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Abstract In mining operations, the time delay between grade estimations and
decision-making based on those estimations can be substantial. This may lead to
the scheduling of stopes mining that is based on information which is seriously out
of date and, consequently, results in a substantial mined resources and reserves bias.
To mitigate this gap between the grade estimation of an orebody and its exploita-
tion, this paper proposes a method to quickly update resources and reserves that are
integrated into the concept of real-time mining. The current standard for grade data
collection in underground mines relies on a conventional chemical lab analysis of
sparse drill hole or chip/face samples. The proposed methodology for the continuous
and swift updating of mine resources and reserves requires a constant and rapid stream
of measurements at the stopes. Consequently, this work proposes using portable X-
ray fluorescence (XRF) devices to carry out the fast and abundant monitoring of ore
grades. However, these fast data are highly uncertain; hence, the objective of this pro-
posed method is to use the total data measurements and integrate their uncertainty
into the resources modeling. The first step in the proposed methodology consists of
creating a joint distribution function between “uncertain” XRF and the corresponding
“hard” measurements based on empirical historical data. Then, the uncertainty of the
XRF measurements is derived from these joint distributions through the conditional
distribution of the real values applied to the known XRF measurement. The second
step involves updating the reserves by integrating these uncertain XRF data, which
are quantified by conditional distributions, into the grade characterization models. To

B João Neves
vermelho.neves@tecnico.ulisboa.pt

1 CERENA, Pavilhão de Minas, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco
Pais, 1049-001 Lisbon, Portugal

2 Somincor, Sociedade Mineira de Neves Corvo, Castro Verde, Portugal

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11004-018-9759-5&domain=pdf
http://orcid.org/0000-0003-2389-7968


906 Math Geosci (2019) 51:905–924

achieve this, a stochastic simulation with point distributions is applied. An actual case
study of a copper sulfide deposit illustrates the proposed methodology.

Keywords Real-time mining · Mine reserves · Mine resources · Portable X-ray
fluorescence · Uncertain data integration

1 Introduction

Autonomous operations, integrated within digital innovation, are among the mining
industry’s most important medium-term targets (Fisher and Schnittger 2012; Matysek
and Fisher 2016; Sganzerla et al. 2016). However, before reaching that technological
stage, the industry must take the intermediate steps of engaging in the real-time moni-
toring andmanagement ofmining operations. These are the twomost important factors
of the real-time mining concept (Osterholt and Benndorf 2015). Most modern mining
operations incorporate real-time geographical position monitoring of some mining
equipment—jumbos, trucks, conveyors, etc.—since Wi-Fi systems are commonplace
in underground mines. The main problem with the implementation of real-time mon-
itoring and management in mining is down to resource and reserve estimation. The
updating of resources and reserves has been the subject of some studies, particularly by
simulating residuals (Vargas-Guzmán and Dimitrakopoulos 2002; Jewbali and Dim-
itrakopoulos 2011) and, more recently, with an adaptation of the ensemble Kalman
filter approach to mining processes (Wambeke and Benndorf 2017). Nevertheless, in
such situations, the problem of prompt updating (real-time updating) remains. In fact,
in most mining routines, the delay between sampling at the stopes location, grade
estimations, and decisions about mining stopes during production can be lengthy (in
many cases, months). In some cases, this can result in the use of seriously outdated
information and, consequently, a substantial bias in mined reserves. The main rea-
son for this operational gap is the intrinsic spatial heterogeneity of mineral resources,
which makes any prediction about resources and reserves an exercise that is prone to
uncertainty and risk (Dimitrakopoulos et al. 2002; Journel and Kyriakidis 2004).

This study discusses how to bring themonitoring and updating of resources as close
as possible to the concept of real-time mining. This entails a framework that changes
from the paradigm of a discontinuous and extended monitoring and control process
to one that is more continuous and “real time”, with the subsequent management of
resource uncertainty. This study proposes using portable X-ray fluorescence (XRF)
(Kalnicky and Singhvi 2001) as a tool for monitoring face samples in underground
stopes. XRF samples are fast, albeit uncertain, measurements depending on the small-
scale heterogeneity of different ore types. The basic rationale of the methodology is to
take those fast, but imprecise, measurements (soft data) into account when assessing
reserves and the respective uncertainty.

