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Abstract In each step of geological modeling, errors have an impact on measure-
ments and workflow processes and, so, have consequences that challenge accurate
three-dimensional geological modeling. In the context of classical error theory, for
now, only spatial positional error is considered, acknowledging that temporal, attribute,
and ontological errors—and many others—are part of the complete error budget. Exist-
ing methods usually assumed that a single error distribution (Gaussian) exists across
all kinds of spatial data. Yet, across, and even within, different kinds of raw data
(such as borehole logs, user-defined geological sections, and geological maps), differ-
ent types of positional error distributions may exist. Most statistical methods make a
priori assumptions about error distributions that impact their explanatory power. Con-
sequently, analyzing errors in multi-source and conflated data for geological modeling
remains a grand challenge in geological modeling. In this study, a novel approach is
presented regarding the analysis of one-dimensional multiple errors in the raw data
used for model geological structures. The analysis is based on the relationship between
spatial error distributions and different geological attributes. By assuming that the con-
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tact points of a geological subsurface are decided by the geological attributes related
to both sides of the subsurface, this assumption means that the spatial error of geolog-
ical contacts can be transferred into specific probabilities of all the related geological
attributes at each three-dimensional point, which is termed the “geological attribute
probability”. Both a normal distribution and a continuous uniform distribution were
transferred into geological attribute probabilities, allowing different kinds of spatial
error distributions to be summed directly after the transformation. On cross-points with
multiple raw data with errors that follow different kinds of distributions, an entropy-
based weight was given to each type of data to calculate the final probabilities. The
weighting value at each point in space is decided by the related geological attribute
probabilities. In a test application that accounted for the best estimates of geological
contacts, the experimental results showed the following: (1) for line segments, the
band shape of geological attribute probabilities matched that of existing error models;
and (2) the geological attribute probabilities directly show the error distribution and
are an effective way of describing multiple error distributions among the input data.

Keywords Multiple error distribution - Entropy-based weight - Geological attribute
probability

1 Introduction

With the goal of knowing the true spatial distribution of geological conditions,
three-dimensional geological modeling employs a series of techniques and three-
dimensional structural or geostatistical models for applications such as geological
mapping, civil engineering, reservoir appraisal, mineral targeting, and risk assessment
(Bistacchi et al. 2008; Collon et al. 2015; Royse 2010; Wu et al. 2015). In such appli-
cations, error in the three-dimensional model can translate into serious consequences
of risk, failure, or cost. To minimize the error, measurements of geological attributes
are made at points, along transects, as depth fields, or as a two-dimensional mapped
surface. Three-dimensional models of a subsurface or geological attribute field are
then assembled based on the different datasets, such as borehole data, cross-sections,
remotely sensed variables, and geological maps. These data help geologists to visu-
alize, understand, and quantify the geological processes under way and the nature of
the current status of the geological form that these processes have created. Ideally,
all available multi-source data are reconciled together or conflated to construct a reli-
able three-dimensional geological model (Fasani et al. 2013; Kaufmann and Martin
2008; Li et al. 2013; Lindsay et al. 2012). However, each type of data carries its
own uncertainties. Errors and uncertainties due to combining these pieces of data can
be analyzed in addition to the uncertainties of the individual datasets. Combinatorial
errors and uncertainty may, consequently, affect the precision of three-dimensional
models and the results of any subsequent assessment or calculation. This problem is
widely recognized to be a major challenge in each step of three-dimensional geologi-
cal model creation (Caumon et al. 2009; Jessell et al. 2010; Jones et al. 2004; Li et al.
2013; Tacher et al. 2006; Wellmann and Regenauer-Lieb 2012).
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In recent years, strategies for error and uncertainty assessments of raw data and
model structures including topology have been proposed for different types of appli-
cations (Jones et al. 2004; Li et al. 2013; Lindsay et al. 2012, 2013; Tacher et al. 2006;
Thiele et al. 2016; Wellmann and Regenauer-Lieb 2012). A framework and quality
detection technology for error analysis of three-dimensional geological modeling data
has been presented (Zhu and Zhuang 2010). However, the assessment and accounting
of the impact of errors during the process of constructing a three-dimensional geolog-
ical model remain unclear because the errors in the input data are random, diversely
distributed, and vague. Yet, existing geostatistical methods usually assume that all
errors follow a single distribution. Therefore, it is necessary to build an aggregated
theoretical model for multiple errors analysis that can reveal the complete impact of
error and uncertainty on constructed three-dimensional geological models.

While constructing three-dimensional geological structural models, input data are
usually transferred into geological contact information according to the rock type or
other geological properties. Picking contacts from cuttings, cores, or logs is often
performed by geologists or geophysicists. Many studies by petrophysicists describe
methods to analyze errors or uncertainties of velocity and geological structures while
processing seismic images (Fomel 1994; Fomel and Landa 2014; Pon and Lines 2005;
Thore et al. 2002; Grubb et al. 2001). When constructing a three-dimensional geolog-
ical structure, the impact of errors and uncertainties from geophysical interpretation,
field observation, etc. on the three-dimensional structures should be a special concern.
Therefore, this study discusses methods for error analysis of the input data, rather than
error analysis approaches for picking contacts.

