uncertainty can accompany
the resource estimate, but that is not recommended (more on this provocative com-
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ment later in this paper). The resource should be classified with the relevant regulatory
requirements and disclosed appropriately. Regarding optimization, the expected value
over multiple realizations should enter the objective function. Risk could be consid-
ered with a loss or utility function. Many optimization engines are designed for one
realization, but implementations are emerging that consider multiple realizations.

3 Geological Uncertainty

Rock properties are variable at all scales. A hierarchical modeling workflow is formu-
lated for each site. The framework itself could be uncertain and alternative scenarios
maybe considered to account for this.Often, there is enough roomwithin awell-crafted
workflow to permit accurate and precise uncertainty quantification. The modeling
workflow is a hierarchy that includes a combination of boundaries (solid or wireframe
models), surfaces (subsurfaces and faults), categories (facies and rock types) and mul-
tivariate continuous rock properties. The techniques used at each step in the hierarchy
require conditioning data, parameters and a sequence of random numbers to sample
from uncertainty. The final model consists of a set of realizations. Each realization
provides a unique set of rock properties at all locations within the study volume. Some
special topics related to the quantification of geological uncertainty are reviewed here.

3.1 Parameter Uncertainty

Each technique in the specified hierarchical modeling workflow requires modeling
parameters such as distributions, variograms, training images, and correlations. These
parameters are used to compute uncertainty, but are themselves uncertain. Assessing
and transferring such parameter uncertainty through the modeling workflow is more
important than imagined. The GSLIB book and related texts recommended against an
open-ended assessment of parameter uncertainty that would neither make the results
more objective nor be data-driven. Experience has shown that parameter uncertainty is
essential for accurate large scale resource uncertainty. First order parameters such as
proportions, mean values and histograms are particularly important. Parameters that
affect continuity may be important for flow-based responses. Constructing multiple
realizations with fixed parameters leads to an unrealistically narrow distribution of
resource uncertainty. Areas of high and low values tend to cancel out and resources
calculated over a large volume are very similar.

The original bootstrap procedure is not applicable for spatial data; in almost all
cases the data values from geological sites are correlated and cannot be considered
independent. The spatial bootstrapwasproposed shortly after the bootstrap, but counter
intuitive results were distracting. Greater spatial correlation leads to larger uncertainty,
yet one would expect less uncertainty because the data are more informative. Also, the
results of the spatial bootstrap are independent of the study volume or domain limits,
yet we expect more uncertainty for a large volume, provided everything else remains
the same. A combination of research, examples with very large data sets, and case
studies have shown that the results of a two-step procedure are correct (Journel and
Bitanov 2004; Rezvandehy and Deutsch 2017). The first step is to calculate parameter
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uncertainty with the spatial bootstrap that considers neither conditioning data nor the
domain boundaries. The second step is to simulate within the domain boundaries with
all available conditioning data and realizations of the input parameters coming from
the spatial bootstrap. The second step reduces the spatial bootstrap uncertainty, but in
a way that gives correct final results.

The implementation details of quantifying and considering parameter uncertainty
have become established. Multiple realizations of parameters are simulated—one for
each realization being simulated; each simulated geological model has a different set
of input parameters. The reproduction of statistics is checked for the ensemble of final
realizations. If any bias appears in the checking, then multiple realizations with fixed
input parameters are checked. If problems remain, then unconditional realizations are
checked. Problems are almost always attributable to non-stationary trends or complex
spatial clustering of the data.

3.2 One for One Model Setup

The concepts of probability trees and decision trees are very useful, but they can
promote a misunderstanding about the quantification of uncertainty. Branching the
sampling of uncertainty is not a good idea—the combinatorial of models increases
uncontrollably for no good reason (Deutsch 2017). A decision tree is completely valid
and very useful; however, the quantification of geological uncertainty is a different
problem that cannot be approached with a tree-branching concept. Given the tree
concept, for each realization of surfaces, there could be multiple realizations of cat-
egorical variables; for each categorical variable realization there could be multiple
realizations of the primary continuous variable, and so on. If the tree-branching con-
cept is taken to an extreme, then for each location simulated, there could be multiple
realizations for the next location. This would lead to an impossibly large number of
realizations. André’s pioneering concept of sequential simulation is much more gen-
eral than for indicators and Gaussian regionalized variables. The concept applies to
the entire workflow of model setup and simulation.