There are three basic steps in the proposed fast resource monitoring and updating
process:

1. The first step consists of building a reference database for a joint distribution func-
tion between the fast/uncertain data and the “hard” data, such as the face sample
data obtained in the lab. This joint distribution can be obtained by pairing copper
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Fig. 1 Face sample collection
layout at: a massive ore type, b
stockwork ore type
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grades measured by XRF and by the laboratory analysis of face samples at the
same location. To this end, there must be a monitoring campaign to obtain his-
torical XRF and face data, sampled simultaneously at the same locations. Biplots
of these duplets of sample measurements could allow an estimation of bivariate
distributions between these two types of samples. If they demonstrate different
bivariate behaviors, then these distributions can be estimated for each ore type.

2. The next two phases refer to the uncertainty assessment of fast monitoring and
the integration of uncertainty into reserve updating. For new XRF measurements,
local conditional XRF distributions based on the historical and stationary bivariate
distributions (step 1) are estimated at each sample location. These conditional dis-
tributions represent a new measurement of XRF data uncertainty. This is detailed
in Sect. 2.2.

3. Grade resources are characterized by stochastic simulationwith point distributions
(Horta and Soares 2010; Soares et al. 2017) based on the previously estimated local
conditional distributions on the new XRF locations.

2 Fast Data Collection at Mining Stopes in an Underground Mine

2.1 Historical XRF and Face Sample Data at the Same Location

The proposed methodology is illustrated in a copper sulfide deposit (Zambujal ore-
body) case study. The deposit is composed of two main ore types: massive and
stockwork. The most heterogeneous ore type—stockwork—was chosen to illustrate
the methodology for resource evaluation with uncertain data. Available data for this
study are copper grades from drill core samples and from stopes face samples.

The first step in the proposed methodology involves creating a data set of historic
copper grade XRFmeasurements and face samplemeasurements at the same locations
as a way of estimating the stationary bivariate distribution function for each ore type.
At each stope, a maximum of nine XRF and face samples were taken at the same
location. The face samples were analyzed following a conventional procedure in the
chemical lab. The sampling layout of the stockwork ore type (Fig. 1), adopted by the
mine routine, allows us to achieve representative samples of the Cu-rich chalcopyrite
veins that are dispersed throughout the volcanic rock.
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Fig. 2 X-ray fluorescence (XRF)/face sample scatter plot

Fig. 3 Histograms: a lab measurements, b XRF measurements

The scatter plot of 145 XRF/face sample measurements pairs is shown in Fig. 2.
Although there is a high correlation (more than 95%) between the two measurements,
there is a noticeable dispersion of portable XRF measurements, particularly on high
face sample grades. This is due to the nature of grade dispersion in stockwork, where
high-grade values are frequently caused by thin veins of chalcopyrite. Hence, a small
displacement in the location of XRF and face samples can lead to substantial differ-
ences in measured values. For example, see the increase of the conditional variance
of XRF values above the 5% threshold. Marginal histograms are represented in Fig. 3
and the main statistics in Table 1.
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Table 1 Mean, variance, quartiles 25 to 75, minimum, and maximum for both measurement types

Measurement
type

Mean Variance Q25 Q50 Q75 Min Max

Lab 3.19 34.85 0.28 1.16 3.82 0 45.69

XRF 3.15 41.64 0.36 1.20 3.31 0 50.23

2.2 XRF Data Uncertainty Assessment

Given the scarcity of data in this test (Fig. 2), especially at high values (Cu>5%), a
bivariate probability density function (PDF) was estimated. This is achieved by using
a simulated annealing optimization algorithm, GSLIB’s SCATSMTH (Deutsch and
Journel 1992), based on the experimental scatter plot shown in Fig. 2. The resulting
estimated PDF is represented in Fig. 4.

Here, it is worth making two points. The first is that different bivariate distributions
can be derived for each ore type and different orebody localities, depending on the local
conditional variability of both types of sample measurements. The second is that the
amount of data used to derive this bivariate distribution is strictly dependent on the local
variability of both types of data (e.g., a massive and much less heterogeneous ore type
in terms of the spatial distribution of copper, which is not touched upon in this study,
needs much less data). The idea is to produce a reliable and spatially representative
estimate of the bivariate distribution between hard and uncertain samples.