From the viewpoint of mapping, a novel approach is presented to simulate the
impact of varying distributions of multiple errors in geological contacts obtained from
different types of data sources for constructing three-dimensional geological structural
models. Two assumptions are made: (1) each type of data has spatial errors regard-
less of data consistency, and its error follows one type of probability density function
(pdf); and (2) the errors that exist in different data sources are independent, which
means that input data may be provided by different geologists or agencies; there-
fore, Bayes’ theorem cannot be directly utilized in aggregating errors. The proposed
method is based on the relationship between a geological attribute (such as lithological
character) distribution and the spatial error distribution. Additionally, the method is
focusing on analyzing error distributions without multiple z-values for the same x and
y location. This study aims to (1) construct the error distribution relationship between
the spatial errors and their related geological attributes within geological databases
and (2) construct an aggregate model for a one-dimensional multiple errors analysis
model at cross-points. A cross-point is the intersection in three-dimensional space
of planar or linear geological features. The proposed approach is novel in that (1) it
addresses multiple errors in one workflow simultaneously and (2) the error distribution
is generated by a stochastic variable around all the boundaries instead of only at the
contact points. This provides a more realistic model of the actual pattern of error and
uncertainty surrounding the features in a geological model, for example, along fault
lines and contacts.
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2 Related Research

Error in three-dimensional geological modeling is mainly attributed to three compo-
nents: error in measurements in the input data, error generated during the modeling
process, and errors caused by imprecise knowledge (Bardossy and Fodor 2004; Mann
1993; Wellmann et al. 2010). Error from the input data is a type of observation error
that exists in most raw data. Examples of measurement error of raw data include incor-
rect orientation of the structure and imprecise interpretation, such as the stratigraphic
information of borehole cores or the geological interpretation along cross-sections
using seismic data or borehole information. This study focuses on analyzing the dis-
tribution of this type of error. Error generated during the modeling process is a type of
stochastic, and inherently random, error that shows up in the process of interpolation
of the subsurface or is caused by combining data. The last category of uncertainty
refers to the result of incomplete or imprecise knowledge of structural existence or
persistence, general conceptual ambiguities, or the need for generalizations. Thus, for
example, a sedimentary outcrop may be defined by visually interpreting vegetation
patterns or by interpolating a boundary from a spatially distributed set of measures.
The precise rock type may be poorly defined or rely on arbitrary definitions, such as
percent sand. Geological contacts are often classified according to values of different
geological properties, such as velocity, rock type, density, and electricity resistivity.
In the process of seismic imaging, the issue of structural uncertainty in the domain
of velocity estimation has been discussed previously (Pon and Lines 2005; Thore
et al. 2002). Researchers also studied the impact of velocity uncertainties on migrated
images and AVO attributes (Fomel and Landa 2014; Grubb et al. 2001).

This study only discusses methods for analyzing the spatial error or uncertainty that
exists in input data. Except for the dynamic modeling method (Chauvin and Caumon
2015), input data are transferred into geological contacts and are extracted as spatial
data, such as points and segments in most approaches, to construct three-dimensional
geological structures. Hence, the first type of error manifested is the positional error
of geological contacts or boundaries, which is usually regarded as a kind of spatial
error. Therefore, positional error methods for simulating spatial error are used to
analyze errors in geological data. Based on the stage of modeling, approaches to the
analysis of error or uncertainty can be classified into two types. One type of error
analysis methods for three-dimensional geological modeling usually focuses on the
impact of variabilities introduced by humans or computationally during data collection,
processing, and representation in the final model (Bond et al. 2012; Jones et al. 2004;
Lindsay et al. 2012; Tacher et al. 2006; Thore et al. 2002). This type of solution strives
to reduce the effects of the errors before uncertainties are integrated into a final model.
The other type of methods relates to quantifying the impacts of errors and uncertainties
on the final three-dimensional model (Caumon et al. 2009; Jessell et al. 2010; Jones
et al. 2004; Tacher et al. 2006; Viard et al. 2011; Wellmann et al. 2010; Wellmann
and Regenauer-Lieb 2012). These methods simultaneously evaluate the impacts of the
input data and all possible three-dimensional models.

On the other hand, recent research has focused on the problem from the viewpoint
of alternative spatial data models (Chiles et al. 2004; Shi 1994; Shi and Liu 2000;
Wellmann et al. 2010; Zhang et al. 2009): the vector data model or the raster model.
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When the input data and the three-dimensional final model are organized as a vector
data model using points, lines, areas, and volume, the main objective is to simulate the
random error distribution in the input data or in the modeling process and its impact
on the final model based on the random error theorem. Based on the assumption of
error independence between sampling points, the error characteristics of digitized geo-
logical input data are measured with aggregated statistics, such as the mean squared
positional error, the mean directional error, the error interval, or the error ellipsoid.
Errors related to interpolation are usually described by the semivariogram or covari-
ance matrix (Bardossy and Fodor 2004; Guillen et al. 2008; Tacher et al. 2006; Zhang
et al. 2009). Approaches to the analysis of errors along curves or segments have been
developed based on randomness in point error analysis. Assuming that errors of seg-
ment endpoints are independent and follow a normal distribution, error distributions
along a line segment can be inferred by the error ellipsoid and its confidence body of
arbitrary points based on different parameters, such as the e-band (Shi 1994; Zhang
et al. 2009), error bands (Caspary and Scheuring 1993; Dutton 1992; Zhang and Tulip
1990), G-band (Shi and Liu 2000), and H-band (Li et al. 2002). When the input data
and three-dimensional final model are represented with raster models, such as voxel
or grid models, the idea of error analysis is totally different. In this circumstance,
geostatistical methods or information entropy-based methods are the best choice for
error or uncertainty analysis of each vertex within the whole model space (Calcagno
et al. 2008; Chiles et al. 2004; Guillen et al. 2008; Wellmann et al. 2010; Wellmann
and Regenauer-Lieb 2012).

