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Abstract Knowledge of the sub-surface characteristics is crucial inmany engineering
activities. Sub-surface soil classes must, for example, be predicted from indirect mea-
surements in narrow drill holes and geological experience. In this study, the inversion
is made in a Bayesian framework by defining a hidden Markov chain. The likelihood
model for the observations is assumed to be in factorial form. The new feature is the
specification of the priorMarkovmodel as containing vertical class proportion profiles
and one reference class transition matrix. A criterion for selection of the associated
non-stationary prior Markov model is introduced, and an algorithm for assessing the
set of class transition matrices is defined. The methodology is demonstrated on one
synthetic example and on one case study for offshore foundation of windmills. It is
concluded that important experience from the geologist can be captured by the new
prior model and that the associated posterior model is, therefore, improved.

Keywords Bayesian analysis · Non-stationary prior model · Offshore windmills ·
Sub-surface soil classes

1 Introduction

Collection of exact observations of the sub-surface is usually costly and time-
consuming since it involves drilling of vertical wells from which samples can be
obtained. Hence, indirect measurements about the sub-surface are frequently col-
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lected, and predictions of the characteristics of interest are based on these indirect
observations. The measurements can be collected by log-responses in narrow drill
holes or by active geophysical procedures. In order to define a prediction rule for
the sub-surface characteristics of interest based on the indirect measurements, both
exact observations of the characteristic and indirect measurements are collected in
sub-surface profiles in a nearby location. Only a small number of such calibration
profiles are usually available due to the cost of obtaining them.

The objective of the study is to define a prediction rule for the facies characteristics
along a vertical sub-surface profile in which one has indirect measurement in a narrow
drill hole. Calibration data of both facies occurrences and indirect measurements are
available in a small number of locations in the neighborhood of the narrow drill hole.
The ultimate aim is to predict the facies distribution in a three-dimensional sub-surface
volume based on data in a large number of drill holes and a small number of calibration
wells. The results from the current study provides an important intermediate result on
the path to obtain this three-dimensional sub-surface volume prediction.

Classification of soil classes in the sub-surface of an off-shore windmill park is used
as a case study. The log-responses are resistance and friction of a bore head along the
vertical profile, and the soil classification is traditionally made by using standardized
charts (Robertson 2010). In the current study, a more formal statistical classification
approach is used.

The inversion problem is cast in a Bayesian setting. The posterior probability dis-
tribution of the categorical facies variable is defined by a likelihood and a prior model.
The likelihood model links the indirect measurements and the facies variable, while
the prior model represents the experience with the facies variable. The current model,
with a conditional independent, single-site response likelihood andMarkov chain prior,
falls in the class of hiddenMarkovmodels. This model class is extensively studied and
frequently applied in statistics; see Dymarski (2011) for an overview. In subsurface
modelling, facies/lithology characterization is often based on a hiddenMarkov model.
The prior model for the categorical facies variable along a vertical profile is a Markov
chain, in a long tradition following Krumbein and Dacey (1969) and Harbaugh and
Bonham-Carter (1970). Traditionally, this Markov chain is assumed to be stationary
and parametrized by one facies transition matrix, which usually is assessed by a count-
ing estimator in one vertical well (Weissman and Fogg 1999). In Eidsvik et al. (2004)
the assessment of the facies transition matrix is cast in a hierarchical Bayesian setting.

Theuse of a prior stationaryMarkov chain along the profile causes the priormarginal
distributions of facies at all depths to be identical. For sub-surface phenomena this
assumption often appears unrealistic since the facies occurrences vary with depth
(Avseth et al. 2005). A quantitative assessment of the vertical facies proportions is
discussed in Ravenne et al. (2002), but the inclusion of these proportion curves into a
Markov model for facies classification remains a challenge, which is addressed in the
current study. A priorMarkovmodel that is non-stationary is defined, hencewith facies
transition matrices that vary with depth. A similar non-stationary Markov chain prior
model is used in Ulvmoen et al. (2010), but the assessment of the model parameters
are made very ad hoc.

This depth-dependence complicates estimation of the transitionmatrices. The prob-
lem is parametrized by specifying one transition reference-matrix being the transition
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matrix in the best stationary model and geologist-specified facies proportion curves
along the vertical profile. Based on this parametrization, a criterion for identifying the
facies transition matrices for each depth is specified and an algorithm for assessing
them is defined.

The likelihood model is defined as conditionally independent with single-site
response. Hence, the posterior model appears as a non-stationaryMarkov chain, which
can be exactly assessed by the recursive Forward–Backward and Viterbi algorithms
(Viterbi 1967; Baum et al. 1970; Scott 2002).

Bold lower, x, and upper, X, case letters denote vectors andmatrices, respectively.
The vector x−i represents the vector x with element i removed. Similarly, the set
T with element {i} removed is denoted T−i . The term p(·) is used for probability
density/mass function and the Gaussian n-vector x has probability density function
ϕn

(
x; μx , �x

)
with expectation n-vector μx and covariance (n × n)-matrix �x .