Additional realizations could be added at any time, but it is convenient to choose the
number of realizations at the start. This facilitates simplicity and the parallelization of
calculations. Conceptually each realization consists of one set of parameters, one set
of data, one boundary model, one surface model, one categorical variable model and
one model for each continuous variable. In practice, the parameters, data, boundaries,
surfaces, categories and continuous variables are simulated one after another. The
workflow is scripted andordered so that each realizationof each regionalizedvariable is
simulatedwith the correct parameters and framework created by regionalized variables
earlier in the model setup. The simulation is truly sequential with no branching. In
model post processing and decision making, branching is included in decision trees
as appropriate.

The one-for-one modeling of geological variables is straightforward to implement.
Different coordinate systems are used at different steps to conform the directions of
continuity to local geological conditions. This is particularly true for tabular strati-
graphic or vein-type deposits. At the end of the modeling procedure all realizations
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of the geological model are represented as a block model in real-world coordinates.
The block model may include subblocks for improved representation of complex geo-
logical boundaries. All post processing calculations are performed on all realizations.
For example, the probability of high quality resources could be computed by count-
ing the number of realizations that are high-quality and dividing by the total number
of realizations. This probability may not achieve 100% away from the drill holes in
presence of surface and boundary uncertainty. Engineering design decisions would
accommodate flexibility for this uncertainty.

The current approach to one-for-one modeling includes data uncertainty. There are
two approaches to transfer data uncertainty through geostatistical modeling. The first
approach is closely related to data imputation, that is, realizations of the underlying
true data values are simulated for all available data, then they are used as inputs to
subsequent steps. The second approach is to have the geostatistical algorithm consider
multiple data types at the same time. If there are different types of drill data, the first
imputation framework has proven itself. If there are near exhaustive secondary data
coming from, say, seismic, then the second approach has established itself. In any case,
quantifying and transferring data uncertainty through the modeling workflow through
to resource and reserve uncertainty can be important.

The implementation details for a full one-for-one modeling workflow are well
understood. Data imputation requires knowledge of the geostatisticalmodeling param-
eters; therefore, parameter uncertainty is assessed first. Data are imputed for missing
values and/or data with error. Cokriging can be formulated to avoid data imputation
and to consider data with error; however, the decorrelation techniques often used mul-
tivariate modeling are applicable only for equally sampled data sets. Imputation is a
practical solution. The hierarchical workflow is applied where each simulated geologi-
cal model has a different set of input parameters and data. A geological model typically
consists of a boundary model, constraining surfaces, categorical variable realizations
within different zones and multiple variable realizations within each category.

3.3 Useful Algorithms

As described above, the overall framework for probabilistic resource modeling is
established; however, different techniques, algorithms and software tools could be
used for different tasks. The chosen technique will depend on site specific geological
conditions, available data, expertise, available software and the scope of the project.
Three recent developments are noteworthy for their usefulness and rapid adoption in
practice: (1) the hierarchical truncated pluriGaussian (HTPG) technique for categorical
variable modeling, (2) trend modeling and the stepwise conditional transformation
with a Gaussian mixture model (SCT-GMM) for modeling with a trend, and (3) the
projection pursuit multivariate transformation (PPMT) for multivariate modeling.

Categorical variable modeling within volumes delimited by bounding surfaces and
implicit boundary models are important. Sequential indicator simulation (SIS) cannot
reproduce complex relationships and is prone to bias in the simulated proportions.
Multiple point statistics (MPS) requires an elusive training image and tuning param-
eters such as multiple grid searches and correction parameters for proportions. The
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family of truncated Gaussian (TG) techniques are mathematically consistent, but can
be difficult to parameterize. SIS, TG and MPS have their place, but the hierarchical
truncated pluriGaussian (HTPG) (Silva and Deutsch 2019) technique has emerged as
a flexible and robust approach. A hierarchical tree structure is easy to understand and
permits geologically realistic transitions and cross cutting relationships to be consid-
ered. Many Gaussian variables (five to fifteen or even more) can be used with unique
spatial structure and accessible truncation rules for realistic modeling. Parameter and
data uncertainty are naturally included in the HTPG modeling workflow.

Continuous variable modeling is almost always required within the categories or
domains that are deemed stationary. Trends introduce challenges in workflows for
probabilistic resource estimation. There are rarely enough data to enforce the large-
scale trend-like features in simulated realizations; high and low values will overly
influence locations where they do not belong. Kriging for the trend has not been suc-
cessful because kriging aims for data reproduction and tends to the global mean at the
margins of a domain. Geological variables are rarely amenable to a simple polynomial
or functional trend shape. A weighted moving window average has proven effective.
Some important implementation details to consider: (1) a length scale for the moving
window specified for the primary direction of greatest continuity, (2) a Gaussian shape
to the weighting function, (3) anisotropy in the kernel length scale somewhat less than
that of the regionalized variable—often a square root of the anisotropy ratio to the
maximum direction of continuity, (4) the weight to each data is the kernel weight mul-
tiplied by the declustering weight, and (5) a small background weight to all data of,
say, one percent. The only free parameter is the length scale in the primary direction.
Despite some worthwhile attempts to automate the calculation of this parameter it is
set by experience and the visual appearance of the final model. A value one third of
the domain size may be reasonable. Once the trend is modeled, we must simulate with
the trend.