Another key problem that should be solved in this study is to aggregate multiple error
distributions in input data. From the perspective of a statistician, this kind of problem
is treated as combining prior and preposterior probabilities into a posterior probability
based on the assumption of data independence or conditional independence (Caers
and Hoffman 2006). Geological data, however, usually cannot satisfy this assumption.
The approaches taken in previous studies to handle the aggregating probabilities for
geological data are diverse because each method is proposed for a specific application.
For example, Tarantola and Valette (1982) proposed the concept of conjunction and
disjunction of probabilities for inverse problems. Journel (2002) presented the Tau
model from a broad perspective, and Polyakova and Journel (2007) improved it by
using the Nu model. Allard et al. (2012) reviewed most of the available techniques for
aggregating probability distributions and found that methods based on the product of
probabilities are preferred. However, a suitable method should be selected from these
methods based on the product of probabilities for the specific problem in this study.

A significant improvement in the accuracy of a three-dimensional geological model
is made by fusing multiple input data (Collon et al. 2015; Kaufmann and Martin 2008;
Travelletti and Malet 2012). However, across, and even within, different kinds of raw
data (such as borehole logs, user-defined geological sections, and geological maps),
different types of positional error distributions may exist. For example, error along the
contact between two formations in a drill hole or outcrops may be expressed by either
anormal distribution with a standard deviation around an expected value, a lognormal
distribution, or a discrete probability distribution (Davis 2002; Wellmann et al. 2010).
Therefore, the assumption of one single distribution cannot reflect the impacts of all of
the types of errors in the process of modeling and the final three-dimensional model.
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3 Methodology
3.1 Overview

As mentioned above, the assumption of a single error distribution can neither reflect
the aggregate quality measurement of multiple source data nor reveal the impact of
the differences of multiple errors on three-dimensional model construction. Current
research has focused on the analysis of positional error for points. In reality, sub-
surface feature positions and shapes for three-dimensional geological modeling are
determined by sets of related geological attributes and their distributions. Variation in
point positions and their error distributions is part of the variation in the geological
attributes in the entire space or volume. Therefore, some type of inherent relationship
may exist between the spatial error and the geological attributes of contacts. Within
error bounds defined by a threshold value, the probability of a point location is the
probability that the contact showed up in measurements or samples. Additionally, the
probability is the likelihood of encountering a certain type of rock or soil at a given
location (Tacher et al. 2006). When spatial errors of contacts are defined with three
coordinates, such as x, y, and z, and are transferred into the probability of a particular
type of geological attribute, such as rock type, the different errors can be aggregated
by linear weighted summation because multiple errors are represented as a single
variable.

This research introduces a method for mapping the relationships among multi-
source error distributions in three-dimensional geological data and attributes. The
procedure for error analysis in the proposed method can be summarized by the fol-
lowing stages (Fig. 1):

1. The method begins with a best-guess geological interpretation of observation data,
including stratigraphic information in the borehole, cross-sections, or other data.
The contact points on each type of source data are assigned an error distribution and
confidence interval according to the observations. In this study, we were principally
concerned with the contact information for boreholes and cross-sections.

2. For each contact point, the boundary error value is given according to the confi-
dence interval, which captures areas where the interface is uncertain.

3. An error band of a line segment in a cross-section is estimated from the error
distribution at the endpoints of the segment, where error types might be different.
The notion of distributed probability is introduced. We infer formulations for
mapping geological attribute probabilities and the spatial error distribution of
contacts for different geological formations. Then, the error distribution in three-
dimensional space is transferred into a probability field for each of the contact
points.

4. The probability values in the error band of line segments in geological cross-
sections are calculated by the same method as in stage 3. Based on the information
entropy method, the entropy weighting was calculated for each type of error in
the source data. All types of errors on the same contact point are aggregated by
a linear summation with entropy weighting. Then, the error distribution of each
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of the endpoints of the segment.

Calculate the probability of a rock type for every W :}

point in the cross-section of each type of source

data.
Entropy weight was calculated for each error

type in the source data.

Step 4

Calculate the geological attribute probabilities of the contact segment in the cross-section. Integrate multiple attribute
probabilities obtained by different types of input data.

Fig. 1 Simplified workflow of the proposed method

rock type in the entire three-dimensional space can be estimated and visualized
by the probability field.

