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Abstract In this paper, an implicit structural modeling method using locally defined
moving least squares shape functions is proposed. The continuous bending energy
is minimized to interpolate between data points and approximate geological struc-
tures. This method solves a sparse problem without relying on a complex mesh.
Discontinuities such as faults and unconformities are handled with minor modifi-
cations of the method using meshless optic principles. The method is illustrated on
a two-dimensional model with folds, faults and an unconformity. This model is then
modified to show the ability of the method to handle sparsity, noise and different
reliabilities in the data. Key parameters of the shape functions and the pertinence of
the bending energy for structural modeling applications are discussed. The predefined
values deduced from these studies for each parameter of the method can also be used
to construct other models.
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1 Introduction

Structural geology is partly concerned with the characterization of geological bodies
and structures. From the millimetric to the kilometric scale, these descriptions help in
understanding the local and regional geological settings (Fossen 2016). The geometries
of folds and geological discontinuities, such as faults and unconformities, are key for
developing an understanding of the subsurface geology, which is essential to a range
of applications such as the estimation of natural resources.

Structural modeling intends to accurately reproduce the geometry of geological
structures with a numerical model (Caumon et al. 2009). The quality of the data
acquired on the field depends on acquisition tools, operator skills and rock exposure.
Field observations are then interpreted by geologists and geophysicists to obtain the
spatial points, lines and vectors used as input data in structural modeling. Depending
on both acquisition and interpretation, these numerical inputs may be noisy, sparse
and unevenly sampled (both scattered and clustered) (Carmichael and Ailleres 2016;
Houlding 1994; Mallet 1992, 1997, 2002). Reproducing complex geological struc-
tures from such data requires simplifications and empirical rules based on analog
structures.

Implicit structural modeling algorithms have drawn significant attention during the
past 30 years (Caumon et al. 2013; Hillier et al. 2014; Lajaunie et al. 1997; Mallet
1988, 2014). They represent amodel by an implicit function, also called a stratigraphic
function, defined on the entire volume of interest. A horizon, which is an interface
between two stratigraphic layers, is given by a single iso-value of the stratigraphic
function, and a structural discontinuity, such as a fault or an unconformity, corresponds
to a discontinuous jump in the function. The advantage of algorithms building implicit
functions is that they take all data constraining the geological structures into account
at once, and without involving projections. Geological structures can, therefore, be
interpolated and extrapolated away from the data everywhere in the studied area.

The discrete smooth interpolation (DSI) is a class of explicit (Mallet 1992, 1997,
2002) and implicit (Frank et al. 2007; Mallet 1988, 2014; Souche et al. 2014) methods
to construct structural models, which is well known in the oil and gas industry [soft-
ware: SKUA-GocadbyParadigm (2018) andvolumebasedmodeling bySchlumberger
(2018)]. The implicit DSI variant discretizes the stratigraphic function on a volumetric
mesh. The function’s coefficients are centered on the mesh vertices and are linearly
interpolated within the mesh elements.

By assuming that the expected model should be as smooth as possible, DSI intro-
duces a global roughness factor minimized in the least squares sense. By locally
changing the weight of the roughness, it is possible to control the model features away
from the data. Caumon (2009) and Caumon et al. (2013) generate kink folds with
this principle. This roughness factor has been formulated with constant gradient equa-
tions (Frank et al. 2007) or smooth gradient equations (Souche et al. 2014). As this
roughness factor has only been described discretely, its relationship with continuous
physical principles remains unclear.

In DSI, the implicit function is continuous on the mesh elements. Therefore, the
mesh elements should not intersect structural discontinuities (i.e., the triangles of the
discontinuities should be faces of the mesh elements). While unstructured meshes
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can efficiently handle discontinuities, their construction represents a challenge in
some geological settings (Karimi-Fard and Durlofsky 2016; Pellerin et al. 2014). For
instance, mesh algorithms cannot always ensure creating a mesh in which the gradient
of the implicit function can be correctly computed (Shewchuk 2002), especially when
dealing with fault networks of complex geometries and intersections. It may also be
computationally and memory expensive and may require significant user interactions.
Moreover, DSI results depend on the mesh and its quality (Laurent 2016).

The potential field method (PFM) (Calcagno et al. 2008; Chilès et al. 2004; Cowan
et al. 2003; Lajaunie et al. 1997) is another class of numerical methods that can be
used to create implicit structural models and which is well known in the mining indus-
try [software: Geomodeller by Intrepid-Geophysics (2018) and LeapFrog by ARANZ
Geo (2018)]. PFM can be formulated as a dual cokriging interpolation or as a radial
basis functions interpolation [Hillier et al. (2014), based on Matheron (1981)’s proof
of equivalence between kriging and splines]. Some radial basis functions link PFM to
physical principles. For instance, the thin plate splines (Duchon 1977) are the Green’s
functions of the bending energy, which means that an implicit function defined in a
PFM scheme by a sum of thin plate splines [as in Jessell et al. (2014)] intrinsicallymin-
imizes the bending energy (also called thin plate energy) (Dubrule 1984;Wahba 1990).

In PFM, no mesh is involved in the computation of the implicit function, although
the results are generally evaluated on a grid for visualization. Instead, the interpo-
lation is supported by the data and their position: each data point is associated with
an interpolant and a coefficient. The implicit function is thus dependent on the data
distribution and the range of influence of the chosen interpolants. With global inter-
polants, such as thin plate splines, the data coefficients have an influence everywhere
in space. With local interpolants, such as compactly supported radial basis functions
(Wendland 1995; Wu 1995), the data coefficients have a restricted influence centered
on their position. In structural modeling, defining the implicit function everywhere in
the domain of study is a requirement, as horizons are supposed to be infinite surfaces
also existing in wide areas where data are missing. This can be ensured even with local
interpolants in PFM by a global polynomial drift added to the solution. However, the
transition between sampled areas, influenced by local interpolants, and empty areas,
defined by the drift alone, often leads to high curvature artifacts in the solution. There-
fore, although local interpolants are common in PFM, such as the cubic covariance
(Aug 2004; Calcagno et al. 2008; De la Varga et al. 2019), they are used like global
interpolants in structural modeling applications, with a range of influence scaled on
the domain’s dimensions. This creates a dense system whose size increases with the
number of data and becomes unsolvable for more than a few thousand data without
optimization techniques (Cowan et al. 2003; Cuomo et al. 2013; Yokota et al. 2010).

Specific treatments as introduced inMarechal (1984) are given to the discontinuities
in PFM (Calcagno et al. 2008; Chilès et al. 2004). The faults are handled by enriching
the implicit function with polynomial drifts weighted by jump functions. This implies
the definition of a fault zone or a fault influence radius for the jump functions, which is
difficult to determine (Godefroy et al. 2018) andmay requiremanymanual interactions.
The stratigraphic unconformities are handled by computing an implicit function for
each conformable stratigraphic series, and by using Boolean operations to reconstruct
a unique model.
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In this article, an algorithm is suggested to build implicit functions using locally
definedmoving least squares interpolants. Those interpolants are centered on regularly
sampled nodes and ensure the definition of the implicit function everywhere in the
domain. The discontinuities are handled with meshless techniques, limiting user inter-
actions even in complex cases. The proposed framework also explicitly minimizes the
bending energy, as a continuous regularization to solve the structural modeling prob-
lem. Everything is described in two dimensions for simplicity, but the formalism is
adaptable in three dimensions.

