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Abstract A fault with two asperities with different areas and strengths is considered.
The fault is treated as a dynamical system with two state variables (the slip deficits
of the asperities) and four dynamic modes, for which complete analytical solutions
are provided. The seismic events generated by the fault can be discriminated in terms
of a variable related with the difference between the slip deficits of the asperities
at the beginning of the interseismic interval preceding the event. The effect of the
difference between the asperity areas on several features of the model, such as the
force rates on the asperities, the slip duration and amplitude, the occurrence of events
involving the simultaneous motion of the asperities and the radiation of elastic waves,
is discussed. As an application, theMw 8.0 2007 Pisco, Peru, earthquake is considered:
it is modelled as a two-mode event due to the consecutive failure of two asperities,
one almost twice as large as the other. The source function and final seismic moment
predicted by the model are found to be in good agreement with observations.
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1 Introduction

In the framework of fault dynamics, a significant complication arises from the het-
erogeneity of fault surfaces, which usually exhibit a strongly nonuniform friction
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distribution. Such a distribution can be represented in terms of asperitymodels, assum-
ing that earthquakes result from the failure of a small number of patches characterized
by high static friction and velocity-weakening dynamic friction, while the rest of
the fault gives a negligible contribution (Lay et al. 1982; Ruff 1983; Scholz 1990).
Velocity-weakening (VW) is the behaviour of a fault patch characterized by a friction
that decreases with increasing slip rate. Velocity-strengthening (VS) is the opposite
behaviour, with friction increasingwith increasing slip rate. In the framework of asper-
ity models, fault dynamics coincides with the dynamics of the asperities and the state
of the fault is described by the variables characterizing the asperities.

In this framework, discrete fault models have proved to be valuable tools to investi-
gate fault dynamics (Ruff 1992; Rice 1993; Turcotte 1997). Such models assume that
each asperity is a compact and simply connected subset of the fault surface. Asperities
may have any geometrical shape and their failure can reproduce any kind of source
mechanism. Since asperities are treated as single units of the fault, details of friction,
stress and slip distribution on asperities are not investigated; instead, only the average
values of these quantities are considered. At a given instant in time, an asperity can be
either sticking or slipping. A uniform slip is assumed to take place when an asperity
moves, so that asperity motions are treated as Volterra dislocations.

A manifestation of fault heterogeneity is also the presence of VW and VS regions
on the same fault. This aspect has been the subject of several studies, mainly in the
framework of continuous models. Chen and Lapusta (2009) considered a small fault
patch governed by steady-state VW friction surrounded by a larger VS region and
studied the interaction between the two regions. Skarbek et al. (2012) found that the
relative proportions of VW and VS areas control the sliding character (stable, slow,
or dynamic) of the fault. Luo and Ampuero (2017) found that slip of the VS region
controls the stability of VW asperities, which may fail alone or involve the whole
fault, including the VS region. In the present paper, we do not consider the presence
of these two types of mechanical behaviour: it has been studied in the framework of
a discrete fault model by Dragoni and Lorenzano (2017), who showed that the fault
dynamics is characterized by three interacting slipping modes, namely stable creep,
seismic slip and afterslip.

Early discrete fault models with two asperities were proposed by Nussbaum and
Ruina (1987), Huang and Turcotte (1990), McCloskey and Bean (1992) and Tur-
cotte (1997). Such models were further developed by Dragoni and Santini (2012,
2014). Wave radiation was introduced by Dragoni and Santini (2015) and Dragoni
and Tallarico (2016). The evolution of the fault during interseismic intervals has been
considered by Amendola and Dragoni (2013), Dragoni and Lorenzano (2015) and
Dragoni and Piombo (2015).

These models assumed equal areas for the two asperities. This is a reasonable
approximation in many cases, because the asperities giving a relevant contribution to
an earthquake must have comparable areas. In fact, if an asperity has a much smaller
area than the other one, its slip will be comparatively smaller, so that its contribution
to the seismic moment will be negligible.