It is important to note that multiple errors are directly represented in detail by
probability fields on the basis of the prior model. This method does not assume the
single error distribution on one contact point, as noted by Tacher et al. (2006).
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3.2 Spatial Error and Geological Attribute Probability

Every point in space actually exists and falls within the boundaries of strata as chosen
by geologists according to the proximal geological attributes, such as geological age,
depth, and lithological characteristics. Therefore, errors along geological boundaries
appear because uncertainties exist in the measurements and definitions of geological
attributes. Accordingly, the problem of positional errors at spatial points can be treated
as aset of uncertainties in the related geological attributes. Probability is used to express
the spatial error distribution as presented by Tacher et al. (2006). In this study, errors in
the subsurface or interpretation of the strata are assumed to be the chance of appearance
of a particular rock type at a spatial point. The chance is a probability of the event that
“rock type A is found at the location z(x)”, which is termed the “geological attribute
probability”. The geological attribute probability is a set of probabilities of geological
attributes that decide the classification of the strata and not just the rock type. The
cumulative distribution function F'(u) of the probability density function f(Z) is often
used to calculate probabilities P(A) within a confidence interval

b
P(A) = F(u) = / F(2)dz, )

where a and b are bounded values of the confidence interval at a chosen level. Here,
the P(A) is a function of position or z-value.

3.3 Geological Attribute Probability of an Error on a Contact Line

Except for contact points in borehole data, contact lines extracted from cross-sections
are often used as source data for three-dimensional geological modeling because
they represent the geological understanding and consensus of geologists. Here, the
cross-sections around boreholes are discussed without taking into consideration those
sections interpreted from geophysical data, such as reflection or refraction seismic
sections. In this situation, contact lines are decomposed into several line segments
or more. The error distribution of the line segments is decided by the errors of the
endpoints of the line segment.

In geographic information system (GIS) literature, the error distribution of a line
segment has been investigated for half a century. Based on the epsilon band (Perkal
1966) and statistical theory, other error models have been developed, such as the error
bands (Li et al. 2002; Shi and Liu 2000; Zhang and Tulip 1990), the confidence region
(Dutton 1992), the H-band (Chiles et al. 2004), and the G-band (Calcagno et al. 2008)
models. These methods make the same assumption that the endpoints of a line segment
follow the same error distribution, such as the normal distribution (Tong et al. 2013).
However, in the three-dimensional geological multi-source context, the endpoints of
a line segment may follow different error distributions, such the bimodal distribution
or the P-norm distribution with p =1.60 (Tong and Liu 2004). In this study, the error
distribution of an arbitrary point on a segment was derived based on the error bands.

@ Springer



Math Geosci (2019) 51:29-51 37

P
——
P()
A

E - ———— Z; e
I T K
P 1 oP(x,v,2) ! :
———— 1 L]
T ) Py(xo. ¥o. Zo) (X2, 32,20 !
NP ik o(Xo: Vo: o i': :
1

BN o o Moz o3 [o4 [Jos [ os [MMo7 MM os NI oo (e)

I 0.05 [ 0.15 025 ]o35 | 0.45 [ 055 [ o.65 [ .75 [N o.s5 [ 095

Fig. 2 Experiment of error distributions of a line segment. a Line segment between two contact points of
boreholes. b—d Distributions of the probability that a point belongs to strata B, in which the error endpoints
follow different kinds of error distribution; b errors of both endpoints follow a normal distribution; ¢ errors
of both endpoints follow a continuous distribution; d errors of the left endpoint follow a normal distribution
and those of the right endpoint follow a continuous distribution. e Legend of the probability that a point
belongs to strata B

Given that the depth positions of endpoints (x1, y1, z'1) and (x2, y2, z'2) of a line
segment on a cross-section are independent random variables 7’| and 7', (Fig. 2a),
for which errors follow distributions f1(z) and f2(z), the depth value of an arbitrary
point on the segment (except for the endpoints) can be expressed as z=C1z'1 +C27/2,

X =122 Hy—y2 )P +Hz—2))>
where C1+Cy, =1and C; = (?c/l(—x2)2l(y(1y—y1);+(z/1_;2))2.
an arbitrary point zg on the line segment is

1 [ - C17]
feo =& /_ _hiGES (%) dzy. @)

The error density function at

For an arbitrary point P(x, y, z), right above point Py(x, y, z) on the line segment
(Fig. 2a), the necessary and sufficient condition for belonging to the upper stratum
A is that the boundary of stratum A is beneath point P, which means that zg <z.
Therefore, the probability value of P(A, z) equals the cumulative distribution function
of the probability density function f(z) from negative infinity to z. Therefore, different
results are obtained for different distribution functions, such as the normal distribution
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function, the uniform distribution function, or a discrete distribution function, on
the endpoints. Here, the normal distribution and continuous uniform distribution are
discussed in detail. A continuous uniform distribution is taken into consideration when
a contact between two formations is not outcropped or when a segment is missing a
borehole sample. Usually, the strata boundaries in the cross-section or virtual borehole
used in three-dimensional geological modeling are not outcropped. Three types of
combinations are presented, as follows (Fig. 2b—d):

1. If the errors of the two endpoints both follow a normal distribution, the probability
value of P(A, z) at an arbitrary point (x, y, z) can be expressed as

1 z_-w?
P(A’Z):F(Z):ma/ e 2% dz, 3)
—00

where u is the expected value and o is the variance.
2. Given that the errors of the two endpoints both follow a continuous uniform distri-

n 1
bution fi(z) = { 2 =4 404 f) = { % 12=2 e probability value

0 |zl >a 0 JzI>b
of P(A, z) on an arbitrary point P(x, y, z) can be represented as three conditional
instances. If aC; = bC», P (A, z) should be

