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Abstract This paper describes a proposedmethod for clustering attributes on the basis
of their spatial variability and the uncertainty of cluster membership. The method is
applied to geometallurgical domaining in mining applications. The main objective
of geometallurgical clustering is to ensure consistent feed to a processing plant by
minimising transitions between different types of feed coming from different domains
(clusters). For this purpose, clusters should contain not only similar geometallurgical
characteristics but also be located in as few contiguous and compact spatial locations
as possible so as to maximise the homogeneity of ore delivered to the plant. Most
existing clustering methods applied to geometallurgy have two problems. Firstly, they
are unable to differentiate subsets of attributes at the cluster level and therefore cluster
membership can only be assigned on the basis of exactly identical attributes, which
may not be the case in practice. Secondly, as they do not take account of the spa-
tial relationships they can produce clusters which may be spatially dispersed and/or
overlapped. In the work described in this paper a new clustering method is intro-
duced that integrates three distinct steps to ensure quality clustering. In the first step,
fuzzy membership information is used to minimise compactness and maximise sep-
aration. In the second step, the best subsets of attributes are defined and applied for
domaining purposes. These two steps are iterated to convergence. In the final step a
graph-based labelling method, which takes spatial constraints into account, is used to
produce the final clusters. Three examples are presented to illustrate the application
of the proposed method. These examples demonstrate that the proposed method can
reveal useful relationships among geometallurgical attributes within a clear and com-
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pact spatial structure. The resulting clusters can be used directly in mine planning to
optimise the ore feed to be delivered to the processing plant.

Keywords Geometallurgy · Clustering · Geometallurgical domaining

1 Introduction

Geometallurgy provides new opportunities for mine planning by integrating primary
and response properties to enhance the value of information for decision-making pro-
cesses (Coward et al. 2009, 2013; Coward and Dowd 2015). Even though significant
progress has been made in sensing and collecting geometallurgical data, there is still
a significant gap in achieving effective use of these data in practical applications.
Discriminating among geometallurgical characteristics is a step towards an effective
use of geometallurgy for mine planning, as similar geometallurgical characteristics
will have similar responses in mineral processing. From this perspective, a proper
clustering of in-situ resources based on geometallurgical characteristics is essential to
optimising operations across the entire value chain frommining tomineral processing.

Traditional geological clustering, commonly known as rock type domaining, is
important in understanding the nature of the deposit but it does not necessarily reflect
the responses of the ore to the various processing stages. Geometallurgical clustering
(or domaining) is similar to geological clustering but focusses on the geometallurgical
characteristics of the orebody to provide a basis for integrated optimisation from
mining to processing (Hoal et al. 2013). Clustering is an important problem inmachine
learning and, for unsupervised problems, it is one of the hardest to formulate and solve.
Regression and classification are supervised because the response is known, whereas
clustering partitions data on the basis of similar characteristics and, at the same time,
maximises the separation of those partitions.

The classic cut-off grade approach to ore selection clearly does not consider the
mineral complexity and its responses to processing, such as the energy consumption
due to different hardness and grindability, concentration of deleterious elements, dif-
ferent recovery rates due to different geometallurgical attributes. Clustering based on
geometallurgical attributes has been an active research topic over the past decade.
Having more material classes (clusters) may improve the ability to select the best pro-
cessing route for each parcel of mined ore so that the overall operation is optimised
(Dunham and Vann 2007; Hunt et al. 2013). However, the risk of misclassification
increases as more clusters are defined and this risk must be considered in any geomet-
allurgical clustering.

Geological domains are not necessarily useful in defining processing domains that
are required to reflect characteristics such as the Bond ball mill work index (BMWi),
which relates to the energy used in a ball mill (Bond 1961), or the A×b comminu-
tion index (Napier-Munn et al. 1996), which is a measure of the ore impact breakage
resistance. To remediate this problem, Keeney andWalters (2011) used principal com-
ponent analysis (PCA) (Wold et al. 1987) to project variables onto a two-dimensional
space representing geometallurgical attributes such as mineralogy and grindability
indices. Different classes were then manually defined by drawing polygons around
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spatially contiguous projected points on the basis of mineralogical association. These
classes were used to build predictive models and propagate them into the block model
using standard geostatistical indicator approaches. The same method was used in a
similar case study to define four geometallurgical domains at drill-hole scale which
were then scaled up to block scale by four different methods: sectional interpreta-
tion and wireframe modelling, nearest neighbour assignment, indicator kriging, and
stochastic trend analysis (Newton and Graham 2011). The two comminution parame-
ters, A×b and BMWi, were then populated into the block model by applying specific
regression models in each geometallurgical domain.

Leichliter and Larson (2013) developed a geometallurgical model to cluster a
deposit into two classes for two different recovery circuits: flotation circuit for less
oxidized ore and heap leaching for oxidized ore. They used the variables of assays,
geological mapping, mineralogy, hardness, gravity and floatability attributes to define
the classes. Hunt et al. (2014)manually clustered copper recovery domains on the basis
of Al and Fe content (Low Al–High Fe and High Al–Low Fe). They pre-clustered 24
archetypes using chemical and mineralogical information. For each recovery domain,
they built linear regression models using Al, Cu, Fe and grinding index from drill hole
data and batch flotation tests. These models were scaled up for the block model using
standard geostatistical methods. Nguyen and Keeney (2014) built a geometallurgi-
cal domaining system by hierarchical clustering at sample scale using assay values,
geotechnical logging and petrophysical attributes to model and estimate grindability
response indices. Goodfellow andDimitrakopoulos (2017) performed clustering using
grades and material types to define different ore destination policies, which were used
to optimise scheduling. Garrido et al. (2017) used clay content as a measure to define
the concept of geometallurgical dilution in a manner similar to mining dilution. They
defined geometallurgical dilution as the ratio between the most common clay cluster
and all other clusters. This dilution concept can be used in scheduling optimisation to
avoid excessive changes in clay content in the ore to be sent to the processing plant.

The research discussed above demonstrates the use and ability of geometallurgical
domaining in improving processing decisions and optimising scheduling to process-
ing plants. However, most of this research uses standard clustering methods and the
resulting clusters are then up-scaled to the blockmodel using geostatistical approaches.
There is no explicit imposition of spatial contiguity and compactness in the determi-
nation of clusters. In addition, the uncertainty of the clustering is not assessed. For
the explicit use of the spatial component, Oliver and Webster (1989) incorporated
into the dissimilarity measure a spatial variogram model, using an isotropic expo-
nential structure with parameters of nugget effect, sill and range. Bourgault et al.
(1992) generalised the Oliver and Webster (1989) method by using a multivariate
(co)variogram to account for both spatial and attributes correlations in clustering.
Allard and Guillot (2000) modelled the hard clustering problem as a mosaic of inde-
pendent stationary normal random functions for the univariate case. Three different
optimisation approaches were tested. One approach was based onminimising the ratio
between the variance within a cluster and the variance between clusters. The second
optimisation method used negative log-likelihood to estimate the parameters. Finally,
in the third approach they used the expectation–maximisation (EM) algorithm. The
spatial structure is accounted for by the kriged (estimated) mean of the random func-
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tion and the associated kriging variance. Guillot et al. (2006) assumed that the spatial
component is characterised by a second order stationary random field. The inference
of the parameters that define the covariance function and the clusters are found by
a Markov chain Monte Carlo algorithm. This method uses quantitative and categor-
ical multivariate data. For hard clustering in the univariate case, Carlo et al. (2017)
incorporated the spatial component as a non-stationary Markov random field condi-
tioned to the k-nearest neighbourhood structure. The optimisation was performed by
the EM algorithm. The method allows each cluster to have different spatial interaction
modulated by a spatial covariate. Fouedjio (2016) incorporated the spatial component
in the definition of the dissimilarity measure in the agglomerative hierarchical clus-
tering method. The dissimilarity/similarity between two observations is not a simple
Euclidean measure but rather a function of their spatial correlation. It is not clear what
effect negative correlations in cross-variograms have on this dissimilarity measure and
its performance when the spatial correlation is low, but the method is consistent with
geostatistical approaches.