Creating a residual as {R(u) = Z(u) − m(u),u ∈ A} is not good practice. Z and
m are related in complex ways causing R and m to be dependent. If R is modeled
independently then artifactswill be introduced in the R+m back transform.A stepwise
conditional transform (SCT) of the original variable conditional to the trend has proven
effective to completely remove the dependence on the trend. Independent modeling
proceeds and the reverse transform introduces the dependency between the original
variable and the trend. The SCT considers a fitted Gaussian Mixture Model (GMM)
between the normal scores of the original variable and the normal scores of the trend
(Silva and Deutsch 2016). These normal score transforms are an intermediate step
and are easily reversed. The use of a Gaussian mixture model makes the stepwise
transform entirely bin-free and artifact-free. The workflow of trend modeling, data
transformation, simulation and back transformation can be largely automated.

Multiple continuous variables perhaps detrendedwith the SCT-GMM technique are
to be simulated simultaneously within multiple categories/domains. Cokriging based
techniques account for correlations and linear relationships; however, real data almost
always show complex relationships such as non-linear features, constraints and the
proportional effect even after univariate normal score transformation. The projection
pursuit multivariate transformation (PPMT) (Barnett et al. 2013) has emerged as a
useful pre- and post-processor for simulation. The collocated multivariate complexity
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betweenmultiple variables is removed in a pre processing step. Conventional Gaussian
simulation techniques are used for each independent factor. Then, the original units and
complex collocated features are restored in the post processing back transformation.

In combination with many other techniques, the three useful algorithms mentioned
in this section (HTPG, SCT-GMM, and PPMT) are used routinely in practice. The
construction of multiple realizations accurately and precisely representing geological
uncertainty is possible. The concepts, one-for-one workflow and useful tools are part
of the modeling effort. Considering the resulting realizations in resources/reserves
reporting and decision making comes next.

4 Risk Qualified Decision Making

Resources and reserves are directly reported from the realizations that quantify geo-
logical uncertainty. It is not good practice to have one deterministic model for base
case resource estimates, then consider simulated realizations to provide a measure
of uncertainty. There is a need, however, for a single resource number to report. The
single resource estimate is the expected value of the resource computed across all real-
izations. There is no computational complexity in calculating the resources on, say,
200 geological models. The variation of the calculated resources provides ameasure of
geological uncertainty; the expected value provides the best base-case single estimate.
This best estimate is not traced to a single model, but the underlying realizations are
unique and the resource estimate can be validated from the unique set of realizations
that quantify the true uncertain state of nature.

The best estimate of resources and reserves will not likely be achieved. The actual
outcome could be better or worse than expected. There are consequences for better or
worse outcomes. This does not mean that lower than expected resource and reserve
numbers should be reported. Regulatory guidelines for disclosure require classification
based on geological confidence and other mitigating factors; this should be done
considering the quantified uncertainty. The public disclosure of uncertainty is not
required; classification is required.A company that discloses a range of resources could
be at a disadvantage in themarketplace.Most people are naturally risk averse andwould
value an asset by the lowest number that is reported. Until uncertainty is reported as an
industry wide standard, best practice will therefore quantify geological uncertainty for
expected resources and to support classification decisions. The uncertainty quantified
in the geological model should also be used in decision making.

There are different types of decisions. Simple decisions are binary, that is, to partic-
ipate or not in a venture. The venture may be to invest in a project, drill a well or send
a truck load of rock to the mill as ore. The binary view is (1) positive, that is, an irrevo-
cable commitment of resources in favor of the project, or (2) negative, that is, giving
up an opportunity to participate in a project. Risk is the unfavorable consequences
of an inadequate return after a positive decision or a significant lost opportunity after
a negative decision. The asymmetric consequences of an inadequate return versus a
lost opportunity leads a decisionmaker to take a risk averse or an opportunity seeking
position on risk. There could be a list of decisions to choose from or the space of
possible decisions could be combinatorially large, that is, the possible locations of
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multiple wells or the sequencing of a mining operation. The position on risk will be
discussed before some comments on risk qualified decision making.