However, asperitieswith areas differing by a factor of 2 or 3 are sometimes observed
(for instance, in the case of the 1964 Alaska earthquake) and taking this difference
into account is a necessary refinement of previous models. In the present paper, the
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Fig. 1 The model: a fault with two asperities of areas A1 and A2, respectively. The fault boundary is
identified by the rectangular frame

dynamical equations of the system in the case of different areas and strengths of the
asperities are presented and their solutions are calculated analytically.

As an application of the model, the Mw 8.0 2007 Pisco, Peru, earthquake is con-
sidered. This event was ascribed to the consecutive failures of two asperities having
significantly different areas.

2 The Model

A plane fault embedded in a shear zone placed between two tectonic plates moving
at constant relative velocity v is considered. The shear zone is assumed to be a homo-
geneous and isotropic Hooke solid with rigidity μ, and the fault is subject to a shear
strain rate ė. The fault contains two asperities (named 1 and 2) with areas A1 and A2
respectively (Fig. 1). Let

ξ = A2

A1
, (1)

and let a be the distance between the centroids of the asperities, where each centroid is
defined as the integral of the positions of all the points enclosed by the given asperity.
At any time t , each asperity can be characterized by its slip deficit, that is, the slip
that the asperity should undergo in order to recover the relative plate displacement
occurred up to time t . The state of the fault is described by the slip deficits x(t) and
y(t) of asperity 1 and asperity 2, respectively.

Asperities move as rigid surfaces: accordingly, their dynamics can be more easily
described using forces instead of tractions. The asperitymotion is controlled by friction
and by the forces that are exerted by the surrounding medium. Let f1 and f2 be the
tangential forces applied to the asperities in the slip direction. They can be written as

f1 = −K1x + Kc(y − x) − ι1 ẋ, (2)

f2 = −K2y − Kc(y − x) − ι2 ẏ. (3)
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In these expressions, the terms −K1x and −K2y represent the effect of tectonic load-
ing, whereas the terms ±Kc (y − x) are the contributions of stress transfer between
the asperities. The coupling constants K1, K2 and Kc are given by

K1 = 2μėA1

v
, K2 = 2μėA2

v
, (4)

Kc = μA1A2s, (5)

where s is the shear traction (per unit seismic moment) that the slip of one asperity
imposes to the other, calculated at the centroid of the asperity. The terms −ι1 ẋ and
−ι2 ẏ are forces due to radiation damping, where ι1 and ι2 are impedances (Rice 1993).
Assuming that the impedance per unit area is the same for both asperities, it results

ι2

ι1
= ξ. (6)

As for friction, it is assumed that asperities 1 and 2 are characterized respectively by
constant static frictions fs1 and fs2 and by average dynamic frictions fd1 and fd2.
Accordingly, the conditions for the failure of asperity 1 and 2 are, respectively

f1 = − fs1, f2 = − fs2. (7)

If β is the ratio between the frictional stresses of the asperities, the ratio between
frictional forces is

fs2
fs1

= fd2
fd1

= βξ. (8)

Without loss of generality, it can be assumed 0 < β ≤ 1. Finally, it is assumed that
dynamic frictions are smaller than static frictions by a factor ε that is the same for
both asperities, that is

ε = fd1
fs1

= fd2
fs2

, (9)

with 0 < ε < 1.
To sum up, the equations of motion for the two asperities are

μ1 ẍ + ι1 ẋ + (K1 + Kc)x − Kcy − fd1 = 0, (10)

μ2 ÿ + ι2 ẏ + (K2 + Kc)y − Kcx − fd2 = 0, (11)

where μ1 and μ2 are the masses associated with the asperities, which are assumed to
be proportional to the respective areas, that is

μ2

μ1
= ξ. (12)

The nondimensional variables and time

X = K1x

fs1
, Y = K1y

fs1
, T =

√
K1

μ1
t, (13)
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and the additional nondimensional parameters