Based on Gaussian mixture models, Ambroise et al. (1996) proposed a method that
adds a regularisation component, derived from the spatial structure, to the cluster-
ing optimisation formulation. This method takes into account the membership of all
neighbours of any observation for clustering. Romary et al. (2015) incorporated the
spatial component into the distance metric using a hierarchical clustering method. The
distance function takes into account the spatial connectivity introduced by a moving
neighbourhood. Weights for each attribute can be defined by the user and incorporated
into the distance function. The coordinates are also included as attributes.

In addition to clustering methods that incorporate a spatial component, cleaning
realisations of lithofacies in a regular grid, or image, helps to preserve spatial conti-
nuity. Schnetzler (1994) used two image processing pixel-base methods of dilatation
and erosion, to produce cleaner images. The resulting grid does not necessarily repro-
duce the original statistics of the lithofacies. To overcome this issue, a post-process
changes the categorical value of the pixels to match the original statistics. The prob-
ability of accepting changes is defined as the ratio of the kriging variance to the total
variance. This method is only applicable to a regular grid as it was designed to cor-
rect ’noisy’ grids for visualisation purposes. Deutsch (1998) improved the method of
Schnetzler (1994) by using the quantile transformation to correct proportions and pro-
duce less-noisy realisations. Locations in the borders between regions are candidates
for relocation. The maximum a posteriori selection algorithm replaces each location
by the most probable value according to the local neighbourhood structure, based on
three aspects: closeness, conditioning data, and target proportions.

In this paper, a new adapted method is proposed to cluster diverse attributes to build
geometallurgical domains. The method, spatial weighted fuzzy clustering (SWFC), is
based on traditional fuzzy clustering (Dunn 1973) with a novel adaptation to support
mixed attributes together with the capacity to include expert knowledge and spatial
structures. The formulation of the clustering algorithm based on fuzzy clustering,
flexible distancemetrics and feature selection is given in themethodology section. The
mathematics of the proposed SWFCmethod is then described in the following section.
Three case studies are presented to illustrate the application of SWFC, starting with
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a very simple illustrative example, followed by a two-dimensional case, and finally, a
comprehensive three-dimensional synthetic geometallurgical block model.

2 Methodology

Adataset is defined as a set of observations or samples. Each sample is a k-dimensional
vector, where each dimension represents a feature or an attribute. Each attribute can be
a continuous or a categorical variable (ordinal or nominal). The goal of clustering is to
partition the dataset into P sets where samples within a partition are similar and parti-
tions arewell separated. The concept of similaritywithin a cluster (defined as compact-
ness, see below) and separation distance between clusters are key aspects of clustering.

2.1 Definition of Symbols and Indices

Symbols:

P is a set of partitions or clusters.
P is the number of partitions or clusters.
K is the number of dimensions of a multivariate sample.
N is the total number of samples.
S j is the number of samples in the j th cluster.
v j is the centroid of the j th cluster.
m is the fuzzier used in the fuzzy clustering algorithm.
u is the membership matrix with N rows and P columns.
w are the weights of attributes.

Indices:

i indicates the i th sample, 1 <= i <= N . For example xi .
j indicates the j th cluster, 1 <= j <= P . For example v j .
k indicates the kth dimension, 1 <= k <= K . For example wk .

2.2 Hard Clustering

Hard clustering, or crisp clustering in the machine learning literature, seeks a non-
overlapped, hard partition of a dataset and therefore the partitions P are disjoint sets
and each sample belongs only to one partition. One option for clustering is to find the
centroids of clusters that minimise the overall distance of each sample to the centroid
of its cluster, that is,

(v∗
1 , . . . , v

∗
P ) = arg min

v1,...,vP

P∑

j=1

S j∑

i=1

D(xi , v j ),

P∑

j=1

S j = N , (1)

where D is any distance metric, xi is the i th sample belonging to the j th cluster.
There aremany hard clusteringmethods and among themost used areK-Means, for

continuous variables, K-Mode for categorical variables and several variants for mixed
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variables. K-Means is probably the most used clustering method due to its simplicity.
K-Means is solved by a two-stage iterative procedure to minimise the variance of the
distances within clusters. In the first stage the centroids of clusters are assumed to
be fixed and each sample is assigned to the closest centroid. In the second stage, the
centroids are updated as the average of all samples within a cluster. The two stages
are iterated until the overall variance of clusters is minimised. It is common to select
initial centroids at random.A very common variation is to perform an initial dimension
reduction to compress the information into two or three dimensions by PCA (Ding
and He 2004). After the dimensionality has been reduced, K-Means is applied to the
compressed data.

For geometallurgical applications, it is important to quantify the uncertainty of
belonging to a cluster but hard clustering cannot provide this assessment. The fuzzy
clustering method assigns the grade of cluster membership to all samples. This grade
can be used as a probability measure and, therefore, it can provide a simple way to
quantify the uncertainty of clustering.

2.3 Fuzzy Clustering

Fuzzy clustering, as opposed to hard clustering, is a method that seeks to find the grade
of membership of a sample with regard to each cluster (Ruspini 1969). The objective
for optimisation, therefore, changes to

u∗ = arg min
u

N∑

i=1

P∑

j=1

(ui j )
mD(xi , v j ),

P∑

j=1

ui j = 1,∀i = 1, . . . , N , (2)

and

u−1
i j =

P∑

j ′=1

[
D(xi , v j )

D(xi , v j ′)

]2/(m−1)

, (3)

wherem is the fuzzier, which controls the degree of fuzziness.Whenm is close to 1, the
fuzzy partition becomes a hard partition, that is, ui j will be 0 or 1, and whenm is large,
ui j will tend to be uniformly distributed, but always subject to

∑P
j=1 ui j = 1,∀i .

There are several methods to find the optimal membership, for example, fuzzy c-
means, fuzzy k-modes and fuzzy k-prototypes. These methods are not designed to use
mixed attributes and they do not perform feature selection. To take these features into
account, a distance-based approach must be used.