The identity n-vector and (n × n)-matrix are denoted in, and In, respectively. Lastly,
inequality operators between vectors or matrices entails element-wise inequality.

In Sect. 2, the problem definition and notation are discussed in more detail. In Sect.
3, the likelihood and two prior and posterior models are defined and also the depth-
dependent transition matrices and an algorithm for assessing them are specified. In
Sect. 4, the categorical Bayesian inverse method is tested on both synthetic and real
data sets. Finally, in Sect. 5, conclusion and recommendation for further work are
presented.

2 Problem Definition and Notation

The sub-surface characteristic of interest is represented along a vertical profile dis-
cretized to T : {1, . . . , T }. At each depth t ∈ T the categorical facies class
κt ∈ Ωκ : {1, . . . , K } belong to one out of K classes, which might be un-ordered.
The facies profile is represented by the vector, κ = (κ1, . . . , κT )

′
, and assessing this

vector is the objective of the study. Along the profile one real variable associated with
the facies class is observed d = (d1, . . . , dT )

′
, dt ∈ R1. Hence, the objective of the

study is to predict κ given d, that is predict [κ |d].
Prediction is approached in a probabilistic setting using Bayesian inversion

p(κ |d) = const × p(d|κ) p(κ)

where the likelihood function p(d|κ) defines the link between the observations d and
variable of interest κ, the prior probability density function (pdf) p(κ) represents
the general experience with the variable of interest κ, while “const” is a normalizing
constant. The posterior pdf p (κ |d) is uniquely defined by the likelihood function and
the prior pdf, and it constitutes the ultimate solution to a Bayesian inversion problem.

The posterior pdf p (κ |d) must usually be explored by simulation, ideally based
on a set of realizations

[κ |d]1 , . . . , [κ |d]s iid p (κ |d) .
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These realizations are most often generated approximately by Markov chain Monte
Carlo (MCMC) simulation, while under very particular model assumptions the gener-
ation might be done exactly by repeating a sequential algorithm. In the current study,
model assumptions, which make efficient sequential generation possible are defined.

The prediction of [κ |d] can be based on a maximum posterior (MAP) criterion
since the sample space Ωκ is categorical, hence the MAP predictor is

κ̂MAP = MAP {κ |d} = arg max
κ

{p(κ |d)} .

Computing theMAP predictor will generally require complex discrete optimization in
high dimension, while particular model assumptions might simplify the calculations.
The model assumptions defined later make sequential optimization possible. More-
over, it is interesting to present posterior probability profiles for each class κ ∈ Ωκ,

which is defined as

pκ = [p(κt = κ|d)]t∈T ; κ ∈ Ωκ.

From these profiles, the uncertainty associated with the MAP prediction κ̂MAP can
be assessed. Lastly, an alternative marginal maximum posterior (MMAP) predictor
can be defined

κ̂MMAP = MMAP {κ |d} =
[
arg max

κ
{p(κt = κ|d)}

]

t∈T
.

3 Model Definition

The posterior pdf, which is the focus of this study, is defined by the likelihood function
and prior pdf. The posterior also involves the normalizing constant; however, it is
usually very complex to calculate. In this section, model assumptions are defined such
that it is possible to assess the posterior pdf very efficiently.

3.1 Observation Likelihood

The likelihood function p(d|κ) defines the link between the observations, d and the
characteristic in focus, κ . In the function, d is a fixed vector of observations while
the vector of facies classes κ is the variable. If it is reasonable to assume that the
likelihood can be factorized as follows

p(d|κ) =
∏

t∈T
p(dt |κ) =

∏

t∈T
p(dt |κt ) (1)

the calculations of the posterior pdf might be dramatically simplified. The assumption
entails conditional independence and single-site response in the observations. Obser-
vations with independent errors from one depth t to another cause the former, while
responses without spatial convolutions cause the latter. These assumptions are often
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justifiable at an initial stage of modeling, and they may be generalized at the expense
of higher computational demands. The likelihood function is defined by the partial
likelihood functions

p(dt |κt ); κt ∈ Ωκ ; t ∈ T .

3.2 Prior Experience

The prior pdf p(κ) represents the initial knowledge about the variable in focus κ .

This sub-surface characteristic will normally be spatially coupled and represented by
a Markov chain

p(κ) = p(κ1)
∏

t∈T−1

p(κt |κt−1, . . . , κ1) = p(κ1)
∏

t∈T−1

p(κt |κt−1). (2)

The first-order Markov assumption entails that the knowledge of the previous state
screens out the influence of the history, causing the latter factorial expression. Note that
this assumption entails that the spatial dependence is p(κt |κ−t ) = p(κt |κt−1, κt+1).

These screening assumptions introduce geometrically decaying spatial dependence in
the variable, and they may be generalized on the expense of higher computational
demands.