α = Kc

K1
= A2vs

2ė
, γ = ι1√

K1μ1
, V =

√
K1μ1

fs1
v, (14)

are introduced, with α ≥ 0, γ ≥ 0, V > 0. Also, the nondimensional forces

F1 = f1
fs1

, F2 = f2
fs1

, (15)

are defined. From (2) and (3), it results

F1 = −(1 + α)X + αY − γ Ẋ , F2 = −(ξ + α)Y + αX − γ ξ Ẏ , (16)

where dots indicate differentiation with respect to T . Finally, the equations of motion
(10) and (11) can be written in nondimensional form as

Ẍ + γ Ẋ + (1 + α)X − αY − ε = 0, (17)

Ÿ + γ Ẏ + (1 + α′)Y − α′X − βε = 0, (18)

where the parameter

α′ = α

ξ
, (19)

was introduced.
If the state of the fault is represented by a point of the plane XY , the points corre-

sponding to stationary asperities belong to a subset Q of the plane XY : this subset is
called the sticking region (Di Bernardo et al. 2008). It can be determined as follows.

In the sticking mode, the forces (16) reduce to

F1 = −(1 + α)X + αY, F2 = −(ξ + α)Y + αX. (20)

In nondimensional form, the conditions (7) for the failure of asperities 1 and 2 can be
written as

F1 = −1, F2 = −βξ, (21)

where (8) was taken into account. If overshooting is excluded, the forces must be
always negative. Therefore, Q includes the states of the fault in which the forces
satisfy the conditions

− 1 < F1 ≤ 0, −βξ < F2 ≤ 0. (22)

Thanks to (20), conditions (21) yield the equations of the lines

Y = 1 + α

α
X − 1

α
, (23)

Y = α

α + ξ
X + βξ

α + ξ
, (24)
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called Line 1 and Line 2, respectively. The further conditions

F1 = 0, F2 = 0, (25)

yield the equations of the lines

Y = 1 + α

α
X, Y = α

α + ξ
X. (26)

Let Pa be the intersection of line F2 = 0 with Line 1 and Pb be the intersection of
line F1 = 0 with Line 2. The coordinates of points Pa and Pb are

Xa = α + ξ

α + αξ + ξ
, Ya = α

α + αξ + ξ
, (27)

Xb = αβξ

α + αξ + ξ
, Yb = (1 + α)βξ

α + αξ + ξ
. (28)

The coordinates of point P , where Lines 1 and 2 meet, are

XP = Xa + Xb, YP = Ya + Yb. (29)

The sticking region Q of the system is then the parallelogram enclosed by the four
lines, with vertices at the origin, Pa , Pb and P (Fig. 2). Its area is

AQ = βξ

α + αξ + ξ
. (30)

Accordingly, the subset of state space corresponding to stationary asperities decreases
with the degree of coupling between the asperities and with the asymmetry of the
system (β → 0). As tectonic loading takes place, the orbit of the system lies within
Q. Eventually, the condition for the failure of asperity 1 (on Line 1), asperity 2 (on
Line 2) or both asperities (at point P) is reached, giving rise to a seismic event.

3 The Dynamic Modes

The fault dynamics can be described in terms of four dynamic modes, each associated
with a different system of ordinary differential equations: a sticking mode (mode 00),
corresponding to stationary asperities, and three slipping modes, corresponding to the
failure of asperity 1 (mode 10), the failure of asperity 2 (mode 01) and the simultaneous
failure of both asperities (mode 11).
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Fig. 2 The sticking region of the system: a parallelogram Q (α = 1, β = 0.5, γ = 1, ε = 0.7, ξ = 2).
The subset S from which events involving the simultaneous slip of the asperities take place is indicated.
The dashed lines correspond to p = p1 (right) and p = p2 (left), the dotted line to p = p0

For later use, the frequencies

ω1 =
√
1 + α − γ 2

4
, ω2 =

√
1 + α′ − γ 2

4
, (31)

ωa =
√
1 − γ 2

4
, ωb =

√
1 + α + α′ − γ 2

4
, (32)

are introduced. In the following, the equations of motion (17) and (18) for the four
dynamic modes are specialized and their solution in the case of underdamping is
provided: this condition corresponds to γ ≤ 2, implying that the velocity dependent
terms are small with respect to dynamic frictions. It is assumed that each mode begins
at T = 0.