0 z < —aC; —bCy
2
B —[“%“aighcczm —aCi —bCy <z <0
P(a,2) = —2242(aC 1 +bCy)zHaC +bCy )
- Sabclt‘z 0<z<aC;+bC,
1 z>aCi+bCy
If aC; > bC», P(A, z) should be
0 z < —aC; —bCy
2
leraCr —aCj —bCy <z < bCy — aC|
P(A,2) =\ 5+ 3¢ bCy —aCy <z <aCy —bCy
_2
R lCA L LA Echggllzgcwz +1— ZbaCCg| aCy —bCy <z <aC1+bC,
1 z>aC1+bCy
®)
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IfaCy < bCy, P (A, z) should be

0 z < —aCy —b(Cy
2
[Z+(8aaCbIC+IbCC;2)] —aCy —bCy <z <aCy; —b(Cy
P(4,2) = %+2b_ZC2 aCy —bCy <7 < bCy —aC
2
: Ei(Zgl‘EfC”Z +1 - 2bcc.2 bCy —aC; <z <aC1+bCy
1 z>aC1+bCy

(6)

3. Given that the error at one endpoint follows a continuous uniform distribution

1
filz) = { 26 :2: i Z and the other follows the normal distribution f>(z) =

_2

\/2170 €202, the error distribution function of an arbitrary point P(x, y, z) can be
expressed as (Liu 1999)

20— C 141 )2

a 1 —(

1
F) = f fienfeda = [ o a0

Then, P (A, z) should be

1
P(A,z2)=

®)

2
z+Cia z=Cia _(0¥Ciapn _(0=C1ap
z+C1a oy z—Cia =t o &) o)
2 2 5
— %) +——1e 202 —e 202 R
2aC1 o Cr o N2

z+Cja z+Cja z—Cja z—Cja
C C 1 C C 1 .
where go | —— | = | =] — 2. 90 | = =¢o|—F— )3 andgis

a standard normal distribution function. The geological probabilities at an arbi-
trary point on a line segment can be obtained using this method, and geological
attribute probability distributions of an entire line feature are composed by related
probabilities of a finite number of connected segments.

When the error distributions of the two endpoints of a line segment both follow nor-
mal distributions, the probabilities that a point belongs to strata B become distributed
as an error band (Fig. 2b), as proven by Shi and Liu (2000). In Fig. 2c, the width of the
probability distribution belonging to strata B around the segment looks like an error
band, in which the maximum values are located at the endpoints and the minimum
values are located in the middle of the segment. The reason this occurs is that the
error distribution is a linear combination of two identical distribution functions. From
Egs. (7) and (8) in case 3, the geological attribute probability is a cumulative function
of the normal distribution function in the confidence interval [— a, a], although errors
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of each endpoint follow a different distribution. The shape of the probability distri-
bution that belongs to strata B looks like the result of two normal distributions with
different confidence intervals.

3.4 Aggregating Multiple Errors by Geological Attribute Probabilities Using
Entropy-Based Weighting

After the conversion using the method proposed above, every type of error was rep-
resented by the related geological attribute probabilities. The next step is to combine
the information from different sources in a probabilistic framework. Studies have pre-
sented diverse approaches. A general formulation of all pooling methods was presented
by Allard et al. (2012)

T(A) = Z + U(A) + (1 -y w,-) To(A)+ Y wiTi(A), )
i=1 i=1

in which T is related to probabilities in the following way: T = P for all linear pooling
methods; T = InP for methods based on the product of probabilities; and T =InO =InP
—In(1 — P) for methods based on the product of odds. U(A) is an updating likelihood
when considering the general log-linear pooling; it is the logarithm of the Nu parameter
for the Nu model. T((A) is the prior probability and Z is a normalizing constant. The
weight wg has been set equal to (1 -> wi) to respect external Bayesianity. The
form of Eq. (9) is a kind of a generalized linear pooling method. The aggregated
probabilities can be calculated by any item of the formula (Allard et al. 2012). All of
the methods that can be included in Eq. (9) have some parameters, such as weights,
that should be estimated or preset by users, except for entropy-based methods, such as
the maximum entropy method. The estimated or preset parameters may introduce new
error or uncertainty into the final results. Since entropy was introduced in geostatistics
as a measure of the uncertainty of a prior distribution model (Christakos 1990), the
entropy-based methods including the maximum entropy approach were widely used
in earth science, especially in estimating an unknown target probability distribution.

In this study, an additive method with entropy-based weighting is presented to
aggregate multiple errors. Given that N types of source data were involved in the
cross-area, n possible stratigraphic attributes exist at the cross-point (x, y, z), and the
probability value that the cross-point belongs to stratum i in source data j is P;;(x, y, 2).
The Pjj(x, y, z) can be calculated using Eqgs. (1) and (2). The information regarding the
entropy of point (x, y, ) can be interpreted as the amount of missing information with
respect to the lithological probabilities for the point. Then, an entropy-based weight
value for each kind of source data can be described as
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1 —H;
wj =
> (1—Hj)
j=l1
n
Hj ==Y Pij(x,y, 2)log Pjj(x.y.2), (10)

where Hj is an entropy value for the source data J- The w; value is equal to 0 when 7 is
1. Note that the w; here is not dictatorial, as described by Allard et al. (2012), because
w; #0 when i #j. For the same type of source data, the entropy-based weight value
of each point in space may be different because it is determined by the corresponding
geological attribute probabilities rather than by the error type. The error in each type of
data source has an entropy value that is conditioned to the probabilities, according to
Eq. (10). Therefore, the final value of the geological property probability of a position
is calculated as

N
Pi(x,y,2) =Y wjPj(x,y,2). (11
J

When a new data source is introduced, the entropy value of the point will change
because the new data source provides another probability of the geological attribute.
Equation (11) is a linear pooling method with a nonlinear weight value w;. The aggre-
gated probability distribution is often clearly multi-modal.