The proposed method is described in Sect. 2. Section 3 emphasizes the ability of
the method to handle some well-known issues with data inputs in structural model-
ing applications. Section 4 discusses the limits of the method, the proposed related
solutions, and some perspectives.

2 Locally Based Structural Modeling with Meshless Concepts

2.1 Construction of the Implicit Function

In two dimensions, the implicit function u(x) is a function in the vector space V
defined as

V =
{
u(x) =

N∑
l=1

Φl(x) ul = �(x)T · U | x ∈ Ω

}
, (1)

where x(x, y) is a position in IR2, Ω is the domain of study, �T = [Φ1, . . . , ΦN ]
is a basis of linearly independent functions, UT = [u1, . . . , uN ] is a set of scalar
coefficients, and N is the number of terms in � and U. This section explains how the
N shape functions Φl and coefficients ul are defined.

2.1.1 Implicit Function Coefficients: The Discretization of the Domain

For simplicity, the domain of study Ω is discretized regularly. The grid is not stored,
but its N cell corner points are key to the method and are referred to as interpolation
nodes in the remainder of the paper. The implicit function is constructed on these
nodes: an interpolant Φl and a coefficient ul are centered on each interpolation node
xl. The number of interpolants and coefficients is, therefore, equal to the number of
interpolation nodes N . The shape functions Φl are linearly independent as long as
the interpolation nodes have distinct coordinates, so the implicit function is uniquely
defined by the coefficients ul. In this paper, the moving least squares are used as
interpolation functions and are described below.

2.1.2 Interpolation Functions: The Moving Least Squares

Weight functions The weight functions wl are key to define the moving least squares
functions Φl. They are continuous functions centered on the interpolation nodes
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xl(xl, yl) and defined in a local area Sl called support. In the presented method, they
are defined with a rectangular support as

wl(x) = w(qlx ) w(qly ) = w

( |x − xl|
ρlx

)
w

(
|y − yl|

ρly

)
. (2)

The dilatation parameters ρl(ρlx , ρly ) control the size of the supports Sl and the nor-
malized distances ql(qlx , qly ). Here, a global and adimensional dilatation parameter
ρ is used to define constant dilatation parameters scaled on the nodal spacing in each
axis as

⎧⎨
⎩

ρlx = ρ
Lx (Ω)
(Nx−1)

ρly = ρ
Ly(Ω)

(Ny−1)

, l = {1, . . . , N }, (3)

where Lx (Ω) and Ly(Ω) are the lengths of the domain Ω and Nx and Ny are the
number of interpolation nodes for each axis.

A wide range of weight functions have been defined in the literature (Fries and
Matthias 2004). In this paper, the fourth order splines are used; they are highly derivable
(C2) and polynomial-based as

w(ql)

{= 1 − 6q2l + 8q3l − 3q4l ql ≤ 1

= 0 ql > 1
. (4)

Moving least squares (MLS) functions TheMLS functions (Lancaster and Salkauskas
1981; McLain 1976) are locally defined meshless functions. They are constructed by
approximating the implicit function u as a polynomial function of degree d with
spatially varying coefficients. The V space from Eq. (1) is redefined as

V =
⎧⎨
⎩u(x) =

N∑
l=1

Φl(x) ul =
m∑
j=1

p j (x) a j (x) = pT (x) · a(x) | x ∈ Ω

⎫⎬
⎭ , (5)

with m the number of monomials p j and coefficients a j .
When performing a local approximation around x, in a least squares sense, theMLS

shape functions Φl are defined as

Φl(x) = wl(x)pT (x) · [A(x)]−1 · p(xl) = �(x) · Bl(x), (6)

where

A(x) =
N∑
j=1

w j (x)p(x j ) · pT (x j ), (7)
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and with A · � = p and Bl = wl(x)p(xl). The matrix A is called the moment matrix.
Appendix A gives the details of the construction of MLS functions, and Appendix B
gives a geometrical illustration of a one-dimensional MLS interpolation. Some plots
of these functions in one and two dimensions can be found in Nguyen et al. (2008) and
Liu and Gu (2005). Other useful details on their construction can be found in Fries
and Matthias (2004), and Nguyen et al. (2008), and useful empirical values for their
parameters can be found in Liu and Gu (2005).

The MLS functions form a partition of unity (PU), which means that a function
u defined as in Eq. (1) with MLS functions can exactly fit a constant field. This is a
necessary property in the presented approach; without a PU, the solution would bend
abnormally between the sample nodes. For instance, the compactly supported radial
basis functions do not form a PU. They are thus not adapted to the method without
further treatments [e.g., radial polynomial interpolation method, Liu and Gu (2005)].

Moving least squares (MLS) derivatives Solving a modeling problem requires an
adapted degree of derivability of the implicit function and, therefore, of its linearly
independent interpolation functions. The MLS functions have the same degree of
continuity and derivability as the chosen weight functions. With fourth order splines
(Eq. 4), they are C2.

The exact equations of MLS derivatives are complex and can be found in Fries and
Matthias (2004). We use the approximation forms given in Belytschko et al. (1996)
and Liu and Gu (2005) where the first order derivative is

∂

∂i
Φl(x) = ∂

∂i
�T · Bl + �T · ∂

∂i
Bl, (8)

with ∂
∂i Γ the solution of

A · ∂

∂i
� = ∂

∂i
p − ∂

∂i
A · �, (9)

and where the second order derivative is written as

∂2

∂i j
Φl(x) = ∂2

∂i j
�T · Bl + ∂

∂i
�T · ∂

∂ j
Bl + ∂

∂ j
�T · ∂

∂i
Bl + �T · ∂2

∂i j
Bl, (10)

with ∂2

∂i j Γ the solution of

A · ∂2

∂i j
� = ∂2

∂i j
p −

(
∂

∂i
A · ∂

∂ j
� + ∂

∂ j
A · ∂

∂i
� + ∂2

∂i j
A · �

)
, (11)

where i and j represent the x or the y axis. With these equations, only the matrix A
needs to be inverted to obtain all the derivatives, which thus does not require more
computational effort than constructing the shape functions.
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2.1.3 Visibility Criterion: A Modification of Interpolation Functions Handling
Discontinuities

The discontinuities represent one of the main challenging problems in structural
modeling. The discrete smooth interpolation creates meshes conformal to the dis-
continuities, and the potential field method defines fault zones with polynomials and
jump functions, but both approaches become challenging when dealing with complex
fault networks and may require heavy user interactions. Stratigraphic unconformities
(discontinuities in the sedimentary record) may be addressed by several implicit func-
tions (Calcagno et al. 2008; Chilès et al. 2004), which also requires properly editing
the sequences beforehand. Therefore, both types of discontinuities are here addressed
as input lines, and they are treated with the visibility criterion (Belytschko et al. 1994).

The implicit function u is defined by Eq. (1) as a sum of weighted continuous func-
tions. The visibility criterion introduces discontinuities in the interpolation functions
by truncating their local supports (Belytschko et al. 1994). The principle is as follows:
each interpolation node emits light and the discontinuities are opaque to this light. For
any point x, if a discontinuity happens to intersect a ray of light coming from a node
xl, then xl is not considered as a neighbor to x.