The prior pdf is defined using the uni- and bi-variate properties, which define the
initial pdf and the set of transition matrices

p1 = [p(κ1)]κ1∈Ωκ

Pt−1, t = [p(κt |κt−1)]κt−1, κt∈Ωκ ; t ∈ T−1
(3)

which in turn defines the set of marginal pdfs by the recursion

pt = [p(κt )]κt∈Ωκ
= P′

t−1, t pt−1 ; t ∈ T−1. (4)

Note that the set of marginal pdfs pt ; t ∈ T does not uniquely define the prior pdf
since many sets of transition matrices will provide identical sets of marginal pdfs.

3.3 Posterior Model

The posterior pdf is fully defined by the likelihood function and the prior pdf. The
assumptions enforced in the two previous sub-sections entails that the model can be
displayed as a directed graph (Fig. 1). The resulting posterior pdf can be expressed as
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Fig. 1 Dependence structure of
the hidden Markov model

κT dT

κt+1 dt+1

κt dt

κt−1 dt−1

κ1 d1

p(κ |d) = const ×
∏

t∈T
p(dt |κt ) × p(κ1)

∏

t∈T−1

p(κt |κt−1)

= const × p(d1|κ1) p(κ1) ×
∏

t∈T−1

p(dt |κt ) p(κt |κt−1)

= p(κ1|d)
∏

t∈T−1

p(κt |κt−1, d).

(5)

Hence, the posterior pdf will also be a first-order Markov chain with initial pdf and
transition matrices dependent on the observation vector d; see “Appendix A”. The
corresponding spatial expression is p(κt |κ−t , d) = p(κt |κt−1, κt+1, d).

The posterior pdf, under the assumptions specified, can be assessed by the highly
efficient, recursive Forward–Backward algorithm, see “Appendix B”, and the solution
is the initial posterior pdf and the set of posterior transitionmatrices (Baum et al. 1970;
Scott 2002)
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p1|d = [p(κ1|d)]κ1∈Ωκ

Pt−1, t |d = [p(κt |κt−1, d)]κt−1, κt∈Ωκ ; t ∈ T−1.
(6)

The corresponding set of marginal posterior pdfs can also be recursively assessed

pt |d = [p(κt |d)]κt∈Ωκ = P′
t−1, t |d pt−1|d ; t ∈ T−1.

Since the posterior pdf is a first-order Markov chain with easily assessable initial pdf
and set of transition matrices, generating a set of realizations from the posterior pdf,
[κ |d]s ; s = 1, . . . , S is trivial and very fast. Moreover, determining the MAP state,
κ̂MAP , in a first-order Markov chain can be done recursively by the very efficient
Viterbi algorithm (Viterbi 1967); see “Appendix C”.

Lastly, the posterior probability profile for each class, pκ ; κ ∈ Ωκ, can be
calculated from the set of marginal posterior pdfs, pt |d ; t ∈ T . Consequently, all
features of the posterior pdf of interest can be assessed extremely efficiently by these
recursive algorithms.

3.4 Alternative Prior Formulations

The prior pdf is assumed to be a first-order Markov chain, possibly a non-stationary
one

p(κ) = p(κ1) ×
∏

t∈T−1

p(κt |κt−1). (7)

Themodel is defined by the initial pdf p1 and the set of transitionmatrices Pt−1, t ; t ∈
T−1. The resulting set of marginal prior pdfs is pt ; t ∈ T .

3.4.1 Traditional Prior Model

The prior pdf is usually defined to be spatially stationary (Krumbein and Dacey 1969;
Eidsvik et al. 2004). This definition entails that the elements in the set of transition
matrices are identical, Pt−1,t = Pt ′−1,t ′ = P; t, t ′ ∈ T−1 and the initial pdf is
p1 = ps where ps is the associated stationary pdf, that is ps = P′ ps . Consequently,
all marginal pdfs are identical pt = ps; t ∈ T . Hence, spatial stationarity entails
transition invariant marginal pdfs and transition invariant spatial dependence (Billard
and Meshkani 1995).

This prior stationarity assumption is often suitable, since prior models are
experience-based and globally anchored, while local characteristics should be a con-
sequence of the site specific observations introduced by the likelihood function.
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3.4.2 Trend Prior Model

Spatial stationarity is often a suitable assumption for the horizontal dimension, while
the vertical dimension often is known to have trends. The proportions of facies are
known to vary with depth in a vertical sub-surface profile, for example.

In the current study of the categorical variable κ along a vertical sub-surface profile
one may want to specify varying vertical proportions a priori. A suitable prior model
parameterization would be the varying marginal pdfs along the profile p0t ; t ∈ T .

The fact that this model specification does not uniquely define the prior Markov chain
model p(κ), since the set of marginal pdfs does not fully characterize the multivariate
pdf, creates problems. One possible solution to this challenge is to define a reference
transition matrix Pr and to define a prior model specification for the multivariate pdf
p(κ) that has transition matrices that deviate as little as possible from Pr , which still
reproduce the marginal pdfs p0t ; t ∈ T . This approach is used in defining the trend
prior model in this study, and the approach is outlined below with a more detailed
presentation in “Appendix D”.