3.1 Stationary Asperities (Mode 00)

The equations of motion are
Ẍ = 0, Ÿ = 0, (33)

with initial conditions

X (0) = X̄ , Y (0) = Ȳ , Ẋ(0) = V, Ẏ (0) = V, (34)

where X̄ and Ȳ are the slip deficits of asperities 1 and 2, respectively, at the beginning
of the interseismic interval. Because of tectonic loading, their initial rate of change is
the velocity of tectonic plates V . The solutions are
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X (T ) = X̄ + VT, Y (T ) = Ȳ + VT, (35)

where T ≥ 0. Equations (35) are the parametric equations of the line

Y = X + p, (36)

where
p = Ȳ − X̄ . (37)

This line is the orbit of the system in the sticking region Q in mode 00.

3.2 Failure of Asperity 1 (Mode 10)

The equations of motion are

Ẍ + γ Ẋ + (1 + α)X − αY − ε = 0, (38)

Ÿ = 0. (39)

The system may enter mode 10 from mode 11 or from mode 00.
(a) In the case 11 → 10, initial conditions are

X (0) = X̄ , Y (0) = Ȳ , Ẋ(0) = V̄ , Ẏ (0) = 0, (40)

where X̄ and Ȳ are the slip deficits of asperities 1 and 2, respectively, when asperity 1
starts slipping alone at a certain rate V̄ and asperity 2 stops slipping, so that its velocity
is null. The solution is

X (T ) = X̄ − Ū1

2
+

[
Ū1

2
cosω1T + 1

ω1

(γ

4
Ū1 + V̄

)
sinω1T

]
e− γ

2 T , (41)

Y (T ) = Ȳ , (42)

where

Ū1 = 2

(
X̄ − αȲ + ε

1 + α

)
. (43)

If the orbit does not reach Line 2 during the mode, the slip duration can be calculated
from the condition Ẋ(T ) = 0, yielding

T1a = 1

ω1

[
π + arctan

2ω1V̄

(1 + α)Ū1 + γ V̄

]
. (44)

The final slip amplitude is then

U1a = X̄ − X (T1a) = Ū1

2
+

√
Ū 2
1

4
+ V̄ 2

1 + α
+ γ Ū1V̄

2(1 + α)
e− γ

2 T1a . (45)
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If instead the orbit reaches Line 2 during the mode, the system enters again mode 11.
(b) In the case 00 → 10, initial conditions are

X (0) = X̄ , Y (0) = Ȳ , Ẋ(0) = 0, Ẏ (0) = 0, (46)

where X̄ and Ȳ are related by (23) and the initial velocity of both asperities is null.
The solution reduces to

X (T ) = X̄ − U

2

[
1 −

(
cosω1T + γ

2ω1
sinω1T

)
e− γ

2 T
]

, (47)

Y (T ) = Ȳ , (48)

where

U = 2
1 − ε

1 + α
. (49)

If the orbit does not reach Line 2 during the mode, the mode duration is

T1b = π

ω1
, (50)

while the final slip amplitude is
U1b = κ1U, (51)

where

κ1 = 1

2

(
1 + e− γ

2 T1b
)

. (52)

Hence, U1b is the maximum slip in mode 10. If the orbit reaches Line 2 before time
T1b has elapsed, the system passes to mode 11. In this case, the slip duration and
amplitude are smaller than T1b and U1b, respectively.

3.3 Failure of Asperity 2 (Mode 01)

The equations of motion are

Ẍ = 0, (53)

Ÿ + γ Ẏ + (1 + α′)Y − α′X − βε = 0. (54)

The system may enter mode 01 from mode 11 or from mode 00.
(a) In the case 11 → 01, initial conditions are

X (0) = X̄ , Y (0) = Ȳ , Ẋ(0) = 0, Ẏ (0) = V̄ , (55)

where X̄ and Ȳ are the slip deficits of asperities 1 and 2, respectively, when asperity 2
starts slipping alone at a certain rate V̄ and asperity 1 stops slipping, so that its velocity
is null. The solution is
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X (T ) = X̄ , (56)