Discontinuous jumps in the implicit function are thus introduced by local intersec-
tion tests between segments and discontinuity objects. This approach has the potential
to drastically reduce the user interactions to handle structural discontinuities compared
to other modeling methods. There are two limitations of the visibility criterion: (I) it
performs badly at discontinuity tips, and (II) it completely isolates fault blocks one
from another. To solve the tip issue (I), Organ et al. (1996) introduce the diffraction and
the transparency criteria. Such criteria can also be employed in the proposed frame-
work, but the tip issue is generally negligible with a sufficient number of interpolation
nodes, which is why the visibility criterion is used. Also, if necessary, these criteria
may be adapted to solve the isolation issue (II) as shown in Appendix C. Illustrations
of the effects of the different optic criteria on the shapes of the local supports Sl can
be found in Fries and Matthias (2004).

2.2 Solving the Structural Modeling Problem

Implicit structural modeling consists of finding the unknown values ul (Eq. 1) con-
structing an implicit function that represents the domain of study while honoring the
input data. For this, the proposed method performs a spatial regression of ND data
points (i.e., values αk at positions xk , k = 1, . . . , ND) with the bending energy penal-
ization (or thin plate energy) (Dubrule 1984; Wahba 1990) by minimizing

J (u) = 1

2

∫
Ω

λ2ε

((
∂2

∂xx
u

)2

+
(

∂2

∂yy
u

)2

+ 2

(
∂2

∂xy
u

)2
)
dΩ

+1

2

ND∑
k=1

λ2k (u(xk) − αk)
2, (12)
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with λε the bending penalization weight and λk the weight at a data point xk . The use
of other types of information and the choice of data values αk are further discussed in
Appendix D.

To solve this problem, the domain Ω is regularly divided into N subdomains Ωl
(i.e., Ω ⊂ ∪Ωl,∀l ∈ N , Sect. 2.1.1). For simplicity, a regular sampling is used so
that all the subdomains Ωl have the same volume value ν (i.e., the volume of a cell
of the regular sampling) and are centered on the nodes xl. The integration term is
approximated as constant in each subdomain Ωl and evaluated at the center node xl
(i.e., Gauss quadrature with one point).

The least squares system corresponding to the minimization of Eq. (12) is

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

λε

√
ν∂2xxΦ

1
1 ... λε

√
ν∂2xxΦ

1
N

λε

√
ν∂2yyΦ

1
1 ... λε

√
ν∂2yyΦ

1
N

λε

√
2ν∂2xyΦ

1
1 ... λε

√
2ν∂2xyΦ

1
N

...
...

λε

√
ν∂2xxΦ

N
1 ... λε

√
ν∂2xxΦ

N
N

λε

√
ν∂2yyΦ

N
1 ... λε

√
ν∂2yyΦ

N
N

λε

√
2ν∂2xyΦ

N
1 ... λε

√
2ν∂2xyΦ

N
N

λ1Φ
1
1 ... λ1Φ

1
N

...
...

λNDΦ
ND
1 ... λNDΦ

ND
N

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

⎡
⎢⎣
u1
...

uN

⎤
⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
...

0
0
0

λ1α1
...

λNDαND

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (13)

where Φk
l = Φl(xk) are given by Eq. (6) and ∂2i jΦ

k
l = ∂2

∂i j
Φl(xk) are given by Eq.

(10). After solving this system, the obtained coefficients ul are used to evaluate the
implicit function. For visualization, the domain Ω is discretized into a grid with NV

points. After evaluating the implicit function on each visualization point of the grid,
the horizon lines are extracted bilinearly on each grid element.

2.3 Reference Example of the Presented Method

Figure 1 is a summary of the presented workflow. It is applied on a synthetic cross
section of an eroded, faulted and folded domain in two dimensions. Figure 1a shows
the reference input data and illustrates the numerical supports of the interpolation.
Figure 1b shows the output implicit function with extracted horizons. Equations (1)
and (12) are also recalled as they are key to the method.

All the parameters used to create Fig. 1b and their values are given in Table 1.
The interpolation nodes used in the computation are actually more numerous than
illustrated in Fig. 1a and were generated by using (50×50) nodes in the x and y axes.
The spacing between the nodes in the y axis is, therefore, smaller than in the x axis,
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(a)

(b)

Fig. 1 Schematic representation of the proposed workflow. a An input cross section densely and regularly
interpreted with data points and fault and unconformity segments in two dimensions. An example of
sampling and two local supports SA and SB are illustrated. b Computed implicit function u obtained with
the proposed method using the parameter values of Table 1. Between a, b The two main equations of the
method: the implicit function definition and the problem to solve

which reflects the anisotropy of the studied structures. The support SB is an example
of a support affected by the visibility criterion. The number of visualization points is
purposely bigger than the number of nodes and data points [i.e., a grid of (100× 100)
is used] to observe the behavior of the implicit function close to the discontinuities
and away from the data points. This is also why the banded color template is used,
giving an idea on what other iso-values than the expected horizons would look like if
extracted.

The implicit function of Fig. 1b is used as reference model for sensitivity analysis.
The parameters and their values are discussed and tested separately. The values given
in Table 1 are systematically used as default values for all parameters; only the tested
parameter values are changed in each sensitivity test. All the models are run on a
laptop with Intel Core i7-4940 3 GHz with 32 Gb of RAM, and running Windows 7
Enterprise 64 bits.
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Table 1 Parameters of the proposed method and their default values

Symbol Meaning Default value

N Total number of interpolation nodes 2500

NV Total number of visualization points 10,000

ND Total number of data points 989

ρ Dilatation parameter (adimensional) 1.99

d Polynomial order 1

m Number of monomials in the polynomial basis 3

αh Expected implicit value per horizon Bottom to top

[0, 0.13, 0.21, 0.32, 0.44, 0.51, 0.6, 0.73,

0.86, 1, 2, 2.09, 2.18, 2.27, 2.38, 2.5]

λε Constant weight on energy equations 1

λk Constant weight on data equations 1

3 Sensitivity to Data Quality

3.1 Model Distance and Data Distance

In this section, the method is tested on typical issues with geological data. It focuses
on the way data points constrain themodeling problem, considering the impact of their
availability, quality, and reliability on the results. Two types of distances are suggested
to compare the results: the distance to the reference model Dmodel and the distance
of a model to data points Ddata. The distance Dmodel is only applicable in a synthetic
example, whereas the distance Ddata is applicable in real settings where no reference
model is available.

In Dmodel, the tested values are the implicit function values evaluated at the visu-
alization points positions u(xvisul). The reference values are the reference model’s
implicit function values (Fig. 1b) evaluated at the corresponding visualization points:
urefl = uref(xvisul). The distance Dmodel is thus evaluated as

Dmodel = 1

NV

NV∑
l=1

|u(xvisul) − uref(xvisul)|
||g||ref . (14)

with ||g||ref the average gradient norm of the reference model.
In Ddata, the tested values are the implicit function values evaluated at the data

points positions u(xdatal) of the currently tested model [e.g., sparse, noisy, depending
on the application]. The reference values are the expected data values: urefl = αl
(Sect. 2.2 and Appendix D). The distance Ddata is thus evaluated as

Ddata = 1

ND

ND∑
l=1

|u(xdatal) − αl|
||g||ref . (15)
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As it is normalized by the reference gradient norm ||g||ref , the evaluated errors are
actual distances inmeters comparable to the domain’s dimensions [i.e., (50m×25m)],
and they are independent of the nodal spacing and the number of evaluated points. They
are also independent of the implicit function’s trend, although this is an approximation
as local variations of the gradient’s norm in the tested model may overestimate or
underestimate the error. As an example, a Dmodel of 1m indicates that a value evaluated
at a visualization point exists, on average, at 1 m in the reference model; a Ddata of 1
m indicates that the average distance between each data point and the corresponding
iso-line is equal to 1 m.