2.4 Distance Metrics

Clustering essentially relies on similarity among observations and therefore the most
critical aspect is the definition of a distancemetric betweenobservations. In general, the
Euclidian distance [Eq. (4)] is the default selection when all attributes are continuous,

123



Math Geosci (2018) 50:895–928 901

however when there is a mix of continuous and categorical attributes the Euclidian
distance

Deuclidean(x, y) =
√√√√

K∑

k=1

(xk − yk)2 (4)

is not the best choice.
For two multivariate attributes x and y, the distance function can be formulated

as the contribution of each dimension to the total distance (Friedman and Meulman
2004), which is given by

D(1)(x, y) =
K∑

k=1

dk(xk, yk). (5)

This formulation gives a high degree of flexibility in the definition of specific distance
functions for different kinds of attributes.

2.4.1 Continuous Attributes

For continuous attributes, such as grades, recovery rates and milling indices, the dis-
tance function is defined as

dk(x, y) = |x − y|/sk, (6)

where sk is any measure of dispersion, such as variance, standard deviation, interquar-
tile range (Friedman and Meulman 2004). The importance of including dispersion
is to avoid distortions with different scale values of the attributes. In this paper the
standard deviation was used as dispersion measure.

2.4.2 Categorical Attributes

For categorical attributes, such as lithology, alteration types and mineralisation styles,
the distance function is defined by a distance matrix, which is a symmetric square
matrix of size M × M , where M is number of unique values of that attribute. For
example, for a categorical attribute taking a set of possible values h1, h2, . . . , hM , the
distance matrix is

⎡

⎢⎢⎢⎢⎢⎢⎣

0 . . . θ1 j . . . θ1M
... 0

...
...

...

θ j1 . . . 0 . . . θ jM
...

...
... 0

...

θM1 . . . θMj . . . 0

⎤

⎥⎥⎥⎥⎥⎥⎦
,
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where each θi j is a fixed value corresponding to the distance between the value hi
and h j and θi j = θ j i ,∀i, j as the distance is symmetric. If the categorical attribute
has no preference among values, θi j can be a constant positive value for all i and
j ∈ 1, . . . , M . For example, when θi j is 1, the matrix becomes the traditional trans-
formation to indicators, and is equivalent to

dk(x, y) =
{
0, if x = y

1, else
. (7)

The flexibility of the matrix distance function allows for the definition of distance
between categorical values, which is very useful for geometallurgical applications
since there are, in general, categorical variables related to rock property attributes. For
example, silication and silicification alterations aremore similar compared to silication
and argillic alteration. In this case, the distance between silication and silicification
alterations should be smaller than that between silication and argillic alterations based
on the definition above. The same can be considered in the case of metamorphic rocks,
for example, phyllite and schist rocks are more similar compared to slate and gneiss.
The distance for the categorical attribute can be defined as

dk(x, y) = θh(x)h(y)/sk, (8)

where h(x) denotes the value of the categorical variable x used in the definition of its
distance matrix.

2.4.3 Targeted Attributes

Another flexibility of the proposed distance function is the option of including a
target value in any distance function. There are situations when similarity needs to be
defined as closeness to a target value; for example, the focus of interest could be on
low, medium and high recoveries. Setting specific low, medium and high values of
recoverieswill tend to yield clusters according to those targets. Friedman andMeulman
(2004) defined a distance function for one and two targets, t and u, as

gk(x, y, t) = max(dk(x, t), dk(y, t)) (9)

and

gk(x, y, t, u) = min(gk(x, y, t), gk(x, y, u)). (10)

These two metrics are not strictly distance metrics because they violate the identity
property, but they work in practice. The problem arises when they are used to compare
two values very close to each other. For example, both distances, gk(x, y, t) and
gk(x + ε, y, t) with x + ε < y, are the same, due to the maximisation criterion in Eq.
(9). To correct this problem a new criterion for a single target t is defined as

gk(x, y, t) = dk(x, t) + dk(y, t) (11)

123



Math Geosci (2018) 50:895–928 903

and its extension to multiple targets T is given by

gk(x, y, T ) = min(gk(x, y, t)),∀t ∈ T . (12)

Including the target is applicable to both continuous and categorical distance functions.

2.5 Feature Selection

In geometallurgy there are, in general, many attributes that can be used for clustering.
The contributions of attributes to clusteringmay vary fromvery important to little or no
importance. It is desirable that the clustering procedure considers the degree of impor-
tance of different attributes, which can sometimes be defined by expert knowledge.
In this context, feature selection is an important procedure to determine the involve-
ment of attributes and their degree of involvement as part of the clustering process.
The most basic method is to consider all permutations of attributes and to select a set
which performs the best. This approach obviously is computationally intensive and,
as the number of attributes increases, the number of possible permutations increases
exponentially. Note that the number of permutations of n attributes without repeti-
tions is 2n − 1, which is equal to 1,048,575 permutations for a reasonable case of 20
attributes. On the other hand, forward and backward methods are greedy methods for
feature selection. The forward method starts with one attribute and iteratively adds the
attribute that most improves the distance metric. The backward method starts with all
variables and removes the least useful attribute one at a time.

Another strategy is based onweights. Each attribute has, as an indicator of its degree
of importance, a positive number within the range of [0, 1] as its weight. This weight
can then be included in the distance metric

D(2)(x, y, w) =
K∑

k=1

wkdk(xk, yk), (13)

where wk is the weight of the k-feature, subject to
∑K

k=1 wk = 1.
In the case of clustering, by default all attributes have the same weight in different

clusters. In practice, it may be desired in some cases to impose different weights for
attributes in different clusters, that is,

D(3)(x, y, w, c) =
K∑

k=1

wckdk(xk, yk), (14)

where wck is the weight of the attribute k in the cluster c, subject to

K∑

k=1

wck = 1,∀c. (15)
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This weight-based feature selection mechanism can also be included in the optimisa-
tion process to determine the best weights for each attribute in each cluster.

As pointed out by Friedman and Meulman (2004), the best minimisation strategy
is to assign all weight to the attribute with the lowest dispersion of observations in
each cluster, which provides an incentive to spread the weights to more attributes, the
distance is defined as

D(4)(x, y, w, c, λ) =
K∑

k=1

d(4)(x, y, w, c, λ) + λ log(K ), (16)

where

d(4)(x, y, w, c, λ) = wckdk(xk, yk) + λwck log(wck). (17)

The parameter λ controls how the weights are spread to other attributes. For larger λ,
the weights will tend to be similar for all attributes whereas for smaller λ the weights
will tend to be given one or a few attributes.

2.6 Spatial Correction

Another important characteristic is the spatial structure. Traditional clustering meth-
ods do not incorporate any spatial structure. In fact, if coordinates of samples are
included as attributes, traditional methods are likely to produce erroneous results as
samples in the same cluster are not necessarily spatially connected and these cluster-
ing procedures will tend to separate them into different clusters on the basis of their
coordinates. Within the geometallurgical context, a cluster (ore parcels with similar
geometallurgical characteristics) may, in many sectors, not be directly spatially con-
nected across the deposit, and therefore a more advanced technique is required for
taking the coordinates into account. As one of the goals of geometallurgical cluster-
ing is to generate clusters as spatially connected as possible, it is essential to apply a
spatial correction to avoid compact zones that include a few observations that belong
to a cluster different to that to which the majority belong.