Specify the marginal pdf profile p0t ; t ∈ T and a reference transition matrix
Pr = [pr (κ|κ ′

)]
κ, κ

′ ∈Ωκ
. The required prior model parameters are the initial pdf

p1 and the set of transition matrices Pt−1, t = [
p(κt |κt−1)

]
κt−1, κt∈Ωκ

; t ∈
T−1 , which are defined as follows.

Let

p1 = p01

For t = 2, . . . , T

Pt−1, t = arg min
P

{‖P − Pr‖wL2
}

constrained by

p0t = P
′
p0t−1

ik = P ik
P ≥ 0 Ik

(8)

where P is a (K ×K )-matrix and the deviation measure ‖ ·‖wL2 is an element-wise
weighted squared distance metric. The first set of constraints ensures reproduction of
themarginal pdfs p0t ; t ∈ T−1, the second set ensures that the rows of P add to unity,
while the third set ensures that all elements in P are non-negative. Consequently, p1
and the set Pt−1, t ; t ∈ T−1, define a first-order Markov chain with marginal pdfs
pt ; t ∈ T that reproduces p0t ; t ∈ T .

The minimization system at each t contains a quadratic object function with
two linear equality constraints and one linear inequality constraint. An optimization
problem of this type cannot generally be solved analytically.

Sequential optimization procedure involving analytical solutions in each step is
prescribed.
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1. Solve theminimization systemwith the two linear equality constraints analytically
by using Lagrange minimization. If the solution (K ×K )-matrix Pt−1,t contains
only non-negative elements, the solution is identified. If, however, some elements
in Pt−1, t are negative, proceed to Step 2.

2. Set the negative elements in Pt−1, t to zero, and solve the minimization system
with the linear equality constraints for the remaining elements. If the updated
solution Pt−1, t has only non-negative elements, the solution is identified. If,
however, some elements are negative iterate Step 2.

Note that if the solution is identified in Step 1, the optimal solution is found since
the inequality constraints are inactive. Otherwise, neither existence of a solution nor
optimality of the obtained solution are demonstrated. Note, however, if a solution of
Pt−1, t is identified, it is a valid transition matrix and it reproduces the set of marginal
pdfs p0t , t ∈ T . The algorithm has computational demands of decomposing a(
(K + 1)2 − 2

) × (
(K + 1)2 − 2

)
matrix at each t and is, therefore, linear in T and

very efficient.
The current application, involving varying class proportions along a vertical sub-

surface profile, will naturally have smoothly varying marginal pdf curves. The
reference transition matrix Pr can be interpreted as an average transition matrix
of the Markov chain. By defining Pr consistently with the marginal pdf profile, and
by using natural binomial weighting in the object function, one expects the appearance
of non-negative elements in the solution Pt−1, t to be unlikely; see “Appendix C”.

3.5 Assessment of Posterior Model

Both posterior models that are based on the traditional and the trend prior models can
be exactly assessed by the recursive Forward–Backward algorithm; see “Appendix
B”. The computational demands are proportional to T × K 2 for both models, hence
linear in the length of the profile. The solution identifies

p1|d = [p(κ1|d)]κ1∈Ωκ

Pt−1, t |d = [p(κt |κt−1,d)]κt−1, κt∈Ωκ ; t ∈ T−1.
(9)

4 Results and Discussion

To compare the traditional and trend prior models, the MAP predictor, the MMAP
predictor, the marginal probability profile, and realizations simulated from the poste-
rior model are used. The methods are applied on two different data sets, one synthetic
example and one real case study.

4.1 Synthetic Example

Consider an example with a vertical profile discretized to T = { 1, . . . , 100} with
categorical variable of interest κt ∈ Ωκ : {black, gray}, see reference profile κr
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Fig. 2 Reference profile, likelihood model and reference observations

in Fig. 2. Note that there appears to be more black than gray on top of the profile and
vice versa. The likelihood model is defined by p(dt |κt ) = ϕ1(dt ; μκt , σ 2

κt
) with

(μκ, σ 2
κ ); κ ∈ Ωκ equal (1, 1.52) and (−1, 1.52) for κ being black and gray,

respectively; see Fig. 2.
The synthetic reference observations d0 are also displayed in Fig. 2. The objective

of the example is to assess κ given the observation d0, hence assess [ κ |d0 ].
Bayesian inversion as described inSect. 2 is applied, and the correct likelihood function
displayed in Fig. 2 is used. Two alternative prior models p(κ) are evaluated. One
traditional prior model with stationary transition matrix and stationary pdf as

Pt−1, t =
[
0.8 0.2
0.2 0.8

]
ps = (0.5, 0.5)′.