Consider the XRF measured grades as zs(x) and the equivalent grade values
obtained with the conventional chemical analysis in the laboratory as z(x). The esti-
mated bivariate distribution function F(Z (x), Zs(x)) is assumed to be stationary and
representative of the area in which this study was conducted. This means that, in a
future fast-sampling campaign, given new XRF measurements at the spatial location
x0, zS(x0), from the bivariate distribution f (Z (x), Zs(x)) an estimate for the equiva-
lent point conditional distribution of z(x0) can be made, given the known XRF value
zS(x0), f (Z (x0) |Zs(x0) � zS(x0) ) (see the example in Fig. 5). Hence, the new set
of sampling values (XRF values), taken from new stopes, have an uncertainty that is
equivalent to the conditional density distributions calculated from the bivariate density
function (examples in Fig. 6 of some point distributions).

3 Resource Characterization with Uncertainty Data: Stochastic
Simulation with Point Distributions

In the next methodological step, the grade models are assessed using uncertainty data
that are characterized by the conditional distributions obtained as described in Sect. 2,
after new XRF measurements.

When the available experimental information is uncertain, like XRF data, the inte-
gration of this uncertainty into stochastic models to characterize the spatial dispersion
of the grades is the challenge this paper seeks to address. This challenge has been
approached in several works, both by estimated local cumulative distribution func-
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Fig. 4 XRF/face samples bivariate probability density function (PDF)

tions (CDFs) with indicator cokriging with soft data (Journel 1986; Zhu and Journel
1993) and by estimated local CDFs for stochastic simulation, with indicator formal-
ism (Alabert 1987). The main limitations of these methods are essentially related to
the properties of the indicator formalism to characterize continuous variables and the
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Fig. 6 Examples of local point distributions f (Z (x)|Zs (x))

cumbersome task of indicator covariance model estimation in particular (Goovaerts
1997).

In this paper, direct sequential simulation (DSS) with point distributions is applied
to integrate the uncertainty of data derived from the fast acquisition XRF data mea-
surements (Soares et al. 2017). The DSS with point distributions can be summarized
in two major steps:

1. The generation of a spatially correlated data set. Before simulating the entire
grid of nodes, a set of experimental data values at the XRF measurement loca-
tions are drawn from the corresponding local point conditional distributions
f (Z(x0)|Zs(x0) � z(x0)). The generation of this spatially correlated data set is
obtained by the following sequence: (i) first, the local mean and variance at the ran-
domly selected XRF data location x0 are estimated by simple kriging (Journel and
Huijbregts 1978), conditioned to the eventual existing neighborhood “hard” data
(borehole or face sample data) and the previously simulated XRF data, z∗(x0)SK
and σ ∗(x0)SK ; then, (ii) a data value z(x0) is drawn from the point distribution
f (Z (x0)|Zs(x0)), focused on the estimated local mean and variance identifiedwith
the simple kriging estimate and variance, z∗(x0)SK and σ ∗(x0)SK (previous step),
following the outline of DSS (Soares 2001). The resulting simulated experimental
data values z(xα), α � 1, N reproduce both the local CDFs and the spatial conti-
nuity, as revealed by the spatial covariance. Return to step 1(i) following a random
path until all point distributions have been simulated.

2. The second major step is the simulation of the entire grid of nodes. Once the corre-
lated data set is generated, the grid of nodes is simulated using the traditional DSS
approach. Return to step 1 to generate another data set and subsequent simulated
grid nodes.

The spatial uncertainty of grades, assessed with the set of simulated realizations,
reproduces the uncertainty of XRF data through to the local dispersion of conditional
point distributions.

4 Selected Study Area

Only core and XRF data are used in the examples given in Sect. 5, which illustrates
the situation of a future fast-sampling routine in which only these two types of data
are available. Both the XRF and core data set locations are presented in Fig. 7, which
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Fig. 7 Selected area in which both XRF and core data measurements coexist. XRF samples are plotted in
red and core samples are plotted in blue

shows the overlap of both data clouds. The higher density of the XRF data, in red,
becomes self-evident and it is easy to recognize that there are parts of the orebody in
which only core data are available (Fig. 7, blue dots). Hence, the study was conducted
in an area in which both XRF and core data measurements coexist (Fig. 7). Histograms
for face samples and drill hole sets are shown in Fig. 8. Experimental semi-variograms
are calculated using core data (Fig. 9). The semi-variogram model is a combination
of two spherical structures with a nugget effect of 25% of the sill.