Spatial correction is conceptually similar to image segmentation. In computer
vision, image segmentation tries to simplify any image by assigning to each pixel
a label (here equivalent to a cluster) from a small set of labels. Image segmentation
has been successfully applied for applications such as cancer detection and automated
driving (López and Malpica 2008; Tarabalka and Charpiat 2013; Tarabalka and Rana
2014; Wang et al. 2016). There are many techniques for image segmentation, but the
graph cut method (Boykov andVeksler 2006) is of special interest in this work because
it can be integrated easily with fuzzy clustering.

The image segmentation, or labelling, problem can be formulated as an energy
minimisation problem in a graph, given by

E(L) =
∑

p∈I
Dp(L p) +

∑

pq∈N
Vpq(L p, Lq), (18)
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where L p represents the label of a pixel p of the image I , Dp is the data penalty
function, Vpq is the interaction potential, or the spatial relationship, and N is the
neighbourhood (spatial connectivity).

Clearly, there are some similarities between the image segmentation problem and
our proposed clustering method. An image corresponds to the entire deposit whereas
a pixel corresponds to an observation and the pixel value corresponds to an attribute
of a sample. The fuzzy membership information (Eq. (3)) of each observation can
be interpreted as the data penalty function. This means that each observation has a
probability of belonging to a cluster and using Dp(L p) = − log(u pL p ) assigns a lower
data cost when the membership probability is higher and vice versa. The interaction
potential Vpq corresponds to the spatial relationship among observations.

The neighbourhood can be determined by the k-nearest neighbour in the case of
unstructured locations, or the surrounding cells in the case of a regular grid, which
defines the connections of data in the form of a graph. Complex interaction potential
functions can be formulated in the form of geostatistical (co)variograms or correlo-
grams as defined in Bourgault et al. (1992), but a simpler one is the Potts model, which
focuses on discontinuities. The Potts model is defined as

Vpq(L p, Lq) = Kpq ∗
{
1, if L p = Lq

0, else
, (19)

where Kpq may be a constant value or the cost of the spatial relationship between p
and q, for example, the distance between p and q. The Potts model favours a clearer
segmentation among clusters, opposite to smooth transitions, which is desired for
domaining.

3 Proposed Method

The proposed method, SWFC, combines two components: (i) an adapted version
of fuzzy clustering, termed weighted fuzzy clustering (WFC), and (ii) the spatial
correction using the graph cut method. Both components are formulated as optimisa-
tion problems.

3.1 Optimisation Formulations

For the proposed fuzzy clustering, the concepts of compactness and separation are
combined in a single objective formulation, and they are defined below.

3.1.1 Compactness

Compactness is defined as

COMP(m, u, v, w, λ) =
P∑

j=1

N∑

i=1

umi j D
(4)(xi , v j , w, j, λ), (20)
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where λ controls the weight values among attributes. The u matrix is given by

u−1
i j =

P∑

j ′=1

K∑

k=1

[
d(4)
k (xi , v j , w, j, λ)

d(4)
k (xi , v j ′ , w, j ′, λ)

]2/(m−1)

. (21)

3.1.2 Separation

Separation is defined as

SE P(m, v, w, λ) =
P∑

j=1

P∑

j ′=1,i �= j ′

K∑

k=1

d(4)
k

(
vik, v j ′k,max

(
w j , w j ′

)
, j, λ

)
. (22)

The maximum criterion in Eq. (22) is required because different clusters may not
share the same weights, in which case the maximum weight is used for the kth dimen-
sion.

3.1.3 Objective

The proposed clustering seeks to minimise compactness of clusters and, at the same
time, to maximise separation between clusters. A single objective formulation that
incorporates both aims is defined as

(v∗, w∗) = arg min
v,w

(
COMP(m, u, v, w, λ) + C

SEP(m, v, w, λ)

)
, (23)

where C is a constant which scales the importance of separation as a criterion in the
optimisation formulation. The lower the value ofC , the less important is any increment
in separation. Our experiments indicate that a value of C = 15 is appropriate to give
more relative importance to compactness over separation but a complete assessment
of the impact of different values is recommended. Other expressions that combine
compactness and separation in a single objective may also be explored.

There are two main obstacles to solving this optimisation problem. The first is
the non-convexity of the problem, meaning that the global minimum is hard to find.
The second is the difficulty of finding the cluster centroids and defining a proper
set of weights that can be used. The first obstacle can be dealt with by the use of
metaheuristics, which is a simple technique to solve optimisation problems with many
local optima. The second obstacle is solved by a two-stage procedure in the proposed
method. In the first stage, the optimal centroids and membership are found for a
given set of fixed weights. In the second stage, the weights are optimised given the
clusters and memberships found in the first stage. These two steps are iterated until
convergence.
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3.2 Implementations

Genetic algorithm (GA) metaheuristic is used not only because of its simplicity, flex-
ibility and good performance, but also because GA has been successfully used as an
optimisation method for clustering (Luchi et al. 2016; Maulik and Bandyopadhyay
2000; Nanda and Panda 2014).

3.2.1 Genetic Algorithm

A genetic algorithm is a metaheuristic optimisation method that emulates the process
of evolution. There are three main concepts involved in GA: selection, crossover and
mutation. The selection operation imitates the natural selection process in which better
individuals have more chances to pass their genes to the next generation. A fitness
value is assigned to each individual, which corresponds to the evaluation function
to be optimised. Crossover produces new individuals combining the genes of the
parents. Mutation produces a new individual by mutating a small part of the gene of
an individual. These three operations are executed for many generations to ensure that
the best final individual of the population is a good local optimum. A complete tutorial
on GA can be found in Whitley (1994).

The hyper-parameters of GA are the number of individuals in the population,
the number of generations, the operations of selection, crossover and mutation, and
the probabilities of crossover and mutation. Given these hyper-parameters, which
depend on the problem to be solved, the GA procedure for minimisation is given by
Algorithm 1.

Algorithm 1: Minimisation by GA
Result: best_individual, best_fitness
Data: npop: size of the population, ngen: number of generations
population ← set of random individuals of size npop;
foreach ind ∈ population do

fitness (ind) ← evaluation(ind);
end
fitness (ind) ← set of random individuals of size npop;
for i teration ← 1 to ngen do

offspring ← selection(population);
foreach ind ∈ offspring do

if rand() < prbcx then ind ← crossover(ind) if rand() < prbmut then ind ←
mutation(ind)
fitness (ind) ← evaluation(ind);
if fitness (ind) < best_fitness then

best_fitness ← fitness (ind);
best_individual ← ind;

end
end

end
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The most important design aspect of any GA is the solution codification (genome),
which is problem dependent. For a given problem codification, its corresponding
crossover and mutation operations must also be defined. In our implementations, the
crossover function is the standard uniform crossover. Selection is performed by tour-
nament selection.

3.2.2 GA for Optimising Centroids

For the first stage discussed above, the problem reduces to finding the cluster centroids
that minimise the objective function given in Eq. (23). Thus, the genome in this case
represents the centroids of each cluster.