One trend prior model with marginal pdf profile as displayed in Fig. 3b top third
from left and reference transition matrix Pr identical to the transition matrix for
the traditional prior model. Note that the prior marginal profile assigns higher prob-
ability for black at the top and gray at the bottom and that this profile is subjectively
assigned by the geoscientists. Based on this pdf profile and the referencematrix unique
model parameters for the prior non-stationary Markov chain model are defined by the
approach outlined in Sect. 3.2. The elements must be non-negative. In this example,
negative values occurred in Step 1 of the algorithm, see “Appendix D”, at two depths.
The actual depths are 79 and 80 and the values are − 0.008 and − 0.002. Hence, the
absolute values are very small compared to the range of probabilities [0, 1], and they
occur at break points close to 0 in the prior marginal profile. In this example, with
two classes {black,gray} only, Step 2 in the algorithm will assign a binary transition
for the corresponding facies at these depths. Experience tells that if the prior marginal
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profile had been smoothed, the negative values are less likely to occur. Note that in
this example with two classes {black,gray} the transition matrix to be determined is
a (2 × 2)-matrix with four unknown elements. Each line in the matrix must sum to
unity, hence only two unknown elements remain. The reproduction of the marginal
probabilities defines two linear equality constraints which actually are linearly depen-
dent and hence only enforce one active linear equality constraint. This reduces the
number of unknown elements to only one which is identified by the quadratic mini-
mization. In cases with more classes, hence large K , the number of free parameters
in the optimization will be larger.

The solutions to the inversion problem [κ |d0] are presented in Fig. 3. The upper
display contains results based on the traditional prior model while the lower display
contains results from the trend prior model. In both displays the reference profile
κr and observations d0 are identical, and they are presented upper left. Afterwards,
the actual prior marginal pdf profiles for the two prior models are presented in each
display. The stationary and trend features are easily observable. The upper right profiles
in each display are predictions of [κ |d], that is κ̂MAP and κ̂MMAP respectively, and
the posterior probability profile pκ ; κ ∈ Ωκ, for each prior model. The impact of the
trend in the latter display is easily observable in the posterior probability profile, there
is a much clearer vertical black-gray drift than for the stationary model in the upper
display. Note also that the MAP and MMAP predictions deviate at the very bottom
of the profile. The predictions based on both prior models have a vertical black-gray
drift due to conditioning on d0, but the drift is emphasized by having the trend in
the prior model. The lower part in each display contains six realizations from the
posterior pdf for each prior model. These realizations expose higher heterogeneity
than the corresponding predictions, of course. Note that the trend prior model in the
lower display tend to reduce the heterogeneity at top and bottom of the profile. The
emphasized vertical black-gray drift can be observed in the realization based on the
trend prior model.

Note lastly, that introduction of trends in the prior models should be justified by
external geoscience experience with the phenomenon under study, using a stationary
prior model would be a natural choice without such experience.

4.2 Case Study

Focus is on predicting the soil classes in the sub-surface off-shore, in order to
plan construction of an off-shore windmill park. Consider a vertical sub-surface
profile discretized with T = 1186. The true profile in one location κr =
(
κr1 , . . . , κ

r
T

)′
with κrt ∈ Ωκ : {black, red, green, blue} is displayed in Fig. 4a.

The classes represent various sand/clay types with different geomechanical character-
istics. In the same location, the log-responses, cone resistance and sleeve friction are
collected.

These responses are normalized to obtain the actual observations d0 =
(d01, . . . ,d

0
T ) with d0t ∈ R2 being normalized cone resistance and normalized sleeve

friction, respectively (Fig. 4). In this case study the aim is to assess the true profile
based on the observed log-response

[
κ |d0] .
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Fig. 3 Results from Bayesian inversion of synthetic example. a Results from traditional prior model. b
Results from trend prior model
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Fig. 4 Case study data and estimated likelihood model

The data in the well make it possible to present a bi-variate plot of likelihood
function p(d0t |κt ), and a likelihood model is fitted,

p(d0t |κt ) = ϕ2

(
d0t ; μκt

, �κt

)
κt ∈ Ωκ

which also is displayed in Fig. 4b. Note that the model is very rough and does not
over-fit the observations that actually appear asmulti-modal; see for example the green
class.

The Bayesian inversion results based on two alternative prior models are compared.
One traditionalMarkov chainmodelwith stationary class proportions along the profile,
having stationary transition matrix and stationary proportions,

P =

⎡

⎢⎢
⎣

0.85 0.05 0.05 0.05
0.05 0.85 0.05 0.05
0.05 0.05 0.85 0.05
0.05 0.05 0.05 0.85

⎤

⎥⎥
⎦ ps = (0.25 0.25 0.25 0.25).

′

The other model is a trend prior model with depth varying class proportions, p0t ; t ∈
T , presented in Fig. 5b. No class has <0.05 and more than 0.85 prior probability to
occur. The reference transition matrix Pr is identical to the transition matrix above.
These two parameters do not uniquely define a prior Markov model, but the approach
outlined in Sect. 3.2 to specify the prior pdf p(κ) is used. In this study there are nine
free parameters to minimize the object function and the object function is centered
close to zero, at 0.05, for twelve of the 16 parameters.
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Fig. 5 Results from Bayesian inversion of Case study. a Results from traditional prior model. b Results
from trend prior model
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⎡
⎢⎢⎣
0.847 0.059 0.047 0.047
0.000 0.994 0.003 0.003
0.047 0.059 0.847 0.047
0.047 0.059 0.047 0.847