Y (T ) = Ȳ − Ū2

2
+

[
Ū2

2
cosω2T + 1

ω2

(γ

4
Ū2 + V̄

)
sinω2T

]
e− γ

2 T , (57)

where

Ū2 = 2

(
Ȳ − α′ X̄ + βε

1 + α′

)
. (58)

If the orbit does not reach Line 1 during the mode, the slip duration can be calculated
from the condition Ẏ (T ) = 0, yielding

T2a = 1

ω2

[
π + arctan

2ω2V̄

(1 + α′)Ū2 + γ V̄

]
. (59)

The final slip amplitude is then

U2a = Ȳ − Y (T2a) = Ū2

2
+

√
Ū 2
2

4
+ V̄ 2

1 + α′ + γ Ū2V̄

2(1 + α′)
e− γ

2 T2a . (60)

If instead the orbit reaches Line 1 during the mode, the system enters again mode 11.
(b) In the case 00 → 01, initial conditions are

X (0) = X̄ , Y (0) = Ȳ , Ẋ(0) = 0, Ẏ (0) = 0, (61)

where X̄ and Ȳ are related by (24) and the initial velocity of both asperities is null.
The solution reduces to

X (T ) = X̄ , (62)

Y (T ) = Ȳ − βU ′

2

[
1 −

(
cosω2T + γ

2ω2
sinω2T

)
e− γ

2 T
]

, (63)

where

U ′ = 2
1 − ε

1 + α′ . (64)

If the orbit does not reach Line 1 during the mode, the mode duration is

T2b = π

ω2
, (65)

while the final slip amplitude is

U2b = βκ2U
′, (66)

where

κ2 = 1

2

(
1 + e− γ

2 T2b
)

. (67)

123



Math Geosci (2018) 50:697–724 707

Hence, U2b is the maximum slip in mode 01. If the orbit reaches Line 1 before time
T2b has elapsed, the system passes to mode 11. In this case, the slip duration and
amplitude are smaller than T2b and U2b, respectively.

3.4 Simultaneous Asperity Failure (Mode 11)

The equations of motion are

Ẍ + γ Ẋ + (1 + α)X − αY − ε = 0, (68)

Ÿ + γ Ẏ + (1 + α′)Y − α′X − βε = 0. (69)

The system may enter mode 11 from mode 10, 01 or 00. In all cases, the solution is

X (T ) = εXP + (A sinωaT + B cosωaT + C sinωbT + D cosωbT ) e− γ
2 T , (70)

Y (T ) = εYP +
(
A sinωaT + B cosωaT − 1

ξ
C sinωbT − 1

ξ
D cosωbT

)
e− γ

2 T ,

(71)

where the constants A, B, C , D depend on the initial conditions (“Appendix A”).
Mode 11 terminates at time T = T11 when one of the asperities stops. Hence the
mode duration is

T11 = min(TX , TY ), (72)

where TX and TY are respectively the smallest positive solutions of the equations

Ẋ(T ) = 0, Ẏ (T ) = 0. (73)

4 Subsets of the Sticking Region

During the interseismic intervals, the state of the fault is represented by a point (X,Y )

in the sticking regionQ. The orbit of the system is given by line (36) starting at a point
P0 = (X̄ , Ȳ ). The kind of seismic event generated by the fault depends on the subset
of Q which the representative point P0 belongs to. In fact, it depends exclusively on
the value of the variable p defined in (37); therefore, the subsets of Q are defined by
the values of p.

(1) A major subdivision of Q is the orbit through P , driving the fault from mode
00 to mode 11. This orbit belongs to the line

Y = X + p0, (74)

where
p0 = YP − XP . (75)

Thanks to (29), it results

p0 = (β − 1)ξ

α + αξ + ξ
. (76)
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Line (74) divides Q in two subsets producing events with initial mode 10 (p < p0)
and 01 (p > p0), respectively. In the particular case p = p0, the fault will produce a
two-mode event 11-01: this is the largest seismic event predicted by the model.