The initial centroids are selected from samples at random. The mutation operation
perturbs one dimension of one centroid: for continuous variables, the perturbation
corresponds to a random value drawn from a normal distributionN (μ = 0, σ = 0.1),
whereas for categorical variables, the perturbation simply selects a different value of
their categories at random.

The evaluation function for optimising centroids is given by Algorithm 2 and the
mutation operator is given by Algorithm 3. The function dim(A) returns the number
of the rows and columns of a matrix A.

Algorithm 2: Evaluate clustering criteria for optimising centroids

Result: compactness + C
separation

Data: V : centroids
Parameters: m: the fuzzier, λ: weight strenght, w: weights, C : constant for the contribution of

separation
U ← Equation (21);
compactness ← Equation (20);
separation ← Equation (22);

Algorithm 3: Mutation for finding centroids
Result: mutated V
Data: V : centroids
Parameters: C : set of categorical values for the attribute k
P, K ← dim(V );
j ← randint (1, P);
k ← randint (1, K );
if attribute k is continuous then V [ j, k] ← V [ j, k] + randnorm(0, 0.1) else V [ j, k] ← select at
random from C − V [ j, k]

3.2.3 GA for Optimising Weights

In the second stage, the weights are optimised with fixed centroids, and the problem
reduces to finding theweights thatminimise the objective function given inEq. (23).As
the weights are within the range [0, 1], the mutation adds a small number drawn from
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the normal distribution, N (μ = 0.0, σ = 0.01). Two integer numbers are selected at
random, one for a cluster and the other for an attribute to modify. Note that the weights
must sum to one. In addition, expert knowledge can be used to set a specific weight
to an attribute add the perturbation can preserve these values.

The optimisation of weights is given by Algorithm 4 and the mutation operator by
Algorithm 5.

Algorithm 4: Evaluate clustering criteria for optimising weights

Result: compactness + C
separation

Data: W : weights
Parameters: m: the fuzzier, λ: weight strenght, V : centroids, C : constant for the contribution of

separation
U ← Equation (21);
compactness ← Equation (20);
separation ← Equation (22);

Algorithm 5: Mutation for optimising weights
Result: mutated W
Data: W : weights
P, K ← dim(W );
j ← randint (1, P);
k ← randint (1, K );
W [ j, k] ← W [ j, k] + randnorm(0, 0.01);
//Normalisation
W [ j] = W [ j]/ ∑K

k=1 W [ j, k], ∀ j ;

3.2.4 Proposed Clustering Method (SWFC)

The final proposed method is shown in Algorithm 6 and the spatial correction is given
by Algorithm 7.

The functionBuildNeighbourhood(locations) returns the edges of the spatial struc-
ture of the locations. The spatial structure can be defined using Delaunay tessellation,
k-nearest neighbour, or the surrounding blocks in a structured block model.

3.2.5 Efficiency and Scalability

The efficiency of SWFC relies mainly on its two components, the optimisation of the
centroids and weights and the spatial correction by the graph-cut method. When the
centroids are optimised, GA calculates, for each individual, the membership matrix,
separation and compactness. The complexity of the calculation of the membership
matrix is O(N ∗ P2), separation is O(N ∗ P ∗ K ), and compactness is O(K ∗ P2).
As usually N � K and assuming that K > P , an upper bound for the complexity of
the evaluation of each individual is O(N ∗ P ∗ K ).

TheGA algorithm needs to evaluate npop individuals over ngen generations, there-
fore, the total complexity of the WFC algorithm is O(N ∗ P ∗ K ∗ npop ∗ ngen). Our
results indicate that WFC converges in less than 20 iterations (main loop in Algorithm
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Algorithm 6: Spatial weighted fuzzy clustering
Result: clusters: clusters assigned to each sample, U : membership matrix, V : centroids, W :

weights,
Data: locations: coordinates of observations, samples: multivariate attributes of observations, P:

number of clusters
Parameters: m: the fuzzier, λ: weight strength, V : centroids, C : constant for the contribution of

separation,
//N samples of K attributes
N , K ← dim(samples);
//start with uniform weights on all attributes
CurrentW ← ones(P, K );
CurrentW ← CurrentW/K ;
repeat

//stage1
V ← OptimiseCentroids(CurrentW, samples, P,C);
//stage2
W ← OptimiseWeights(CurrentW, V,m,C);
CurrentW ← W ;

until
∑ |W − CurrentW | < ε;

//Spatial correction
clusters ← SpatialCorrection(locations,U );

Algorithm 7: Spatial Correction by graph cut method
Result: clusters: clusters assigned to each sample
Data: U : membership matrix, locations: coordinates of observations,
//N samples and P clusters
N , P ← dim(U );
//Use K-Nearest-Neighbour or regular grid
edges ← BuildNeighbourhood(locations);
//Data penalty is lower for higher probabilities and higher for lower probabilities
D ← − log(U );
//Interaction potential by Potts model
for i ← 1 to P do

for j ← 1 to P do
if i = j then V [i, j] ← 0 else V [i, j] ← 1

end
end
clusters ← GraphCut(edges,D,V );

6). The complexity of the graph-cut algorithm used isO(N ∗ P2) (Boykov and Veksler
2006). The complexity of the fuzzy clustering is comparable to theK-Means algorithm
at each iteration, but the difference is in the optimisation procedure, where SWFC is
more computational intensive. Nevertheless, it overcomes two aspects: the use of GA
helps in escaping from local minima and both fuzzy clustering and feature selection
are jointly optimised. The complexity of SWFC does not have a high impact on the
number of samples N , since it scales linearly as a function of N . Also, P is usually
small for practical reasons (no greater than 10) and K is, in general, less than 100.

GA is a stochastic optimisationmethod and the results may be affected by the initial
random seed. Our experiments showed that different seeds produce very stable results.
All results reported are based on a single, representative run.
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3.2.6 Assessing the Number of Clusters

There is no common choice for the number of clusters and this selection largely
depends on the data and the application of the clusters. However, there are several
indices that can be used to assess the cluster quality. The silhouette index (SI) [Eq. (24)]
comprises compactness and separation (Rousseeuw 1987). This index is a real number
in the range [−1,1].An index close to−1means there is little or no cluster structure and
close to 1 indicates perfect compactness within clusters and clear separation between
clusters. This index uses only the distance among observations and it is defined as

SI = 1

N

N∑

k=1

SIk (24)

where

SIk = 1

N

N∑

i=1

((bi − ai ))/(max(bi − ai )), (25)

N is the total number of points, ai is the average distance between point i and all other
points in its own cluster, and bi is the minimum of the average distances between i
and points in other clusters.