⎤
⎥⎥⎦

t=200

⎡
⎢⎢⎣
0.847 0.048 0.059 0.047
0.047 0.847 0.059 0.047
0.004 0.004 0.988 0.004
0.047 0.047 0.059 0.847

⎤
⎥⎥⎦

t=600

⎡
⎢⎢⎣
0.847 0.047 0.047 0.059
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0.047 0.047 0.847 0.059
0.004 0.004 0.004 0.988

⎤
⎥⎥⎦

t=1,000

(b)

Fig. 6 Results from optimization procedure for Case study. a Histogram of negative values after Step 1
in optimization procedure for Case study. b Prior transition matrix after optimization procedure for Case
study

In the algorithm, see “Appendix D”, T − 1 = 1185 transition (4 × 4)-matrices
are identified, hence 18,960 transition probabilities. After Step 1 666 negative values
appeared and these values are displayed in the histogram in Fig. 6a. The absolute values
of all these negative values are very small. In Step 2 of the algorithm these transition
probabilities are assigned the value zero, and a reduced optimization is solved. The
solution after this step contained no negative values.

These results are encouraging since the final solution is very close to the initial
one after Step 1. Figure 6b display the calculated transition matrices Pt−1,t for
t = 200, 600, 1000. Note that the matrix for t = 200 has one zero-valued element
which is assigned in Step 2 of the algorithm. The transitionmatrices appear as expected
with relatively large diagonal elements ensuring high spatial dependence of the class.
The identical off-diagonal elements are caused by the marginal probability for several
classes being identical in sections of the prior specification.

Note that the two prior models are fairly general and based on expert experience
about soil distribution in the sub-surface in the area. The results from the Bayesian
inversion of

[
κ |d0] based on the two alternative prior models are displayed in Fig. 5

in a format similar to Fig. 3 in the synthetic example. The MAP, MMAP and posterior
marginal pdfs based on the traditional prior model, in Fig. 5a upper right, do largely
have the correct ordering of the classes compared to the true profile at far left in the
figure. The predictions appear with many more class-transition than the true profile,
however. The associated posterior realizations in Fig. 5a bottom row are even more
heterogeneous. The reason for heterogeneity can be seen in the likelihood display,
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Fig. 4b. Observe that the likelihood model for the blue class, for example, is very wide
due to the appearance of two blue clusters in the data, hence it overlaps the likelihood
for the red class. A more adaptive likelihood model could be defined, of course, but
this could cause over-fitting. Alternatively, a more informative prior transition matrix
could be defined, also at the cost of possibly over-fitting.

The MAP, MMAP and posterior marginal pdfs based on the trend prior model is
displayed in Fig. 5b upper right, with the posterior realizations in the bottom row of
the figure. These results have many features in common with the results based on
the traditional prior model, of course, since both models draw on the same likelihood
model. Observe, however, that the predictions and posterior realizations based on the
trend prior model appear with significantly less heterogeneity than the ones based on
the traditional prior model. The varying proportion profile enforced through the trend
prior model reduces the number of class-transitions in the posterior model.

This case study is based on one calibration well only, hence the model inference
and posterior model evaluation are based on the same data. This coupling favors over-
fitted models which are avoided by use of rough likelihood models. A fair comparison
should involve posterior model evaluation on data from a blind calibration well, which
will be made in a later study.

5 Conclusions

A categorical inversion method for modelling the sequence of classes along a sub-
surface profile based on a observed logging response is presented. The inversion is
cast in a Bayesian framework as a hiddenMarkovmodel and assessed by the Forward–
Backward and Viterbi algorithms. Two different prior model formulations are studied,
one traditional stationary model and one trend prior model. The trend prior model is
parametrized by a vertical class-proportion profile and a reference transitionmatrix. By
using an efficient sequential analytical procedure depth dependent transition matrices
reproducing the class-proportions are identified. The two prior models are tested on
both synthetic and real data sets.

User-specified class-proportions along the vertical profile may have large impact
on the class predictions and simulations. The number of class transitions is often lower
than the corresponding number for a traditional stationary model. The algorithm for
estimating the depth-dependent transition matrices from the proportion profiles and
the reference matrix appears as efficient and reliable.

The possibility for geologists to constrain the categorical inversion by class-
proportion curves is expected to have a large user-potential.
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Appendix A: Markov Property of Posterior Model

Consider posterior model

p(κ |d) = const × p(d1|κ1)p(κ1)
∏

t∈T−1

p(dt |κt )p(κt |κt−1)

= p(κ1|d)
∏

t∈T−1

p(κt |κt−1,d).

Rephrase p(κ |d) by a general conditioning decomposition

p(κ |d) = p(κ1|d)
∏

t∈T−1

p(κt |κt−1, . . . , κ1,d).