4.1 Position on Risk

Taking a risk neutral stance will always lead to the best decision in expected value,
that is, if many similar decisions are aggregated together. Risk aversion leads to deci-
sions that avoid low value situations, but at the expense of capitalizing on high-value
high-variance outcomes. Opportunity seeking leads to decisions that prefer high value
situations, but at the expense of low value outcomes. A neutral position on risk is
preferable for repeated similar decisions. There will be unfavorable outcomes, but
the consequences average out and the decisionmaker will realize the greatest value.
In situations of infrequent or one-off decisions a rational decisionmaker would be
risk averse for medium-term decisions and opportunity seeking for exploration or
long-term decisions.

The two main approaches to encode a non-neutral position on risk are to minimize
expected loss or maximize expected utility. These are not equivalent and not directly
related to each other. Loss functions were introduced in geostatistics by André G.
Journel in the mid 1980s. Loss functions are suitable for choosing a value from a
distribution. The concept of expected utility, however, is amenable to choosing from
a list of options and for optimization (Zakamouline 2014). In many decision making
settings, the distribution of uncertainty changes throughout an optimization process.
The design parameters are chosen to optimize the distribution of uncertainty. This
makes the use of utility more intuitive and straightforward.

The value of a decision could be expressed in terms of the net quantity of a com-
modity produced or the net present value. A utility function converts the value to utility
to quantify (1) a preference to avoid low values (risk aversion) or (2) a preference to
seek high values (opportunity seeking). A risk averse exponential utility function of
the form u(v) = 1 − exp(−av) where u is utility, v is value and a is a constant that
represents our position on risk. When the parameter of risk aversion a or the form
of the utility function is unclear, decision making should proceed with alternatives
including a risk neutral decision. Then, the alternative optimized decisions can be
reviewed. Decision making would consider expected utility and not expected value.
Caremust be takenwith negative value outcomes (v < 0) and for distributions of value
that span several orders of magnitude. In practice, the value for all possible decisions
is scaled to be within a fixed positive range.

4.2 Decision Making

Selecting from a list of millions (or less) of alternative decisions is straightforward:
compute the expected utility for eachpossible decision, perhaps considering alternative
utility functions as a sensitivity, then choose the decision with the maximum expected
utility. Decisions that are not final should consider a risk neutral option. A trained
professional should review the optimized decision since there are often considerations
not easily quantified in a simple utility function.
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Many decisions have a solution space that is combinatorially large. In petroleum,
the number of possible well locations and completion strategies is essentially infinite.
In mining, the possible pit designs or stope sizes and sequencing is also essentially
infinite. These type of decisions call for optimization, but the objective function should
be expected utility and not expected value (Acorn and Deutsch 2018). There are other
ways to embed risk in the decision, but directly optimizing expected utility or directly
penalizing risk is the best alternative.The software implementations for this are limited.

5 Thoughts on Implementation

Open source code is essential for researchers and advanced practitioners to under-
stand algorithms, consider alternatives, and explore new ideas. Such open source code
could form the basis for commercial implementations, provide comparative tests and
document implementation problems. Open source code provides a basis for detailed
debugging of algorithms and some assurance of reproducibility and longevity for
important algorithms.

GSLIBandother open source software initiatives thatAndréG. Journel championed
have been influential in numerical geological modeling, uncertainty quantification
and decision making. Public domain student-driven code should be used with great
care for commercial applications. In general, the coding standards, version control,
reproducibility, flexibility, testing and support are inadequate. Some practitioners have
the experience to include such research codes in a commercial workflow, but that is
dangerous. The risk that buggy code causes untrapped errors is too high. The use of
GSLIB-like code may be required for a period of time; software vendors are reluctant
to commercialize unproven techniques. Even the best research ideas would remain
unproven without some adventurous practitioners applying research codes.

Commercial software is recommended and preferred for commercial resource
estimates, reserves optimization and decision making. Platforms for combined open-
source and commercial applications may emerge. A key is to have highly qualified
personnel applying the software and validating the results with a critical eye.

6 Conclusions

The important missing links reviewed in this paper are parameter uncertainty, a hier-
archical one-for-one modeling workflow and optimization of decisions with expected
utility. Some useful algorithms that grew from the seeds of early geostatistics are also
described. This paper is a testament to the vision of André G. Journel for geological
modeling and resource/reserve decision making. Appreciation for the complexity of
implementation was incomplete in the 1980s and early 1990s. The essence is better
understood and a computing environment is available for present day application. The
room for future developments is vast, but we are, at least, able to provide accurate and
precise estimates of resource uncertainty and make risk qualified decisions.
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