5 Results of Stochastic Simulation with XRF Uncertain Data
Measurements

A reference case is created to evaluate the results of the proposed methodology. Given
the available data, here this reference case is considered the closest image to reality,
and, so, it was created with the largest quantity of available information. A set of 32
simulations ran with both core sample and face sample data, which is presented in
detail in Sect. 5.1.

Three test scenarios were run to evaluate the performance of the proposed method-
ology, from which two were compared with a reference case. The three tests, carried
out at the same location to validate the proposed methodology, were as follows:

1. In the first test, the grades simulation was performed using the proposed method-
ology based only on XRF point distribution data. In this case, the simulations are
not conditioned to core sample data. This test is intended to mimic those situations
in the mine routine in which only XRF data, obtained in a real-time framework,
is available. These results are presented in Sect. 5.2.

2. In the second test, the Cu grades are characterized with just “hard”/core sample
data. To achieve this, we deploy classical DSS using only core sample data (“hard”
data). Therefore, since its results are obtained without any real-time data (XRF),
it relies solely on the same data used in standard mine routines. These results are
presented in Sect. 5.3.

3. The last test intends to mimic situations in which the Cu grades are simulated with
the proposed methodology using both core sample data and the uncertain XRF
measurements (point distributions). These results are presented in Sect. 5.4.
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Fig. 8 Histogram of: a XRF and
b core sample data

Section 5.5 compares the results of Sects. 5.3 and 5.4 with the reality assumed in
Sect. 5.1.

5.1 Reference Case

The reference case is obtained by running a stochastic simulation with all the hard
data available and the core and face sample data. The local mean of the 32 realizations
(E-type estimator) was calculated for the entire area. Two small areas, A and B, were
chosen to illustrate the performance of the proposed method (Fig. 10). At its center,
area A contains a face sample with a low value (0.97%, magnified representation
in Fig. 10b). Area B is a cross-section centered on a face sample with a high value
(32.91%, magnified representation in Fig. 10d).
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Fig. 9 Fitted semi-variogram: a main direction, b first minor, and c second minor
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Fig. 10 Reference model: a cross-section, from which small area A was taken; bmagnified version of area
A; c cross-section, from which small area B was taken; d magnified version of area B
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Fig. 10 continued

Figure 11 shows two views of areas A and B with the XRF samples (red) and core
samples (blue) used in the exercises outlined in Sect. 5.2 below.

5.2 Simulation of Grades with Point Distributions Data Only

The first test consisted of the stochastic sequential simulation with point distributions;
the proposedmethod, by using exclusively uncertain data, the real-timeXRF data. The
purpose of this exercise is simply to confirm that the simulation of point distributions
honors the uncertainty of the high and low sample values as revealed by the global
bivariate distribution function. Themean of 32 realizations (E-type estimator) is shown
in the same small cross-sections of the reference case, in areas A and B (Fig. 12a, b,
respectively). Figure 12c, d represents the variance of the simulated ensemble for areas
A and B, respectively. These show lower local variance at area A, which is associated
with a lower mean than is found at area B, which has a higher local mean.

It is worth noting that the lower uncertainty associated with expected low values
and the higher uncertainty corresponding to high sample values, which is revealed in
the bivariate distribution shown in Fig. 4, is reproduced in the simulated maps of areas
A and B. This means that, when fast samples have high uncertainty, this is considered
in the simulated realizations. On the other hand, when fast sample values have low
uncertainty, this is reflected in the local lower variance of the simulated model.

5.3 Simulation of Cu Grades with “Hard”/Core Data

The second exercise consists of running DSS using just core sample data (hard data).
Figure 13a, b shows the localmean of 32 simulations for areasAandB, respectively.As
the existing hard data close to areas A and B are homogeneous, this implies smoother
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Fig. 11 Two views of areas A and B with the XRF samples (red) and core samples (blue)

patterns of Cu grades in both situations. Figure 13c, d shows the variance for the same
areas A and B. The images of variances with only hard data are smoother and have a
similar value range in areas A and B.