By demonstrating that for t ∈ T−1

p(κt |κt−1, . . . , κ1,d) = p(κt , . . . , κ1,d)

p(κt−1, . . . , κ1,d)
= p(κt |κt−1,d)

the Markov property of the posterior model is proven.
Use notation κ1:s = (κ1, . . . , κs) and ds:T = (ds, . . . , dT ) and define

p(κ1:s |d) =
∑

κT ∈Ωκ

· · ·
∑

κs+1∈Ωκ

p(κ |d)

= const × p(d1|κ1)p(κ1)
s∏

i=2

p(di |κi )p(κi |κi−1)

×
∑

κT ∈Ωκ

· · ·
∑

κs+1∈Ωκ

T∏

j=s+1

p(d j |κ j )p(κ j |κ j−1)

= const × p(d1|κ1) p(κ1)
s∏

i=2

p(di |κi ) p(κi |κi−1) × vs(κs,ds+1:T ).

The latter factor is only a function of κs and ds+1:T since (κT , . . . , κs+1) is marginal-
ized out. Hence, we may write

p(κt |κt−1, . . . , κ1,d) = p(κ1:t |d)

p(κ1:t−1|d)

= p(dt |κt )p(κt |κt−1)
vt (κt ,dt+1:T )

vt−1(κt−1,dt :T )

= p(κt |κt−1,dt :T ) QED.

Note that the demonstration also holds when the prior model p(κ) is a non-stationary
Markov chain.
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Appendix B: Forward–Backward Algorithm

Consider posterior model

p(κ |d) = const × p(d1|κ1)p(κ1)
∏

t∈T−1

p(dt |κt )p(κt |κt−1)

= p(κ1|d)
∏

t∈T−1

p(κt |κt−1,d).

Moreover let d1:t = [d1, . . . , dt ] be the subset of d = d1:T up to time t.

Algorithm 1: Forward–Backward Algorithm
1 Step for Forward Probability

2 for κ1 ∈ Ωκ do
3 p(κ1|d1) = const × p(d1|κ1) p(κ1)
4 end
5 const such that

∑
κ1

p(κ1|d1) = 1

6 for t = 2 to T do
7 for κt ∈ Ωκ do
8 for κt−1 ∈ Ωk do
9 p(κt−1, κt |d1:t ) = const × p(dt |κt ) p(κt |κt−1) p(κt−1|d1:t−1)

10 end
11 end
12 const such that

∑
κt−1

∑
κt

p(κt−1, κt |d1:t ) = 1

13 p(κt |d1:t ) = ∑
κt−1

p(κt−1, κt |d1:t )
14 end

15 Step for Backward Probability
16 for t = T to 2 do
17 for κt−1 ∈ Ωκ do
18 for κt ∈ Ωk do

19 p(κt−1|κt ,d) = p(κt−1|κt , d1:t ) = p(κt−1,κt |d1:t )
p(κt |d1:t )

20 end
21 p(κt−1|d) = ∑

κt
p(κt−1|κt , d)p(κt |d)

22 for κt ∈ Ωκ do

23 p(κt |κt−1,d) = p(κt−1|κt ,d) p(κt |d)

p(κt−1|d)

24 end
25 end
26 end
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Appendix C: Viterbi Algorithm

Consider maximum posterior prediction

κ̂MAP = MAP {κ |d} = arg max
κ

{p(κ |d)}

= arg max
κ

⎧
⎨

⎩
p(κ1|d)

∏

t∈T−1

p(κt |κt−1, d)

⎫
⎬

⎭

pMAP = p(κ̂MAP |d).

Moreover, let κ t (κ) = [κ̂ ′
1, . . . , κ̂

′
t−1, κ] be MAP-trace up to t given κt = κ with

associated MAP-probability pMt (κ) for κ ∈ Ωκ, and pMt (κ|κ ′
) be MAP-probability

for κt = κ given that κ̂
′
t−1 = κ

′
for κ, κ

′ ∈ Ωκ .

Algorithm 2: Viterbi Algorithm
1 Start Algorithm

2 for κ ∈ Ωκ do
3 pM1 (κ) = p(κ1 = κ|d)

4 κ1(κ) = [κ]
5 end
6 for t = 2 to T do
7 for κ ∈ Ωκ do
8 for κ

′ ∈ Ωk do
9 pMt (κ|κ ′

) = pMt−1(κ
′
) p(κt = κ|κt−1 = κ

′
,d)

10 end

11 κ̂
′
t−1 = arg max

κ
′

{
pMt (κ|κ ′

)
}

12 κ t (κ) = [κ t−1(κ̂
′
t−1), κ]

13 pMt (κ) = pMt (κ|κ̂ ′
t−1)

14 end
15 end

16 κ̂
′
T = arg max

κ

{
pMT (κ)

}

17 κ̂MAP = κT (κ̂
′
T ) = [κ̂1, . . . , κ̂T ]

18 pMAP = pMT (κ̂
′
T )

Appendix D: Trend Prior Model

Consider spatial discretization T : {1, . . . , T } and categorical variable κ =
[κ1, . . . , κT ]; κt ∈ Ωκ : {1, . . . , K } . Define prior Markov chain model

p(κ) = p(κ1)
∏

t∈T−1

p(κt |κt−1)
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parametrized by initial pdf p1 = [p(κ1)]κ1∈Ωκ and a set of transition matrices
Pt−1, t = [p(κt |κt−1)]κt−1, κt ∈ Ωκ ; t ∈ T−1.