3.2 Data Sparsity

Depending on the types of field samples [e.g., seismic and wells] and the quality of
the rock exposure, the interpreted input points for structural modeling may be more
or less clustered and sparse. Figure 2a shows the accuracy of the method for different
degrees of random decimation in the reference data points (Fig. 1a).

As the decimation is performed randomly, a unique simulation for each data dec-
imation percentage is not enough to understand the dependency of the method to the
degree of data sparsity. In this article, when a random parameter is involved, 100 sim-

(a)

(b)

Fig. 2 Sensitivity of the proposed method to irregular data points. a Distances to the reference model and
the decimated data with a varying random decimation in the data points. b A resulting implicit function
obtained with a decimation value of 98% [i.e., 14 data points]. The white circles indicate where geological
structures were lost as compared to Fig. 1b
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ulations are computed for each given set of parameter values. To ease interpretation,
only the average distances of the 100 simulations are represented in the graphs. The
minimum,maximum, percentiles and standard deviation numbers were also computed
and given in ONLINE RESOURCE 1, but not represented for visibility reasons.

In Fig. 2a, it can be observed that the fewer the data points, the larger the distance to
the reference model Dmodel. On the contrary, Ddata is the same for all data decimation
values. The method thus fits the decimated data but fails to recover the features of the
reference model. The drastic change in the distances for a decimation above 98% [i.e.,
using 29 data points on average] comes from the emergence of models with less than
three data points in one or more fault blocks, which creates unstable results. Figure 2b
shows a result with a data decimation value of 98%, which gave, in this random case,
14 input data points. In the circled areas of missing data, the folds are smoothed, but
the remainder of the model is well reconstructed. The distances Ddata and Dmodel of
this model are reported in Fig. 2a.

These results show how the proposed method behaves with irregularly and sparsely
sampled data. The structures are well represented if the data points sample the non-
redundant parts of the geometry. Otherwise, the solution is smoothed where data are
missing. Consequently, the proposed method performs best when data points sample
high curvature areas and areas of thickness variation.

3.3 Noisy Data

The quality of the field measurements, the processing errors, and interpretation errors
can lead to noise in the data. To test the proposed method on this aspect, perturbed data
points are created by adding different levels of noise to the reference data (Fig. 1a).
The intensity of noise indicates the maximum displacement a point can have during
the perturbation, as a radial Euclidian distance in meters around the point. The dis-
placement of each point is sampled from a uniform distribution between zero and this
maximum displacement value. Data points having crossed a fault between their initial
position and their perturbed position are deleted to avoid stratigraphic inconsistencies.

The noise in the data is handled by the smoothing ability of the bending energy
penalization. Figure 3 shows the resulting models for three different values of the
smoothness parameter λε (Sect. 2.2). It is difficult to have a priori knowledge of a
proper λε value to use. In addition, the number of equations also have an influence on
the results. The terms of volumes ν in Eq. (13) obtained during the discretization stage
normalize the influence of the number of smoothness equations, but an equivalent
principle should also be applied on the ND data equations. The relation between the
smoothness and λε is thus independent of N , but dependent to ND.

Figure 4 shows how the error evolves when the intensity of noise and the smoothing
level change. For an intensity of noise fixed to 1 m (Fig. 4a), the best Dmodel value
is obtained for a λε around 30 (illustrated by Fig. 3b). Below this range, the noisy
data points are better represented [i.e., Ddata decreases], which drives the results away
from the reference model [i.e., Dmodel increases, illustrated by Fig. 3a]. Above this
range, the structures start to be smoothed, which deteriorates the fitting [i.e., Ddata
and Dmodel slowly increase, illustrated by Fig. 3c]. For a λε fixed to 30 (Fig. 4b), both
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(a)

(b)

(c)

Fig. 3 Resulting implicit function when using the same set of perturbed data as input (intensity of noise is
1 m), but with different energy weights λε . a λε = 1. b λε = 30. c λε = 400

Ddata and Dmodel increase together with the intensity of noise. As the noise increases,
the data points represent the geological structures less and less. Although the misfit
trend depends on the data distribution, satisfactory results are generally obtained with
a λε between 1 and 100 for most datasets with a λk between 1 and 10.

3.4 Data Reliability

Data points may originate from different types of sources, hence having a varying
reliability [e.g., a well datum is generally considered as more reliable than a seismic
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(a)

(b)

Fig. 4 Sensitivity of the proposed method to the noise and the energy weight λε . a The intensity of noise
is fixed to 1 m, and λε varies. b The weight λε is fixed to 30 and the intensity of noise varies

(a) (b)

Fig. 5 Example of the influence of data constraints on the implicit function when changing their weights.
(Filled square) Hard data: λhardk = 10, (filled circle) Soft data: λsoftk = 1

pick]. The data weight λk (Sect. 2.2) can be taken differently between data points. As
stated in Sect. 3.3, the higher the value of the penalization weight λε , the smoother
the results. The same principle applies for the data weight λk : the higher its value, the
better the fit to the corresponding data point. Thus, data reliability can be expressed
by varying each data weight λk . Figure 5 shows how the relative fit to data can be
controlled with λk values.

Unfortunately, the weights λk have no physical meaning and cannot be associated
simply with data geometric errors. In Mallet (2002), the problem is simplified by
only distinguishing two types of data: (i) the hard data that must be honored (usually
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borehole data), and (ii) the soft data that should be honored as much as possible under
the smoothness criterion (usually seismic data).

In the proposed method, an average weight λsoftk is given to all soft data, and a
greater weight λhardk is given to all hard data. Deciding the value of λhardk , compared
to the two weights λsoftk and λε , is not trivial: if taken too small, hard data may not
be honored, and if taken too large, System (13) may become badly conditioned. Also,
hard data can be honored with a negligible error, but not exactly.

Mallet (2002) avoids these issues by adding a node in the mesh at each hard data
position and fixing its nodal coefficient ul at the hard data value. This operation may
decrease the mesh quality.

With MLS functions, due to the local least squares approximation (Appendix A),
imposing a nodal coefficient ul is not equivalent to imposing the implicit function value
at this interpolation node position xl. MLS functions are said to lack the Kronecker
delta property

Φl(xi ) �= δ(xl − xi ) =
{
1 if l = i

0 if l �= i
⇔ u(xl) �= ul. (16)

Adding nodes on hard data positions is thus irrelevant to enforce the corresponding
constraint. A possible solution would be to use Lagrange multipliers to automatically
determine appropriate weights for hard data, but it would change the problem into
a saddle-point one, thus modifying its complexity (Brezzi 1974). Though strongly
dependent on the case study, a hard data weight λhardk ten times greater than the soft
dataweightλsoftk is sufficient in practice and avoids a badly conditioned system (Fig. 5).

Figure 6 summarizes the presented data constraints and their influence on the
implicit function. The soft data were obtained using a decimation of 98% and an inten-
sity of noise of 1 m, generating thirteen noisy points. The hard data were obtained
using a decimation of 99%, generating five points positioned as in the reference data.
Additionally, five gradient data vectors (constraint presented in Appendix D) were
extracted on the implicit function from the reference model to control the structures

Fig. 6 Aresulting implicit function using sparse and heterogeneous datawith noise in the soft data (intensity
of noise: 1 m) and a few hard and gradient data points. (Filled square) Hard data: λhardk = 10, (filled circle)

Soft data: λsoftk = 1, ---�Gradient data: λgradk = 10, λε = 30. Ddata = 8.3e−3 m and Dmodel = 2.9e−2 m
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in areas with missing data. With a total of 23 constraints, this model is closer to the
reference model than those generated with a decimation of 60% on the reference data
and above [i.e., less than about 395 data points] from Fig. 2a.