3.5 Experimental Data and Method Testing

The method was tested by analyzing the error distribution at the intersections of dif-
ferent types of data. Several hundred borehole samples, a map of the basement rock,
and six intersected cross-sections were collected, as shown in Fig. 3 (Hou et al. 2016).
In Fig. 3, there are six cross-sections and nearly 200 boreholes. Boreholes DC043 and
DCO091 are on the line of section EW2. Sections EW2 and SN1 cross at the position
of DCO91. Cross-sections were digitized from a scanned image. The basement rock
map was digitized according to the isobaths of the basement rocks. The stratigraphic
divisions were given for each borehole according to lithological information and test
data. To simplify the presentation of the data, only the Quaternary layer and basement
rock are specifically identified in Fig. 3. In the intersections, ideally, the contacts of
the basement rock and the Quaternary layer extracted from the borehole, the cross-
section, and the basement rock map should be at the same point. In fact, the contact
points between the Quaternary layer and basement rock from the borehole are not
always consistent with those extracted from the basement rock map, such as the point
at borehole DC037 shown in Fig. 3.

3.5.1 Attribution Aggregation for a Single Point

In this study, the contacts between the Quaternary layer and basement rock for three
cross-points are extracted, as shown in Fig. 3, to test the proposed method. Among
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(407332,82882,7.5)

Basement rock map
Boreholes

(407150,82670,-50)

Fig. 3 Testing data. To simplify the problem, strata from borehole cores are classified as two types of strata:
Quaternary stratum (marked in yellow) and basement rock. Sections EW2 and SN1 crossed at DC091.
Probabilities along boreholes DC043, DC091, DCO037, and section EW2 and on the geological map are
specifically discussed in the testing section

these data, the contacts of borehole DC037 were not used to interpolate the basement
rock map. The position of the contact point from the basement rock in borehole DC037
is inconsistent with that from the basement rock map, as shown in Fig. 4a. The contacts
of the other two boreholes DC091 and DC043 are reconciled to the contacts with the
basement rock map. Errors in the geological contacts from the borehole and basement
rock map follow the normal distribution function with a standard deviation of 0.667 m.

In forming the attribution probability, Fig. 4b, ¢ showed the error distributions
around the contact points in the three boreholes and cross-points on the basement
map. The borehole DC037 was added after the basement rock map was interpolated
with the contacts from the other boreholes and cross-sections. The expected aggregated
value of the contact along the borehole DC037 locates between the contact position
extracted from the borehole DC037 and that extracted from the basement rock map
(Fig. 4d). As shown in Fig. 5a, the curve of the aggregated attribution probability of the
basement rock contact point in DC037 is approximately the average of the other two
probabilities because the contact position of the basement rock that is extracted from
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Fig. 4 Error aggregation for different source data at a cross-point: a positions of the cross-points in the
boreholes, the cross-section, and the geological map; b attribution distribution of the basement rock in the
borehole; ¢ attribution distribution of the basement rock of the contact points extracted from the basement
rock map; d aggregated results of b and ¢; and e legend of the probability of the basement rock distribution

borehole DC037 (approximately — 7 m) is far away from the corresponding position
from the basement rock map (approximately — 10 m). Note that the aggregated curve
has two points that are tangential to the other two curves where the probability value is
0.5, marked by dashed lines in Fig. 5. For example, the aggregated probability equals
the probability value of the basement rock in DC091, while the probability of the
basement rock on the point of the basement rock map is 0.5 (Fig. 5c). If the base value
is 2 in Eq. (10), the entropy value is 1.0 when the probability value is equal to 0.5.
Then, the entropy weight value of the corresponding source is 0. This result means that
one data source cannot provide any information to judge which stratum the contact
point belongs to when the probability value of the current data source is 0.5.

3.5.2 Attribution Aggregation Around the Cross-Section Using the Segment

An experiment regarding the error distributions for basement rock boundaries is pre-
sented to demonstrate the implementation of the proposed method. Basement rock
boundaries were extracted from cross-section EW2 and the basement rock map along
the EW2 cross-section. The error of the boundaries of the basement rock extracted
from the cross-section EW2 was assumed to follow a continuous distribution because
these data are not obtained by outcropping, as noted by Tong et al. (2013), and the
errors of the cross-point between the cross-section and the borehole follow a normal
distribution. Boundaries of the basement rock with errors that follow a normal dis-
tribution were extracted according to the cross-over lines between the cross-section
and the basement rock map. Figure 6b, ¢ show the probability distributions of the
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Fig. 5 Comparison of the attribution probability curves of the basement rock before and after aggregation.
The left, middle, and right figures are the attribution probability curves of the basement rock for the contact
points on the position of boreholes DC037, DC043, and DC091, respectively. The point at which the dashed
lines cross marks the position where the aggregated probability is 0.5