(2) Next, the subset S of Q from which the fault produces slipping of one asperity
followed by the simultaneous motion of both of them is determined. This subset is
defined by the values of p belonging to the interval [p1, p2]. It is shown in Fig. 2.
Initial states that are outside the subset S produce events that are made of a single
mode 10 or 01, corresponding to p < p1 and p > p2, respectively. In this case, no
simultaneous asperity slip is possible. For later use, let S1 and S2 be the subsets of S
below and above line (74), respectively.

In view of the following discussion, we recall that the maximum slip of asperity 1
during mode 10 is κ1U , corresponding to the slip duration T1b, whereas the maximum
slip of asperity 2 during mode 01 is βκ2U ′, corresponding to the slip duration T2b.

(a) The value of p1 is calculated considering an event starting with mode 10. The
lower margin of S is the line Y = X + p1 causing asperity 1 to trigger the motion
of asperity 2 after completing mode 10. The coordinates of point P1, where mode 10
starts, are

X1 = 1 + αp, Y1 = 1 + (1 + α)p. (77)

The coordinates of point P2, where mode 10 ends, are

X2 = X1 − κ1U, Y2 = Y1. (78)

Since it must belong to Line 2, it results

p1 = (β − 1)ξ − ακ1U

α + ξ + αξ
. (79)

The circumstances under which mode 01 starting at P2 is followed by other slipping
modes are investigated. If the orbit of mode 01 does not meet Line 1 before time T2b
has elapsed, the slip of asperity 2 terminates at point P3 with coordinates

X3 = X2, Y3 = Y2 − βκ2U
′. (80)

If P3 belongs to Line 1, mode 01 is followed by a second phase of mode 10. This
situation corresponds to a specific value of β, namely

β = β1 = (α + ξ)κ1

αξκ2
. (81)

In the particular case in which β > β1, the orbit of mode 01 reaches Line 1 before time
T2b has elapsed and the system enters mode 11. The different cases are summarized
in Table 1.

(b) The value of p2 is calculated considering an event starting with mode 01. The
upper margin of S is the line Y = X + p2 causing asperity 2 to trigger the motion
of asperity 1 after completing mode 01. The coordinates of point P1, where mode 01
starts, are
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Table 1 Seismic events resulting from p = p1 defined in (79), as a function of β. The particular value
β = β1 is defined in (81)

β < β1 β = β1 β > β1

Seismic event 10-01 10-01-10 10-01-11-

Table 2 Seismic events resulting from p = p2 defined in (84), as a function of β. The particular value
β = β2 is defined in (86)

β < β2 β = β2 β > β2

Seismic event 01-10-11- 01-10-01 01-10

X1 = β − (1 + α′)p, Y1 = β − α′ p. (82)

The coordinates of point P2, where mode 01 ends, are

X2 = X1, Y2 = Y1 − βκ2U
′. (83)

Since it must belong to Line 1, it results

p2 = (β − 1)ξ + αβξκ2U ′

α + ξ + αξ
. (84)

The circumstances under which mode 10 starting at P2 is followed by other slipping
modes are investigated. If the orbit of mode 10 does not meet Line 2 before time T1b
has elapsed, the slip of asperity 1 terminates at point P3 with coordinates

X3 = X2 − κ1U, Y3 = Y2. (85)

If P3 belongs to Line 2, mode 10 is followed by a second phase of mode 01. This
situation corresponds to a specific value of β, namely

β = β2 = ακ1

ξ(1 + α)κ2
. (86)

In the particular case in which β < β2, the orbit of mode 10 reaches Line 2 before time
T1b has elapsed and the system enters mode 11. The different cases are summarized
in Table 2.

For the sake of simplicity, the condition

β2 < β < β1, (87)

will be assumed throughout the rest of the paper. Accordingly, the stress distribution
associated with p = p1 and p = p2 correspond to two-mode events 10-01 and 01-10,
respectively.
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5 Moment Rates and Moment Rate Spectra

A seismic event generated by the fault may involve one or more slipping modes. If n
is the number of slipping modes in the event, let Pi = (Xi ,Yi ) be the representative
point of the system at the onset of the i-th mode (i = 1, 2, . . . n).