4 Discussions and Perspectives

4.1 Complexity and Stability of the Moving Least Squares Functions

4.1.1 Polynomial Order of the MLS Functions

The polynomial order d defines, together with the dimension of space (e.g., two here),
the number of monomials m in the polynomial basis. This number m describes the
dimensions of the moment matrixA [i.e., dim(A) = (m×m)]. It thus has an influence
on the complexity of themethod andmust be chosen small enough to avoid unnecessary
computational costs. In practice, Fig. 7a shows that MLS functions with an order of 0
are not enough to reproduce a geological model: the solution tends to be perpendicular
to the discontinuities and the domain’s borders. MLS functions with an order of 2 give
results similar to an order of 1 (Fig. 7b), with a higher computational complexity. The

(a)

(b)

Fig. 7 Resulting implicit function with different polynomial orders d for the MLS shape functions and
adapted dilatation values ρ. a d = 0 and ρ = 1.99. b d = 2 and ρ = 2.99
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order d is, therefore, fixed to 1 in the presented method. Although purely empirical,
first-order MLS functions seem to reproduce any complex geological structures.

4.1.2 Local Supports and Domain Coverage

An MLS shape function Φl(x) is only defined within the support Sl of its weight
function wl (Eq. 6). By definition, Sl and the support of Φl(x) are the same. The node
xl has an influence on the points existingwithin the support Sl. If a point x is influenced
by a node xl, then xl is said to be a neighbor of x.

This restricted influence of the nodesxl in space represents themain advantage of the
MLS functions as each constraint involves a small number of neighbors [i.e., System
(13) is sparse]. Unfortunately, it may also lead to singularities. Let the intersection
of all supports Sl be denoted as the cover. When the entire domain Ω is included
in the cover, it is said to be complete. If the cover is not complete, then the implicit
function u(x) is undefined in the uncovered areas. In addition, the number of linearly
independent neighboring nodes required around a position x should be equal at least
to the number of monomials m in the MLS polynomial basis to have a non-singular
matrix A (Appendix A). Therefore, the distribution of the nodes xl and the size of the
supports Sl, controlled by the dilatation parameters ρ, must be defined carefully to
avoid singularities. This situation is analogous to ordinary and universal kriging when
the neighborhood size is too small.

4.1.3 Theoretical Relationship Between the Dilatation Parameter and the Number of
Neighbors

The cover problem (Sect. 4.1.2) is tackledwith squared supports (Eq. 2) and bymaking
the dilatation parameter ρ proportional to the regular spacing of interpolation nodes.
Figure 8a illustrates the relationship between ρ and the resulting support of an MLS
function centered on a given interpolation node xl. If close to a discontinuity with
the visibility criterion (Sect. 2.1.3) or close to a border, the support may cover fewer
neighboring nodes than illustrated. The dilatation parameter ρ has thus a direct impact
on the maximum number of neighboring interpolation nodes nmax

node around a given
node xl, following

nmax
node = (2
ρ� + 1)2, (17)

with 
.� the integer part operator.
As ρ is constant for all nodes, if an MLS support centered on a node xl covers a

point x, then an imaginary MLS support centered on x covers xl. Figure 8b illustrates
the relationship between ρ and the support of anMLS function centered on a data point
x, defining the neighboring nodes influencing this data. Following the comments on
discontinuities and borders, the relationship between ρ and the maximum number of
neighboring interpolation nodes nmax

data around a given data point x is

nmax
data = (2
ρ + 0.5�)2. (18)
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(a) (b)

Fig. 8 Illustration of the relationship between the dilatation parameterρ, proportional to the regular spacing,
and the MLS functions supports. a The supports for three different ρ values centered on a node x j . b The
imaginary supports for the three same ρ values centered on a data or visualization point x

Equation (18) is only true if the data point is not exactly located on a node position or
not colinear with two nodes in the x or y axis. The maximum number of neighboring
nodes of a data point is therefore between nmax

data and nmax
node depending on its location.

The numbers nmax
node and nmax

data must be considered when defining ρ, as they give an
idea of the sparsity of System (13). In addition, both must at least be greater than the
number of monomialsm, which is given by the dimension of space and the polynomial
order d (Sect. 4.1.2).

4.1.4 Practical Influence of the Support Size on the Method

Even if the theory defines a minimum value for the dilatation parameter ρ compared
to the MLS parameter m (Sect. 4.1.3), this minimum value is not necessarily reliable
when discontinuities are present. This is illustrated in Fig. 9 where the influence of ρ

on the method is given for a polynomial order of 1 [i.e., m = 3 in two dimensions].

Fig. 9 Influence of the support size ρ on the method when ρ is proportional to the regular spacing and
with a polynomial order d of 1
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If the moment matrix A is singular at a position x, the implicit function u cannot
be evaluated. In this case, the concerned point [e.g., data or visualization point] is
avoided during the computation of distances (Sect. 2.3) and flagged as undefined.
Such anomalies are not explicitly represented on Fig. 9 for visibility reasons, but their
numbers per model can be found in ONLINE RESOURCE 1.

Some undefined data points (up to 14) are found inmodels with a ρ value between 1
and 1.5 even though these ρ values are theoretically large enough to invert the moment
matrix A (i.e., nmax

data = 4 > 3, nmax
node = 9 > 3). This is due to the visibility criterion

[Sect. 2.1.3], which reduces the number of neighbors by cutting the supports near the
discontinuities. In this case, the number nmax

data is too close tom and the number of actual
neighbors is very likely to drop under m if a data point is close to a discontinuity. No
other undefined points are found in the other models of Fig. 9.

For ρ values greater than 1.5, Ddata and Dmodel present an error of a fewmillimeters.
Such differences can be considered negligible when considering that the model’s folds
and faults are several meters long. The method thus converges for a fixed number of
nodes and an increasing support size. The perfect fit to the reference model (i.e.,
Dmodel = 0 around a ρ value of 1.99) is caused by the exact equivalence with the
reference parameters (Table 1, default values).

Concerning the computational time t , it increases incrementally with ρ. The com-
putational cost of the method is, therefore, dependent on nmax

node as each unit of ρ defines
a different number of neighboring nodes (Eq. 17). It is also dependent on nmax

data (Eq. 18).
It thus seems unnecessary to define ρ greater than 2 as the same results are obtained
with a slower computation. Also, the fit to data is slightly better with a ρ around 2
than with smaller values.

In conclusion, MLS functions are stable even with an increasing number of neigh-
bors. The dilatation parameter ρ should be taken as close as possible to 2 when using
a polynomial order of 1 to avoid unnecessary computational cost while obtaining sim-
ilar results. It is fixed to 1.99 in the presented method (Table 1) to avoid dealing with
neighbors exactly on the edge of the supports (i.e., neighbors with no influence).When
using a greater polynomial order, the ρ value must be increased accordingly, which is
why a ρ equal to 2.99 was used for a polynomial order d equal to 2 in Fig. 7b.