Consider a non-complete set of model parameters, where one is the set of marginal
pdfs p0t = [p0(κt )]κt∈Ωκ ; t ∈ T . and one is the reference transition matrix Pr =
[pr (κ|κ ′

)]
κ, κ

′ ∈ Ωκ
. The challenge is to define a set of model parameters for the prior

model p(κ) where the marginal pdfs reproduces p0t ; t ∈ T in the non-complete set
of model parameters and where the set of transition matrices do not deviate too much
from Pr . The set of parameters for the prior Markov chain model is defined by the
following set of constrained optimization problems.

Initial

p1 = p01

for t = 2, . . . , T let

Pt−1, t = arg min
P

{‖P − Pr‖wL2
}

with

‖P − Pr‖wL2 =
∑

κ∈Ωκ

∑

κ
′ ∈Ωκ

w
κ κ

′ [p(κ|κ ′
) − pr (κ|κ ′

)]2

and w
κ κ

′ = [[1 − pr (κ|κ ′
)]pr (κ|κ ′

)]−1

constrained by

p0t = P
′
p0t−1 providing p0t (κ) =

∑

κ∈Ωκ

p(κ|κ ′
) p0t−1(κ

′
); κ ∈ Ωκ

ik = P ik providing 1 =
∑

κ∈Ωκ

p(κ|κ ′
); κ

′ ∈ Ωκ

0 Ik ≤ P providing 0 ≤ p(κ|κ ′
); κ, κ

′ ∈ Ωκ

end.
The solution to this optimization problem for a given t, Pt−1, t , will be a valid

transition matrix, which reproduces the marginal pdf p0t . Moreover Pt−1, t will
appear with minimum weighted deviation from the reference transition matrix Pr .

Since 1 = p0t
′ iκ ; t ∈ T and iκ = P

′
iκ the first set of equality constraints

is linearly dependent for each t . This linear dependence is canceled by removing the
constraint for κ = K .

Parameterize Pt−1, t and P by α : {α
κ

′
κ

= p(κ|κ ′
); κ, κ

′ ∈ Ωκ } and obtain for
each t
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Pt−1, t (α) = arg min
α

⎧
⎪⎨

⎪⎩

∑

κ∈Ωκ

∑

κ
′ ∈Ωκ

[
α

κ
′
κ

− pr (κ|κ ′
)
]2

(
1 − pr (κ|κ ′

)
)
pr (κ|κ ′

)

⎫
⎪⎬

⎪⎭

constrained by

p0t (κ) = ∑
κ∈Ωκ

α
κ

′
κ
p0t−1(κ

′
) κ ∈ Ωκ/K

1 = ∑
κ∈Ωκ

α
κ

′
κ

κ
′ ∈ Ωκ

0 ≤ α
κ

′
κ

κ
′
, κ ∈ Ωκ.

This constitutes an optimization problem with quadratic object function with two sets
of linear equality constraints and one set of linear inequality constraints. No closed
form analytical solution to this optimization problem exists. Note, however, that the
reference transition matrix Pr at which the object function is centered, obey the two
latter sets of constraints. Moreover, note that the weights w

κκ
′ make deviations from

elements of Pr close to the border of the inequality constraints very costly. If p0t−1
and p0t do not deviate dramatically and Pr is not chosen in conflict with these two
marginal pdfs, most likely the inequality constraints will be non-active.

For each t, the optimization is performed sequentially

1. Minimization of the object function with the two sets of equality constraints is
made. This optimization can be done analytically by Lagrange optimization in
dimension (K 2 + (K − 1) + K ) and a closed form solution is identified. If
α

κ
′
κ

≥ 0 κ
′
, κ ∈ Ωκ, the solution to the optimization is identified. If

α
κ

′
κ

< 0 for some κ
′
, κ ∈ Ωκ, for example κ

′
, κ ∈ Ω− ⊂ Ωκ, go to Step

2
2. Set α

κ
′
κ

= 0 κ
′
, κ ∈ Ω−. Minimization of the object function with the two

sets of equality constraints with respect to the remaining elements α
κ

′
κ
; κ

′
, κ ∈

Ωκ\Ω−. The optimization is done by Lagrange optimization in dimension ((K −
�)2 + (K − 1) + K ) with � = |Ω−|, and a closed form solution is identified.
If α

κ
′
κ

≥ 0; κ
′
, κ ∈ Ωκ\Ω−, the solution of the optimization is identified,

otherwise iterate Step 2.

If the solution, Pt−1, t , is identified in Step 1, the exact solution to the optimization
problem is found and the inequality constraints are inactive. If, however, the solution
Pt−1, t , is identified in Step 2, it is ensured to be a valid transition matrix reproducing
the marginal pdfs, but it need not be the exact solution to the optimization problem.
Lastly, no demonstration of the existence of a solution is currently made.
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