Another index for assessing the quality of clusters is the Davies-Bouldin index
(DBI), which describes how well the clustering has been done as measured by the
distance between observations and cluster centroids. Values of this index close to 0
suggest better cluster structures (Davies and Bouldin 1979). DBI is calculated using
the following equations

DBI = 1

P

P∑

i=1

Di , (26)

Di = max(Ri j ), i = 1, . . . , P, j = 1, . . . , P, (27)

Ri j = Ti + Tj

Mi j
, (28)

Mi j =
(

K∑

k=1

|vik − v jk |p
)1/p

, (29)

Ti =
⎛

⎝ 1

Si

Si∑

j=1

|x j − vi |p
⎞

⎠
1/p

, (30)

with p = 2 for the Euclidean norm.
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Table 1 Parameters used in the algorithms

Parameter Value Observation

npop 100 Population size

ngen 100 Number of generations

prbcx 0.8 Probability of crossover

prbmut 0.4 Probability of mutation

Tournament size 9 9 Individuals used in the tournament selection

λ 0.25 Weight strength

m 2.0 Fuzzier

C 15 Constant for the contribution of separation

4 Application

Three examples are presented in this paper to demonstrate the application of the
proposed method. The first example is a simple synthetic case that illustrates the dif-
ficulties of traditional methods when clustering using different attributes. The second
example is a cross-section of a simulated copper porphyry deposit (Garrido et al.
2017). The third example is a full synthetic geometallurgical block model (Lishchuk
2016).

The results of K-Means and PCA clustering methods are compared. The spatial
correction also is applied to K-Means and PCA, using the membership matrix as the
inverse of the squared distance between each sample to the centroids, given by

ui j = 1/
∥∥xi − v j

∥∥2
∑P

j ′=1 1/
∥∥xi − v j ′

∥∥2
. (31)

K-Means andPCAwith spatial correction are denoted bySK-Means andSPCArespec-
tively. Table 1 shows the values of the parameters used in the algorithms for the three
examples.

4.1 Illustrative Example

In this example, there are four attributes: grades of copper, gold and iron, and recovery
of copper, denoted as Cu, Au, Fe and Rec respectively. Although these attributes do not
usually follow normal distributions, for the sake of simplicity, they were taken from
normal distributions, but their means and standard deviations are different so as to
form four clusters, see Table 2. All attributes follow their default normal distributions
but for specific clusters, they follow normal distributions with different means and
lower variances. Cluster 1 includes only Cu, Fe and Rec; cluster 2: Cu, Fe and Au;
cluster 3: Cu, Fe, Rec; and cluster 4 only Fe and Au.

A spatial component was assigned to each cluster: half of cluster 1 is uni-
formly located in the region of [(10.0−35.0), (10.0−35.0)] and the other half in
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Table 2 The design of four clusters based on combination of Cu, Fe, Au and Rec

Attribute Default C1 (red) C2 (blue) C3 (green) C4 (yellow)

Cu N (0.68, 0.3) N (0.8, 0.05) N (0.9, 0.05) N (0.4, 0.05)

Fe N (2.56, 1.15) N (1.5, 0.1) N (1.2, 0.1) N (4.0, 0.1)

Au N (21.5, 11.08) N (30.0, 1.0) N (15.0, 1.0) N (40.0, 1.0)

Rec N (81.43, 6.04) N (88.0, 1.0) N (70.0, 2.0)

Fig. 1 Scatter plot of true four clusters

[(65.0−85.0), (65.0−85.0)]; all of cluster 2 is located uniformly in the region of
[(0.0−100.0), (30.0−70.0)]; all of cluster 3 is located uniformly in the region
of [(5.0−45.0), (65.0−100.0)]; and finally, cluster 4 is located uniformly in
[(55.0−100.0), (0.0−35.0)].

The illustrative example comprises 200 samples of cluster 1, 200 samples of
cluster 2, 400 samples of cluster 3, and 100 samples of cluster 4. Of these 900 sam-
ples, the locations of 100 samples are randomised uniformly for the entire region of
[(0.0−100.0), (0.0−100.0)]. Figure 1 shows the final locations of all samples. In this
example, the number of clusters is known and therefore, the example can be used to
assess the efficacy of different clustering methods. Both K-Means and PCA perform
better with three clusters, although PCA has similar results with four clusters. The pro-
posed method, with or without spatial correction, significantly outperforms K-Means
and PCA in finding the correct number of clusters (Table 3).

Using four clusters, the performance of different clustering methods can be further
assessed. The imposed spatial structure and added noise make it difficult for the K-
means clustering method to reproduce four clusters (Fig. 2a). The poor performance
of the K-means method is clearly shown in the figure in which green and blue clusters
are correctly identified but the other two clusters are not. In addition, the importance
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Table 3 Davies-Bouldin and
silhouette indices of K-Means,
PCA, and WFC for different
number of clusters

Clusters K-Means PCA WFC

DBI SI DBI SI DBI SI

2 0.852 0.504 1.026 0.496 0.234 0.802

3 0.819 0.537 0.801 0.537 0.306 0.776

4 0.974 0.427 0.818 0.520 0.185 0.866

5 0.907 0.452 0.856 0.442 1.771 0.577

6 0.923 0.439 0.931 0.426 1.231 0.600

of different attributes is not identified. For example, the Cu attribute is well clustered
(good separation and low variance) across all clusters (Fig. 3a) despite the fact that no
Cu dependency is imposed in cluster 4 (Table 2).

PCA overcomes some of the problems of K-Means. Two components were used.
Table 4 depicts the contribution of each component to the total variance.When the data
are projected, and therefore compressed to only two dimensions, the cluster structure
can be clearly seen by visual inspection (Fig. 4). Despite the obvious cluster structure,
PCAclustering performs better thanK-Means but clusters 1 and 4 are stillmisclassified
to some extent (Fig. 5).

There are two hyper-parameters that need to be defined to apply SWFC: the fuzzier
m and the parameter λ for weights. Most cases reported in the literature suggest that
a value of 2.0 for m is a reasonable choice to account for uncertainty (Pal and Bezdek
1995; Ren et al. 2016), and m = 2.0 is used in all applications of SWFC discussed
in this paper. For parameter λ, there is no rule of thumb guidance in the literature. A
small value close to 0 means that all weight will be assigned to one attribute, while
a large value will tend to assign the same weights to all attributes. For this example,
the influences of different λ values between 0.05 and 1.0 on the weights assigned to
different attributes are shown in Fig. 6. This figure is useful for assessing the impact
of λ on the number of attributes that are considered significant for finding the cluster
structure so that an appropriate λ value can be selected. For this example, a value of
0.25 was selected for λ because it tends to give importance to two or three attributes
for clustering, which matches the number used to create the clusters in the first place.