4.2 Regular or Irregular Sampling

4.2.1 Comparison Test with Random Sampling

Distributing the interpolation nodes regularly (Sect. 2.1.1) is not a requirement of the
proposed method, but has several advantages. In Fig. 10, the method is tested with
a varying number of interpolation nodes, which are distributed either randomly or
regularly in the domain of study. The randomly generated nodes follow a uniform
distribution on the x and y axes, respectively. In this case, the dilatation parameters
ρlx and ρly cannot be specified relatively to the interpolation node spacing [e.g., using
ρ as in Eq. (3)]. Therefore, they are fixed for all simulations, regardless the number of
nodes N and the sampling technique. In this application, ρlx is fixed to 3.5 m, and ρly
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Fig. 10 Influence of the number of interpolation nodes N on the presented method with regular and
random sampling. The distances and the computation time are evaluated for both random and regular
sampling separately

is fixed to 1.75 m, so that the supports Sl of the interpolation functions cover ≈ 0.5%
of the domain Ω .

The model distance Dmodel and data distance Ddata (Sect. 2.3) are represented
respectively by Dreg

model and Dreg
data for regular sampling, and Drand

model and Drand
data for

random sampling. The method’s computation time is also represented for both tech-
niques as t reg and t rand. All the simulations results together with basic statistics on the
simulations are given in ONLINE RESOURCE 1.

Figure 10 emphasizes several characteristics of themethod: (i) the results are depen-
dent on the interpolation node sampling; (ii) both methods converge to the reference
model when the number of interpolation nodes increases; (iii) regular sampling gets
models closer to the referencemodel and the data set than the average random sampling
for all N ; and (iv) the computational efficiencies of the twomethods are equivalent. As
observed in the full results (ONLINE RESOURCE 1), the two methods can generate
undefined points for small numbers of nodes N (up to 900; small compared to the used
dilatation parameters), but these anomalies are more represented in random sampling
than in regular sampling.

This study shows that, for a given set of dilatation parameters ρlx and ρly , both
sampling techniques obtain close results as long as aminimumnumber of interpolation
nodes N is used. The main difference is that the number of nodes N and the dilatation
parametersρlx andρly can be theoretically correlated to avoid singularitieswith regular
sampling (Sect. 4.1.3), which is not the case with random sampling. In practice, this
correlation can also avoid unnecessary large supports of interpolation and thus reduce
drastically the computation time with regular sampling (Sect. 4.1.4). As a reference, it
takes 0.9 s to generate a model with 10,000 nodes and a dilatation parameter ρ of 1.99
scaled on the nodal spacing (Eq. 3); the evaluated distances are Ddata = 5.14e−4 m
and Dmodel = 1.56e−3 m.
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4.2.2 Possible Optimizations on Regular Sampling

Regular sampling could be accelerated by optimization techniques not implemented
in this paper. Once an adapted dilatation parameter value ρ has been chosen for a
given sampling resolution (Sect. 4.1.4), several repetitive calculations can be avoided.
For instance, all the nodes far enough from the borders and the discontinuities (i.e.,
not affected by the visibility criterion, Sect. 2.1.3) have the same pattern of neighbors
(Fig. 8a). The MLS second derivatives evaluated at these nodes are therefore the
same. It is possible to evaluate these derivatives once, store the results, and use them
for all nodes with the same pattern. The nodes close to the borders, but far from the
discontinuities also follow patterns simple enough to be stored. This principle can
even be extended for all possible neighboring configurations, but the number of tests
to find the right pattern may then become computationally demanding.

Another possible improvement is to approximate the evaluation of the MLS func-
tions on data and visualization points. When far from borders and discontinuities, the
disposition of the neighboring nodes around a point varies continuously (Fig. 8b). This
variation is restricted to the containing cell (i.e., the square area between 4 sampling
nodes). EachMLS functionΦl could thus be approximated by studying their evolution
depending on the position x within a cell. The cells are implicit (i.e., not stored) as the
sampling is regular. The previous comments for nodes close to the borders also apply
for this suggestion on points.

Finally, the presented method is adapted for parallelization, as the equations writ-
ten in System (13) are independent from one another. When considering a node or a
data point, the set of neighbors is defined with the chosen support size and proximity
to discontinuities; the MLS functions or their second derivatives are then evaluated;
and the corresponding equation can be written in the system. Each of these steps is
only dependent on the interpolation node or data point of the concerned equation.
In addition, and contrarily to mesh based methods, handling the discontinuities with
the visibility criterion (Sect. 2.1.3) does not require any preprocessing on the sam-
pling, but only intersection tests between segments (and triangles in three dimensions).
Therefore, each equation in System (13) can be written in parallel.

4.3 Complex Geometries of Structural Discontinuities

4.3.1 Lack of Neighboring Nodes

Although the visibility criterion (Sect. 2.1.3) is criticized for stability reasons
(Belytschko et al. 1996), it shows satisfactory results in the presented application. The
main issue is the modification of the set of neighboring nodes. Cutting the supports
decreases the number of neighbors, which can produce areas where the estimation is
impossible (Sect. 4.1.4) or with singularities.

On Fig. 11a, singularities and undefined values at the intersection of two faults
are represented. This is due to a lack of neighbors on visualization points, making
the moment matrix A(x) singular in the concerned area (Sect. 4.1.2). In Fig. 11b, in
addition to singularities, the generated implicit function bends abnormally away from
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(a) (b)

(c) (d)

Fig. 11 Limits to the visibility criterion and a proposed correction. a Case of singularities and unde-
fined values at visualization point positions when neighboring interpolation nodes are missing. b Case of
badly evaluated nodal coefficients ul when neighboring interpolation nodes are unevenly distributed. c, d
Corrections to the limits observed in (a, b) by randomly generating new neighbor nodes

the intersection. The unevenly distributed nodes also have deteriorated the evaluation
of the second derivatives, which has impacted the solution coefficients ul attached to
the concerned nodes xl.

Those results were generated with the default parameters (Table 1) and smaller
numbers of interpolation nodes N . The described issues are thus related to the resolu-
tion of the sampling, but also to the discontinuities, their geometries and interactions.
As undefined values are not acceptable in structural modeling, a solution is to use a
finer resolution for the sampling, or a greater value for the dilatation parameter. The
computing times given in Figs. 9 and 10 show that both solutions are possible but
costly.

4.3.2 Changing the Polynomial Order

An alternative strategy to address the lack of neighbors could be to locally reduce the
polynomial order d: if the number of interpolation neighbors of a point is smaller than
the chosen number m, d can be decreased accordingly.

Unfortunately, this solution is not applicable as it does not solve situations with no
neighbors (Fig. 11a) or with unevenly distributed neighbors (Fig. 11b). Also, decreas-
ingd to the zeroth order, if necessary, is not adapted to a structuralmodeling application
(Sect. 4.1.1, Fig. 7).

4.3.3 Generation of New Nodes

In Sect. 4.2.1, the proposed method is shown to converge to the same model whether
the interpolation nodes are distributed randomly or regularly and given a sufficient
number of interpolation nodes. This means that, for a position x, the evaluation of the
MLS functions and their derivatives should be approximately the same if there are
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enough neighbors, even if randomly distributed. The lack of neighboring nodes can,
therefore, be solved by randomly generating new interpolation nodes locally.

If a position x (interpolation node, data point or visualization point) is close to a
discontinuity, the following procedure can be employed:

1. Count the number of neighboring nodes nx.
2. Compare this number to a reference number nref for which a shape function is

considered stable.
3. Add neighbors randomly until nx = nref within the support.