basement rock boundaries from the EW2 cross-section (Fig. 6a) and the basement
rock. In the cross-section, the segments that composed the strata boundaries were
treated separately. Errors on endpoints of one segment can follow different distribu-
tions. Although the expected value of the basement rock depth in different source
data has the same trend, huge differences exist in several local positions, such as the
position marked by the black arrow in Fig. 6b, c. The attribute probability distribution
of the basement rock appeared to have many glitches in Fig. 6¢ because the contact
points were densely distributed on the basement rock map. The yellow area in Fig. 6d
is much wider than that in Fig. 6b, c, as shown by the position marked with the black
arrow, because the boundaries of the basement rock in the two types of data do not
coincide with each other. This result illustrates that the aggregated probability value
is, essentially, a weighted average of the other two data sources. The attribution prob-
ability curves were extracted up to a depth of — 21 m from Fig. 6b—d (in Fig. 7). The
probabilities of the basement rock boundaries extracted from the cross-section EW?2
(red curves in Fig. 7) and from the basement rock map (green curves in Fig. 7) are
not coincident with each other. The entropy-weighted aggregated probability curve is
located between other curves of the two sources. Additionally, as shown in the left
image of Fig. 8, the probabilities of the basement rock contacts on the cross-sections
and borehole cores were calculated. The probability values are aggregated on these
contact points where several kinds of source data cross, such as the contact point along
DCO091.

The method presented here is an example of a one-dimensional approach. To extend
the method to a three-dimensional situation, a very simple flow is presented, and the
analytical solution for a triangle is derived. Assuming a triangle, as shown in Fig. 9,
the coordinates of each endpoint are A(x1, y1, z1), B(x2, y2, z2), and C(x3, y3, 23).
Point P is an arbitrary point in the triangle and point D is the intersection point of line
AP and line CB. The coordinates of point D are D(xp, yp, zp). The lengths of line
segments in the image can be represented as: ICDI=a, IBDI=b, IAPI=c, and IPDI=
d.Let Cy =bl(a+b), C» =al(a +b), C3 =d/(c +d), and C4 =c/(c +d). The depth of
point P can be represented as

Zo=C3z3+ Cyzpand Zp = Ciz1 + Ca22. (12)
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Fig. 6 Probability distribution of the basement rock depth along the cross-section EW2, where the black line
marks the depth of —21 m: a the cross-section EW2 represented by the Quaternary layer and the basement
rock; b the probability distribution of the base rock boundaries that are extracted from cross-section EW2;
¢ the probability distribution of the base rock boundaries that are extracted from the basement rock map
along cross-section EW2; d the aggregated result of b and ¢ with entropy-based weighting; e the aggregated
probability results of the basement rock depth along the cross-section EW2 using the maximum entropy
method; and f the legend of the probability that the point belongs to the basement rock
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Fig. 7 Attribution probability curves of the basement rock using the weighted average and maximum
entropy method at the depth of —21 m, which are extracted from Fig. 6b—e. The purple curve represents

the result of the maximum entropy method, and the navy blue curve is the aggregated result of the weighted
average method
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Fig. 8 Results of the probability distribution of the basement rock. In the left figure, the aggregated proba-
bility of the basement rock, which is extracted from boreholes, cross-sections, and the basement rock map,
is shown, along with the boreholes and cross-sections. The right figure illustrates the probability distribution
of the basement rock surface without a zero value

The error distribution of the points in the triangle can be calculated according
to the method presented in this paper. The basement rock surface is represented by
triangle networks. Then, the attribute probabilities of every point on the surface can be
calculated. The right image of Fig. 8 illustrates the integrated probability distribution of
the basement rock shown along the cross-sections boreholes, and shows the probability
distribution of the basement rock surface without a zero value.

4 Discussion

In this study, the entropy value was used as a weighting value for different error
distributions of the input data. This is a key factor that influenced the final probability.
The weight value was calculated by the probabilities rather than introducing new
parameters, as in some other methods. When the probability of a point is much larger
than 0.5, the geological attribute on the point is relatively certain. In this circumstance,
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Fig. 9 Diagram of a triangle

the contribution of this type of data source is greater than that of other types of data
sources in determining the geological attribute. When the probability equals 0.5 and
the entropy is 1.0, the geological property on the point is the most unclear, and this
data source contributes the least to classifying the geological attributes. Therefore, the
weight value is determined by the error characteristics, including the error distribution
function and its corresponding parameters, such as the confidence interval and standard
deviation.

Essentially, the method presented in this study is a generalized linear pooling
method aggregating multiple errors from different data sources. Many disciplines,
including statistics, management sciences, and geostatistics, have studied aggregat-
ing information from distinct sources. The methods found in the literature can be
classified into multiplicative-based and additive-based aggregation operators (Allard
et al. 2012). In the methods that can be included in Eq. (9), the maximum entropy
method is the only approach that does not introduce any extra parameters. Therefore,
the results of the aggregating probabilities were compared (as shown in Figs. 6e and
7). The maximum entropy is a logarithmic linear pooling method and is more sensi-
tive than an entropy-based weighting method. The range of error distribution (yellow
area shown in Fig. 6e) in the maximum entropy method is narrower than that in the
entropy-based weighting method. For example, at the position marked by the black
arrow in Fig. 6, the aggregated probability is approximately 0.5 with the entropy-based
weighting method, while the probability calculated by the maximum entropy method
is 1.0. From Fig. 7, the probabilistic curve extracted from the result by the entropy-
based weighting method appears turbulent from 1500 to 2000 m and from 3500 to
4000 m. However, the curve calculated by the maximum method is much smoother.
When the probability is less than 0.5, the aggregated probability is greater than that
of the entropy-based weighting method, and vice versa.