The spatial correction was also applied to the three clustering algorithms,K-Means,
PCA andWFC, to compare the effect of this correction. The spatial correction applied
to K-Means results in the loss of cluster 1 (Fig. 5b), due to its weak membership
values, which are reassigned to cluster 4 (Fig. 2b). Although the correction improves
PCA compared to K-Means, its performance remains the same as WFC (Fig. 2e).
The spatial correction applied to PCA gives results that are similar to SWFC (Fig. 5d,
f). WFC is impressively exact, even identifying the correct clusters for the randomly
located observations. The performance of SWFC slightly decreases but it still signifi-
cantly outperforms SK-Means (Fig. 5b, f). The spatial correction alters the final cluster
membership of only a few observations in order to make the clusters more spatially
compact (Fig. 5f). The boxplots for WFC and SWFC show no substantial difference
in their performance statistics (Fig. 3e, f).
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(a) (b)

(c) (d)

(e) (f)

Fig. 2 Scatter plot of clusters found by a K-Means, b SK-Means, c PCA, d SPCA, e WFC, and f SWFC

This simple illustrative example clearly shows that traditional methods struggle
to find the cluster structure correctly when those clusters are defined by different
attributes. The proposed method significantly outperforms the traditional methods
and can perfectly reveal the cluster structure in this case as well as producing compact
clusters in terms of spatial connectivity.
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(a) (b)

(c) (d)

(e) (f)

Fig. 3 Boxplots of all attributes in clusters found by a K-Means, b SK-Means, c PCA, d SPCA, e WFC,
and f SWFC. Attributes from top to bottom are Cu, Fe, Au and Re
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Table 4 Explained variance of
PCA components

Component Explained variance (%)

1 53.55

2 30.14

Fig. 4 Projection on first and second principal components of PCA

4.2 Simulated Copper Porphyry Deposit Example

This example is a simulated deposit based on actual data from a copper porphyry
deposit (Garrido et al. 2017). The orebody is mainly dominated by disseminated chal-
copyrite and with four categories of large, moderate, small and minimum presence
of clay. A cross-section, comprising 6462 blocks is used to illustrate the results of
SWFC in two dimensions. The first level clustering results in 4268 blocks of waste
and 2194 blocks of ore. The ore cluster has two grade elements (copper and arsenic),
two response attributes (copper recovery and bond index), and one categorical attribute
(presence of clay in low, medium and high degree). SWFC is applied to the ore super-
cluster to find four sub-clusters using these 5 attributes. For PCA clustering, three
principal components were used. Table 5 depicts the explained variance of each com-
ponent of the total variance.

Cluster 1 is characterised by high content of clay (category 2), low grade values
of copper and arsenic (detection limit of 20 for arsenic), and low recovery due to the
clay content and low hardness. Cluster 2 is characterised by medium content of clay
(category 1), low grade values of copper and arsenic, and slightly higher recovery.
Interestingly, SWFC has identified two additional clusters for low content of clay
(cluster 3 and 4), which are characterised by high recovery and high bond index but
are well separated by arsenic content (low and high), see Table 6.
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(a) (b)

(c) (d)

(e) (f)

Fig. 5 Confusion matrix of clusters found by a K-Means, b SK-Means, c PCA, d SPCA, e WFC, and f
SWFC

123



Math Geosci (2018) 50:895–928 919

Fig. 6 Weights (left y-axis) of the four attributes for different values of λ (x-axis). The black points indicate
the number of weights greater than 0.05 (right y-axis) at each value of λ

Table 5 Explained variance of
PCA components

Component Explained variance (%)

1 53.15

2 17.13

3 14.50

Table 6 Centroids of the four clusters found by SWFC

Cluster Clay Copper Arsenic Recovery Bond index

1 2 0.436 20.00 76.48 10.65

2 1 0.454 20.00 83.03 12.70

3 0 0.968 63.34 94.11 16.04

4 0 0.780 20.00 94.98 16.49

Table 7 lists the weights assigned to different attributes in SWFC, which effectively
shows the degree of importance of each attribute for each cluster. Clay content is the
most important attribute for all clusters, which is consistent with the copper recovery
performance and hardness as high clay content is related to low copper recovery and
softer rocks. The second most relevant attribute differs for different clusters. Arsenic
content is more relevant for clusters 1, 2 and 4, whereas recovery is for cluster 3. One
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Table 7 Weights of the four clusters found by SWFC

Cluster Clay Copper Arsenic Recovery Bond index

1 0.5275 0.0971 0.3152 0.007 0.0533

2 0.4017 0.1102 0.3877 0.0357 0.0647

3 0.5159 0.0241 0.0034 0.2786 0.1780

4 0.4595 0.0118 0.2403 0.2039 0.0846

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Fig. 7 Statistics of the four most relevant attributes for all observations and for the four clusters by a–d
K-Means, e–h PCA, and i–l WFC. Attributes are from left to right: clay content, copper, arsenic, and
recovery

interpretation is that SWFC was capable of separating clusters 3 and 4 in terms of
arsenic attribute although both have low clay content.

Figure 7 shows the statistics of the four most relevant attributes for K-Means, PCA
and WFC. Clay content is well separated, but K-Means separates clays in a different
way. The clusters found by PCA and WFC look very similar, except for the size of
cluster 3. For all methods, copper grade is split into two main groups: low and high.
High content of arsenic is very relevant for cluster 3 in both PCA and WFC, whereas
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(a) (b)

(c) (d)

(e) (f)

Fig. 8 Map of a K-Means, b SK-Means, c PCA, d SPCA, e WFC, and f SWFC. Black represents waste
rock. Red, Yellow, Green and Blue represent the four clusters

recovery iswell separated among clusters. In general, PCAandWFCperform similarly
and both are superior to K-Means.

The spatial connectivity of the clusters is another important aspect for SWFC. The
results in terms of spatial connectivity for SK-Means, SPCA, and SWFC are shown
in Fig. 8. SK-Means does not preserve cluster 2 (Fig. 8a, b) and SPCA does not
preserve cluster 4 (Fig. 8c, d) due to the poor connectivity of the clusters. For WFC,
there are several blocks in cluster 4 (blue) that are spatially unconnected (Fig. 8e); the
spatial correction generates much more spatially compact clusters (Fig. 8f), which is
a desirable property achieved by the proposed method.

This simple two-dimensional case study illustrates the power of SWFC to produce
compact and well separated clusters while preserving their spatial connectivity. It does
so by selecting the appropriate attributes relevant for the cluster structure using the
optimisation technique discussed above. The resulting clusters can then be muchmore
effectively used for scheduling. Taking into account the characteristics of each cluster,
for example, the scheduler may avoid too many jumps between different clusters in
order to derive sets of blocks with similar characteristics to be delivered to the plant
for a particular time period.

4.3 Simulated Geometallurgical Block Model Example

This geometallurgical block model was built based on the Malmberget iron deposit
in northern Sweden using simulation modules for geology, sampling, production and
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Table 8 Attribute descriptions of the geometallurgical block model

Type of attribute Attributes Observation

Rock properties Lithology, specific gravity Lithology codes:

1: Semi-massive ore. Feldspar rich
dominated with albite

2: Massive ore. Amphibole
dominated with minor apatite and
biotite

3: Massive ore. Apatite dominated
with minor Amphibole

Mineral groups Magnetite (Mgt), Hematite
(Hem), Albite (Ab), Actinolite
(Act), Apatite (Ap), Biotite (Bt)

Fe minerals: magnetite and hematite

Gangue: albite, actinolite, Apatite
and biotite

Actinolite has some recoverable
content of Fe

Chemical elements O, F, Na, Mg, Al, Si, P, Cl, K, Ca,
Ti, V, Mn and Fe

Processing Iron recovery Recovery in magnetic separation
process

mining economics. The complete methodology used to build this geometallurgical
block can be found in (Lishchuk 2016; Lund et al. 2015).
This geometallurgical model has 50× 50× 50 number of blocks of size 5× 5× 5m,
where 21,710of themare ore blocks.The23 attributes used for clustering are: lithology,
6 mineral grades, 14 chemical element grades, specific gravity, and iron recovery
(Table 8). In this example, the focus is on building geometallurgical domains for iron
recovery. Lithology should play an important role in clustering, but lithology alone
in this case is not sufficient to discriminate iron recovery. Finding the other attributes
that can contribute to a better identification of clusters is very important.