Figure 11c, d show how this technique solves the two problems exposed in
Sect. 4.3.1 respectively with a number of reference nref fixed to 4. Nodes generated
on the other side of the faults are deleted during the generation as they are not con-
sidered neighbors (i.e., not within the support). The procedure could be improved by
some node placement strategies, such as using a repulsion factor allowing to generate
nodes evenly around a position x. This could increase the chances to obtain a stable
interpolation in those areas with a small nref number, which is not guaranteed in the
present approach. Adding interpolation nodes changes the problem’s dimensions and
its density (Sect. 2.2), but this technique does not change drastically the computational
efficiency of the algorithm as the modifications are local.

4.4 Bending Energy and Structural Modeling

Structuralmodeling algorithms are supposed to createmodels that represent geological
structures.As a smooth energy, the bending energyhas beenpresented as robust enough
to deal with sparse, irregular and noisy data (Sect. 3). This ability is key for complex
applications.

Unfortunately, smoothing methods perform badly on poorly sampled anisotropic,
periodic and thickness variation features. A common strategy is to add artificial data
for these issues: orientation and gradient data are typically used to control a fold
geometry away from the data (Hillier et al. 2014; Laurent 2016) or to include a known
periodicity in fold and foliation structures (Grose et al. 2017; Laurent et al. 2016).
Similar constraints could also be used to impose some thickness variations. Such
approaches often require expertise and manual interactions.

Other approaches intend to consider the structural anisotropy calibrated from the
available data into the smoothing regularization itself. This is generally included in
PFM with the experimental variogram, modifying the covariance and its range (Aug
2004). Gonçalves et al. (2017) further reduce the workload by using the maximization
of the log-likelihood to automatically determine such parameters. However, the global
interpolation of PFM limits the application of such techniques when assessing local
anisotropy. In volumecontouring,Martin andBoisvert (2017) infer the local anisotropy
of the targeted geobodies by iteratively adapting partitions of the domain and local
interpolations per partition.

The presented formalism introduces the concept of continuous energies in a local
approach well adapted to the structural modeling application. While some versions
of PFM intrinsically minimize the bending energy using Green’s functions as inter-
polants, it is explicitly minimized in the least squares sense in the proposed approach.
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Fig. 12 Resulting implicit function using the Dirichlet energy instead of the bending energy

It is then closer to DSI, although the regularization term is posed as a continuous, and
not discrete, operator.With the proposed formalism, different energies and their ability
to solve specific geological features can be tested by changing the regularization term
in Eq. (12) and discretizing it accordingly in System (13). It is also possible to mix
several energies and even tune the weight λε to each derivative term separately and
spatially.

As an example, Fig. 12 shows how the algorithm behaves when using the Dirichlet
energy (Courant 1950) as

JDirichlet(u) = 1

2

∫
Ω

λ2ε ||∇u||2dΩ. (19)

The obtained implicit function tends to be constant where data are missing and per-
pendicular to the discontinuities. Therefore, the Dirichlet energy is not adapted to the
structural modeling problem. The best continuous energy fitting geological structures
is yet to be found, and the proposed framework may be used to test new ideas.

5 Conclusions

In this paper, an alternative to the existing implicit structural modeling methods is
proposed. It is a locally defined method that handles the structural discontinuities with
meshless concepts. The implicit function is defined as a weighted sum of moving least
squares shape functions (Lancaster and Salkauskas 1981;McLain 1976). The supports
of these interpolation functions are centered on regularly distributed nodes and cut by
the structural discontinuities with the visibility criterion. Therefore, no mesh needs to
be stored and the system to solve is sparse.

The proposed method consists of a spatial regression of data points penalized by a
physical energy. It thus introduces the explicit use of continuous energy to solve the
modeling problem. In this paper, the bending energy (Dubrule 1984; Wahba 1990),
which has the ability to filter noise, is suggested to extrapolate between data gaps and
handle clustered and sparse data by smoothing the generated structures. Based on this
formalism, it is possible to test other energies and mix them to better relate geology.
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Fig. 13 Resulting implicit function on a synthetic model in three dimensions using 8815 data points
with two faults, one erosion, folds, and thickness variations. The discontinuity objects are the transparent
triangulated surfaces. The implicit function was computed with (40 × 40 × 30) nodes in 25 s

In addition, the related continuous equations can be discretized in many other ways
than the one presented here, centering the modeling problem on the choice of the
regularization and not the discretization itself. Although only the typical smoothing
assumption of structures is adopted here, the introduced conceptmay have the potential
to enable inherent control of complex geological cases.

The sensitivity tests on data quality and the method’s parameters are presented in
two dimensions. This provides knowledge on the relations between results and param-
eters also for other models. Only two-dimensional results are shown for simplicity,
but the suggested formalism is applicable to higher dimensions. Figure 13 shows a
result on a synthetic three-dimensional model.
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Appendix A: Moving Least Squares Demonstration

This section gives the construction details of themoving least squares (MLS) functions
(Lancaster and Salkauskas 1981; McLain 1976) defined in Eq. (6). We use the demon-
stration from Nguyen et al. (2008) and clarify the approximation of the coefficients
a(x) around a fixed position x.
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The implicit function u(x) is redefined as a polynomial function of degree d with
spatially varying coefficients a j (x) as

u(x) =
N∑
l=1

Φl(x) ul =
m∑
j=1

p j (x) a j (x) = pT (x) · a(x), ∀x ∈ Ω, (20)

with m the number of monomials p j (x) and coefficients a j (x). As all the coefficients
a j (x) vary continuously in space, they must be determined for any position x.

Let x be a fixed position in Ω . If the coefficients a j (x) were to be determined, they
could be used to evaluate u(x) at a position x around x with a non-zero error as

u(x) ≈ pT (x) · a(x), ∀(x, x) ∈ Ω. (21)

Equation (21) can be written for all interpolation nodes xl as

u(xl) ≈ pT (xl) · a(x), ∀l ∈ N , ∀x ∈ Ω, (22)

where the implicit function u(xl) is supposed to be as close as possible to the nodal
value ul as

u(xl) ≈ ul. (23)

Equations (22) and (23) are combined for each node xl, defining the system of N
equations and m unknowns

pT (x1) · a(x) ≈ u1

pT (x2) · a(x) ≈ u2
...

pT (xN ) · a(x) ≈ uN

. (24)

The pertinence of each approximation in System (24) is related to the distance
between each xl and x, respectively: as the coefficients a j (x) vary continuously in
space, the further xl is to x, the less reliable is the approximation. Each approxima-
tion is thus weighted by a continuous function wl(x), centered on each position xl
and becoming nil when xl is far from x [Sect. 2.1.2, Eqs. (2) and (4)]. Determining
the coefficients a j (x) is thus equivalent to minimizing, in a least squares sense, the
functional JMLS(a(x)) written as

JMLS(a(x)) =
n∑

l=1

wl(x)
(
pT (xl) · a(x) − ul

)2
, (25)

with n the number of nodes xl close enough to x to have a non-zero weight function
wl(x) (i.e., n ≤ N ). If the number of neighboring nodes n is smaller than the number of
unknownsm, theminimization of Eq. (25) has no solution.Minimizing JMLS preserves
Eq. (23) as an approximation, which is whyMLS functions do not have the Kronecker
delta property (Eq. 16).
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An extremum of this functional is obtained by setting the derivative of JMLS with
respect to a(x) equal to zero

n∑
l=1

wl(x)2p1(xl)
(
pT (xl) · a(x) − ul

) = 0

n∑
l=1

wl(x)2p2(xl)
(
pT (xl) · a(x) − ul

) = 0

...