5.4 Simulation of Cu Grades by Integrating Both Drill Hole Data
and Uncertain XRF Measurements (Point Distributions)

The third and final exercise applies the proposed methodology using both core sample
data (hard data) and the uncertainXRFmeasurements (point distributions). Figure 14a,
b shows the local mean of 32 simulations using the proposed methodology in areas A
and B, respectively. Figure 14c, d represents the variances of simulated realizations in
areas A and B, respectively.

The final models of the mean and variance of simulated realizations (Fig. 14)
mostly show the influence of the uncertain data. It is important to emphasize that (i)
the higher density and quantity of data provides more information for conditioning
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Fig. 12 Simulation with the point distributions: a E-type estimator of area A; b E-type estimator of area B;
c variance of the realizations in area A; d variance of the realizations in area B. The color scale is the same
for all maps; e the color map used

the simulation, which is reflected in the final E-type models. This is also emphasized
in the quantitative comparison with the reference case of Fig. 10 (Sect. 5.5). Also, (ii)
the local variance maps show the influence of XRF data with low uncertainty (area A)
or high uncertainty (area B).

5.5 Comparison with the Reference Case

To compare the E-type estimators from the last two exercises—simulation only with
hard data and the proposed simulation with hard data and point distributions from
XRF data—the difference between them and the E-type of the reference model is
calculated.

Figure 15 shows the differences between the reference case of area A (Fig. 10b)
and the E-type estimators resulting from the simulation with hard data (Fig. 15a).
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Fig. 13 Simulation with core data: a E-type estimator of area A; b E-type estimator of area B; c variance
of the realizations in area A; d variance of the realizations in area B; e the color map used

The differences between the area A reference case and the E-type resulting from the
proposed method with hard and uncertain data are shown in Fig. 15b.

The same exercise is presented in Fig. 16 for area B. It shows the differences
between the area B reference case (Fig. 10d) and the E-type estimator resulting from
the simulation with hard data (Fig. 16a). The differences between the reference case
and the E-type resulting from the proposed method with hard and uncertain data are
shown in Fig. 16b.

It is worth noting the following: (i) when the uncertainty of XRF data is low (area
A), the deviations to the reference case are negligible; (ii) even when the uncertainty
of XRF data is high, the deviation to the reference case shows that it is better to use the
uncertain data; (iii) considering the reference case being the closest scenario to reality,
this exercise clearly displays the advantages of the proposed method in accounting for
fast and uncertain data.
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Fig. 14 Simulation of Cu grades by using both the core data and the uncertain XRFmeasurements: a E-type
estimator of area A; b E-type estimator of area B; c variance of the realizations in area A; d variance of the
realizations in area B; e the color map used

6 Final Remarks

Two important issues about the real-time mining concept are addressed in this paper:
the fast monitoring of grades, in this case, at the face of stopes of production fronts,
and the integration of the uncertainty of fast measurements for updating resources by
using DSS with uncertain data.

The results of the proposed methodology are very promising for monitoring grades
with fast (uncertain) measurements and for the simulationmethod, which can integrate
the uncertain data. It is also worth noting that the case study was conducted with the
most heterogeneous ore type at the Neves-Corvo mine, a cupriferous stockwork ore
type.
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Fig. 15 Differences between the reference case of area A and: a the E-type estimator resulting from the
simulation with hard data; b the E-type resulting from the proposed method with hard and uncertain data

One of the main conclusions of this study is that it is worth accounting for the
fast uncertain measurements if the data uncertainty is included in the reserves evalu-
ation model. In this case, a better resources model is obtained when uncertain grade
measurements are considered than is obtained when they are discarded.

Also, the uncertainty of fast measurements, as quantified by the point distribution
probability, is derived from the bivariate distributions (historical data) between XRF
and face samples. These bivariate distributions must be considered stationary and
representative of the area from which the XRF data are taken. This means that they
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Fig. 16 Differences between the reference case of area B and: a the E-type estimator resulting from the
simulation with hard data; b the E-type resulting from the proposed method with hard and uncertain data

must be estimated for each ore type and periodically validated and updated with new
face samples and lab measurements.

Funding Funding was provided by the H2020 Research and Innovation Programme (Grant no. 641989).
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