The method presented in this study is actually a type of linear method in which
the weight values are not preset by users or estimated by introducing some other
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parameters. The weight value is decided by the characteristics of the error distribution
itself. Although the linear method is intrinsically sub-optimal, the presented method
can reveal the error range and details of different input data.

The error type is assigned for each contact position from different sources in the
presented method. In this study, the error types of contact points are not classified by
the stratigraphic information around the contact points. However, this information will
not affect the aggregated process and applications because the probabilities around
the segments of all the boundaries were calculated separately. Therefore, the error
type at each contact point will impact the probability distributions instead of the
workflow. The additive method used in this study has an implicit assumption that the
error distribution of an arbitrary point of one segment should be limited by the error
distribution of the endpoints, which is why the uncertainties on the segment seem
smaller than the endpoints of the segment in Figs. 2 and 6.

From Fig. 7, the integrated probability curve (pink curve in Fig. 7) based on the
maximum entropy method has the same waveform as the curve obtained using the
entropy-based method, but the result with the maximum entropy method is much
smoother. Notice that most values of the integrated result with the maximum entropy
method are smaller than those values obtained using the entropy-based method (navy
blue curve in Fig. 7), except for some positions, such as the position at 1500 m.

Limitations of our method are mainly related to the error types and the conversion
from error distribution to geological attribute probabilities. Classification of the error
types for contact points is a time-consuming and tedious computation that reduces the
efficiency. For classification, it could be reasonable to build an error-type appointment
rule based on the stratigraphic information. In this paper, the error distribution has been
discussed in the depth direction instead of in two or more dimensions. This avoids the
overlay problem on the conjunct point between segments. At this point, conversion
formulas for high-dimension error distribution functions should be inferred based on
the positional error of the line features or curve lines. This would help us analyze
the topological error in the source data. Additionally, the implementation is limited
to possible outcomes. This study presents a one-dimensional method and does not
analyze a case with multiple z-values, such as an overturned fold, dome structures,
and thrust faults.

5 Conclusions

In this study, a one-dimensional multiple errors analysis method is presented for geo-
logical contacts that are typically used to build geological models. The foundation of
the approach is that the spatial errors of contacts or boundaries between strata can
be represented by geological attribute probabilities, of which it is assumed that errors
are caused by imprecise measurement or vague classification of geological attributes,
such as rock type. The error distribution functions and prior guesses are accounted for,
since we performed the analysis based on statistical manipulations. At each location
of input data, the probabilities of each kind of rock type can be evaluated using this
method. The regulation of different sources and types of errors using the entropy-based
weighting is presented. Therefore, in this method, the final chance of finding a certain
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rock type at one particular point relies on the probabilities of different types of error
distributions.

The approach is simple and intuitive for analyzing and visualizing errors in multi-
source data. At a contact point, the error distribution of a rock type is calculated
using the error of depth of the contact point. The final result is multiple models after
integration if more than one input datum exists for the contact point. Similar to the error
band used in the geographic information system (GIS), the integrated one-dimensional
error density distribution functions along a segment were derived, where errors at the
endpoints followed different distribution functions, such as a normal distribution or a
continuous distribution. By assuming that the error at a random point of a segment is
a combination of the error distributions of the endpoints, the shape of the probability
distributions appears to be similar to the error bands presented by Tong and Liu (2004)
and Tong et al. (2013). Because the presented method is based on error assessment of
a probabilistic model (Tacher et al. 2006), the assumption that only one kind of error
distribution can be defined for all source data is not limited to this application. In the
two experiments, we have shown how we can aggregate multiple types of errors at
cross-points. An advantage of our method is that it is not limited to a specific error
distribution and that the workflow itself is always performed in the same way. The test
results illustrated that the integrated probability is a weighted average result, although
the weights are nonlinear. Like the maximum entropy method, the presented method
does not estimate parameters for integration because the weight value was decided by
the probabilities of the rock type based on the input data.

Assuming that the uncertainty away from an observation should be higher than
the uncertainty at an observation, uncertainties are characterized and measured by
information entropy values in the method proposed by Wellmann and Regenauer-Lieb
(2012). In this study, the error distribution at arbitrary points of a segment is assumed
to follow or be limited by the error distributions of the endpoints of the segments, yet
it is still measured by the error distribution function. Therefore, the uncertainty at a
random point of a segment is smaller than that at the endpoints. Additionally, totally
different results were obtained because of different assumptions.

Several aspects of this research are to be developed further, including an analysis
method for higher dimensional error distributions. Additional deterministic vector
information, such as dip measurements, should be taken into consideration in the
process. Regardless, the proposed method expands and refines the treatment of error
and uncertainty in geology and opens new possibilities for more sophisticated uses
of three-dimensional geological models in instances in which errors in the model can
translate into serious consequences of risk, failure, or cost.
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