n∑
l=1

wl(x)2pm(xl)
(
pT (xl) · a(x) − ul

) = 0

, (26)

which can be written in matrix form

n∑
l=1

wl(x)p(xl) · pT (xl) · a(x) =
n∑

l=1

wl(x)p(xl)ul, (27)

or, more compactly,

A(x) · a(x) = B(x) · u, (28)

with A(x) = ∑n
l=1 wl(x)p(xl) · pT (xl) and B(x) = [w1(x)p(x1), w2(x)p(x2), . . . ,

wn(x)p(xn)] = [B1(x),B2(x), . . . ,Bn(x)].
Solving the least squares system defined by Eq. (28) recovers the coefficients a j (x)

for a given position x. As x can be fixed anywhere in the domain Ω , the coefficients
a j (x) can be determined at any position x in Ω by

A(x) · a(x) = B(x) · u. (29)

Incorporating Eq. (29) in Eq. (20) leads to

u(x) = pT (x) · [A(x)]−1 · B(x) · u, (30)

with

u(x) = �T (x) · u. (31)

Hence the Eq. (6)

Φl(x) = wl(x)pT (x) · [A(x)]−1 · p(xl). (32)

Appendix B: Moving Least Squares Interpolation

Figure 14 gives a geometrical idea of the interpolation performed with MLS functions
in one dimension. When a position x is within the support of two nodes, the implicit
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Fig. 14 Sketch of the MLS interpolation in one dimension with a polynomial order of 1 and supports only
overlapping the adjacent neighboring nodes

function follows the linear interpolation between these twonodes and their coefficients.
If it is within the support of three nodes, the implicit function follows a more complex
trend smoothly evolving between the linear interpolations of the two pairs separately.
Such interpolation can be compared to NURBS and other B-splines which use control
nodes to create smooth lines and surfaces in a similar manner (Piegl and Tiller 1997).

In Fig. 14, the interpolation is strictly linear in some parts. This is due to the first
order polynomial (i.e., m = 2 in one dimension) and the local number of neighboring
nodes n (i.e., 2). Here, the derivability of the MLS functions is not controlled by
the weight functions as stated in Sect. 2.1.2. It is a specific case: if the number of
monomials m is equal to the number of neighbors n, System (26) is square and the
weight functions have no influence when determining the coefficients. If the number
of neighbors is larger than the number of monomials, the statement of Sect. 2.1.2 is
true.

Appendix C: Inducing a Dependency Between Fault Blocks

Figure 15a illustrates the intrinsic assumptionmadewhen using the visibility criterion:
separate fault blocks are independent from one another. In Fig. 15b, the dependency of
the structures between the two fault blocks is controlled with a transparency criterion:
the slope imposed by the gradient data also affects the other side of the fault. The
criterion is written as a reduction of the influence of any neighboring node xl on the
other side of the fault compared to a point x as

wl(x) = τ w

( |x − xl|
ρlx

)
w

(
|y − yl|

ρly

)
, (33)

with τ ∈ [0, 1] the input transparency coefficient. This reduction is written on the
weight functions in order to preserve the partition of unity formed by the MLS func-
tions. Equation (33) is an adaptation of the classical transparency criterion (Organ
et al. 1996) for a homogeneous transparency over all the discontinuity and not only
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(a) (b)

Fig. 15 Difference between two optic criteria applied homogeneously on an infinite fault. a The visibility
criterion imposes the two fault blocks to be completely independent fromone another,b the transparency cri-
terion can ensure a discontinuous jump between the two fault blocks while preserving a mutual dependency
on the structures

in the vicinity of its tip. The coefficient τ must be empirically tuned and the relation
between its value and the results is not intuitive: a τ equal to 0.001 was used in the
example. Further studies could help normalizing τ depending on the application.

Appendix D: Data Equations

Orientation Data

Dip data can be converted into normal vectors g(gx , gy), which are perpendicular to
the stratigraphy, and tangential vectors t(tx , ty), which are parallel to the stratigraphy.
Two choices of constraints are then possible with such vectorial information (Caumon
et al. 2013; Chilès et al. 2004; Hillier et al. 2014): gradient data and orientation data.

The gradient data constraint imposes both the direction and the norm of the gradient
of the solution as

∇u(xg) = gi , (34)

with∇ the gradient operator and xg the gradient measurement location. Equation (34)
represents two equations in two dimensions. In general, gradient data are normalized
as unit vectors and used with increment data points (Chilès et al. 2004) (presented in
the following). It is possible to incorporate thickness variations with varying norms in
the gradient data.

The orientation data constraint imposes the gradient of the solution to be perpen-
dicular to the measured dip

∇u(xt ) · t = ∂

∂x
u(xt )ty + ∂

∂y
u(xt )tx = 0, (35)

with ∇ the gradient operator and xt the orientation measurement location. In three
dimensions, two different vectors t within the stratigraphic plane are necessary for
this constraint. Equation (35) is unrelated to the norm and polarity of the input vector,
only to its orientation.
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As a sum of MLS interpolation functions (Eq. 1), the implicit function is derivable
enough to compute first order derivatives everywhere in the domain Ω (Sect. 2.1.2).
In addition, System (13) can include several equations involving a same subset of
unknowns in a least squares sense. The presented method is thus well suited to
both constraints. As an example, gradient data constraints are used in Fig. 6 with
gradients extracted from the reference model. Their influence on the results is par-
ticularly visible in the fault block with one hard datum and three gradient data
points.

Data Points Values

Data values as inputs When the expected implicit value αh of a horizon h in the final
model is known, a data equation represents a line in System (13) as

u(xdata) = αh, ∀xdata ∈ h. (36)

This is the most common way of imposing data terms (Frank et al. 2007; Mallet 2002)
and it is the technique used in the presented method (Sect. 2.2).

A difficulty is that the geologist has a priori no possibility to know the expected αh

values. However, these input values have a strong impact on the solution quality. Input
values should be chosen: (i) monotonically following the relative geological times,
and (ii) adapted to the average thicknesses of the layers. The closer two horizons are
one to another, the closer their associated input values should be. Even though some
preprocessing on the data points exist to determine such values, it remains a difficult
task, especially in real case studies (Collon et al. 2015).

Data values as increments When no a priori knowledge of the expected implicit values
in the final model is available, it is possible to use increments (Chilès et al. 2004). As
two data points xdata1 and xdata2 belonging to the same horizon h are supposed to have
the same unknown iso-value, the increment constraint forces the implicit function u
to have the same value at those two positions as

u(xdata1) − u(xdata2) = 0, ∀(xdata1 , xdata2) ∈ h, xdata1 �= xdata2 . (37)

In practice, a model cannot be described only with increment constraints: it needs a
reference value and a reference trend. In most applications, the reference value [e.g.,
0] is given to an arbitrary point in the model, and the reference trend is given by
normalized gradient data constraints (i.e., with a norm of 1) (Chilès et al. 2004).

Gradient data are not supposedly necessary to the proposed method. Therefore, in
the input data points of Fig. 1a, extremum horizons per stratigraphic sequences were
used as a reference (i.e., reference values of 0, 1, 2 and 2.5 in Table 1) and increment
constraints were used for the other horizons. This created the reference model Fig. 1b
and the remaining default iso-values of Table 1 were deduced from it. These deduced
values were used with Eq. (36) for all the other tests and models.
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