The flexibility of SWFC is illustrated by setting the objective as achieving a geomet-
allurgical domaining for Fe recovery. To do so, the targeted distance is used for iron
recovery with the values at 15, 50 and 85% percentiles of its distribution, correspond-
ing to recovery values of 82.41, 88.98 and 91.22% respectively, and a weight of 15%
was used for the recovery attribute. These conditions provide a guide for SWFC to
find three clusters. The purpose of imposing the target and weight to Fe recovery is
to find which secondary attributes would be useful for clustering the structure as it
is expected that discovered clusters will tend to have Fe recovery values close to the
defined targets.

The number of clusters is set to three according to both DBI and SI values (Table
9). For PCA clustering, three principal components were used. Table 10 shows the
explained variance of each component of the total variance.

The results for apatite, magnetite, iron, iron recovery, and rock type are used to
compare the performance of the clustering methods. Some interesting observations
can be made about the centroids of the three clusters (Table 11). The targeted distance
applied to iron recovery is very well represented by the SWFC method, but not so by
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Table 9 DBI and SI of
K-Means, PCA, and WFC for
different number of clusters

Clusters K-Means PCA WFC

DBI SI DBI SI DBI SI

2 0.98 0.50 1.05 0.46 0.53 0.69

3 0.95 0.39 1.38 0.33 0.48 0.71

4 0.96 0.44 0.97 0.43 0.63 0.61

5 1.20 0.43 1.27 0.41 1.00 0.53

6 1.21 0.42 1.38 0.41 1.56 0.42

7 1.24 0.41 1.28 0.39 2.57 0.44

8 1.36 0.40 1.27 0.31 2.59 0.36

9 1.34 0.32 1.38 0.30 4.13 0.36

10 1.41 0.32 1.32 0.30 6.40 0.29

Table 10 Explained variance of
PCA components

Component Explained variance (%)

1 50.51

2 24.65

3 12.26

Table 11 Centroids of the three clusters for lithology, apatite, magnetite, iron and iron recovery found by
SK-Means, SPCA and SFWC

Cluster Lithology Apatite Magnetite Iron Iron recovery

SK-Means

1 3 2.85 87.96 64.37 89.60

2 1 3.81 62.20 46.33 87.94

3 2 2.14 81.48 61.07 84.33

SPCA

1 3 2.73 87.78 64.66 89.71

2 1 3.49 65.04 48.35 88.51

3 2 2.30 81.29 60.64 83.07

SWFC

1 3 4.51 88.08 64.87 91.22

2 1 4.88 57.05 42.98 88.98

3 2 1.82 72.87 54.83 82.41

SK-Means and SPCA because they do not use targeted distance functions. Lithology is
also well discriminated and the positive correlation between apatite and iron recovery
is maintained. Apatite is separated only as low content for cluster 3 in SWFC, whereas
SK-Means and SPCA do not separate apatite to the same extent in cluster 3 but are
similar for clusters 1 and 2. The centroids of the three clusters for iron grade show a
similar separation for the three methods.
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(a)

(b)

(c)

(d)

(e)

Fig. 9 Distribution of a Lithology, b Fe, c Fe recovery, d Apatite, and e Magnetite. Clustering methods
from left to right are: K-Means, SK-Means, PCA, SPCA, WFC and SWFC

Figure 9 shows the statistics of the six clustering methods. SPCA separates each
lithology into each cluster as does SK-Means. SWFC clusters lithology in a different
way, for example, cluster 1 contains the three lithologies, but clusters 2 and 3 contain
only lithology 1 and 3 respectively. This difference may be explained by the fact
that WFC and SWFC seek the imposed targets for iron recovery. A summary of the
differences of clustering among K-Means, PCA and WFC is given in Fig. 10a. K-
Means shows some differences compared to PCA andWFC, while PCA andWFC are
very similar in performance (Fig. 10b).

This case study of a complete three-dimensional geometallurgical block model
demonstrates the flexibility of applying SWFC in practice. The objective was for the
three clusters to be centred in specific values of iron recovery,whichwas fully achieved.
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(a)

(b)

Fig. 10 a Pairwise cluster discrepancy between K-Means, PCA and WFC. b Pairwise cluster comparison
between each clustering method before and after spatial correction

The spatial correction step in the three clustering methods makes some changes in the
final membership (Fig. 10b). Although these changes are small, they are worthwhile
as they ensure that the derived clusters are as spatially compact as possible.

5 Conclusions and Future Work

Identifying geometallurgical clusters or domains in mining applications is very impor-
tant not just to characterise geology and geochemistry, but also to assist in choosing
optimal processing routes for parcels of ore with different properties. Geometallurgy
is increasingly incorporating more information and more variables, which makes it
more difficult to find useful cluster structures for mine planning purposes.

In this paper, the difficulty of traditional clustering methods is demonstrated when
dealing with multivariate scenarios in which the cluster structures depend on different
attributes, as is commonly the case in practice. A new clustering method is proposed
which is based on fuzzy clustering but incorporates additional valuable characteristics
such as feature selection, spatial correction and the flexibility of including expert
knowledge. Expert knowledge in the proposed method can be incorporated through
an appropriate distance definition (categorical or targeted distances) and forcing a
specific weight to a particular attribute.

Three case studies were presented to illustrate the application of SWFC. The first
case study was explicitly designed to construct clusters that depend on different sub-
sets of attributes. While the traditional methods fail to discover the true clusters, WFC
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and SWFC can readily find the designed cluster structure and SWFC also constructs
well-connected clusters by incorporating spatial information. The second case study
was used to illustrate graphically the effectiveness of SWFC using a two-dimensional
synthetic geometallurgical model. The clusters found by SWFC are spatially well-
connected and the most compact. Finally, SWFC was applied to a complete synthetic
geometallurgical block model to demonstrate its capability and flexibility in build-
ing clusters, which in this case are geometallurgical domains for iron recovery. By
imposing a targeted distance for iron recovery and weight, SWFC can find the rele-
vant secondary attributes that control the cluster structures. In summary, SWFC has
been demonstrated to be capable of defining meaningful geometallurgical domains for
different application scales, based either on samples or complete block models.

In future research, the geometallurgical uncertainty will also take into account for
the clustering method. Uncertainty can be introduced by generating many realisations
of the blockmodel. The SWFCmethod can then include the distances between realisa-
tions to account for uncertainty. Also, the interaction potential could be reformulated
to incorporate some form of multivariate spatial correlation, such as semivariogram or
correlogram, instead of the Potts model. It is also necessary to investigate an optimisa-
tion formulation that can include the minimisation of compactness, maximisation of
separation, feature selection and spatial correction all within a single integrated step.
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