Each event is described by a seismic moment m(t) or, in nondimensional form

M(T ) = K1

f 2s1
m(t). (88)

As a reference, the seismic moment M1 that is released in a one-mode event 10 when
γ = 0 is considered. The moment rate of an n-mode event is then

Ṁ(T ) = M1
ΔẊ + ΔẎ

U
, (89)

where ΔẊ and ΔẎ are the slip rates of the asperities during the event (Dragoni and
Tallarico 2016). The final seismic moment is

M0 = M1
U1 +U2

U
, (90)

where
U1 = X1 − Xn+1, U2 = Y1 − Yn+1, (91)

are the final slip amplitudes of the asperities.
The moment rates of events involving the failure of a single asperity or the consec-

utive, but separate, failures of the two asperities, are considered. These are the more
frequent events and completely analytical expressions can be obtained for them.

(1) One-mode events. If an earthquake is produced by the failure of asperity 1, (89)
yields

Ṁ(T ) = M1
1 + α

2ω1
sinω1T e− γ

2 T , (92)

with 0 ≤ T ≤ T1b. The final seismic moment is

M0 = κ1M1. (93)

If the earthquake is produced by the failure of asperity 2, (89) yields

Ṁ(T ) = M1
1 + α

2ω2
β sinω2T e− γ

2 T , (94)

with 0 ≤ T ≤ T2b. The final seismic moment is

M0 = 1 + α

1 + α′ βκ2M1. (95)

123



Math Geosci (2018) 50:697–724 711

(2) Two-mode events 10-01/01-10. If the sequence of slipping modes is 10-01, the
moment rate is

Ṁ(T ) = M1
1 + α

2

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1

ω1
sinω1T e− γ

2 T , 0 ≤ T ≤ T1b

β

ω2
sinω2(T − T1b) e

− γ
2 (T−T1b), T1b ≤ T ≤ ΔT

(96)

where
ΔT = T1b + T2b. (97)

If the sequence of slipping modes is 01-10, the expression is straightforward. In both
cases, the final seismic moment is

M0 =
(

κ1 + 1 + α

1 + α′ βκ2

)
M1. (98)

Following Dragoni and Santini (2015), the nondimensional moment rate spectrum
of a seismic event can be calculated as

S(Ω) = ∣∣∫ ΔT

0
Ṁ(T ) e−iΩT dT

∣∣, (99)

where ΔT is the duration of the event and Ω is a nondimensional frequency, defined
from the angular frequency ω of the emitted waves as

Ω =
√

μ1

K1
ω. (100)

The spectrum can be calculated analytically for one-mode events 10 or 01 and for two-
mode events 10-01 or 01-10: for the sake of simplicity, only the spectrum of one-mode
events is shown.
(1) For a one-mode event 10, ΔT = T1b and it results

S(Ω) = M1
1 + α

2

√
1 + 2e− γ

2 T1b cosΩT1b + e−γ T1b

(1 + α − Ω2)2 + γ 2Ω2 , (101)

a result that was already given by Dragoni and Santini (2015). Its value for Ω = 0 is

S0 = M0, (102)

where M0 is given by (93), and its envelope for Ω → ∞ is

S∞(Ω) = 1 + α

Ω2 M0. (103)
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The nondimensional corner frequency is

Ωc = √
1 + α, (104)

and its dimensional value is

ωc = T1b
t ′

Ωc, (105)

where t ′ is the observed event duration.
(2) For a one-mode event 01, ΔT = T2b and the spectrum is

S(Ω) = M1
1 + α

2
β

√
1 + 2e− γ

2 T2b cosΩT2b + e−γ T2b

(1 + α′ − Ω2)2 + γ 2Ω2 . (106)

Its value for Ω = 0 is

S0 = 1 + α

1 + α′ βκ2M1 = M0, (107)

where M0 is given by (95), and its envelope for Ω → ∞ is

S∞(Ω) = 1 + α′

Ω2 M0. (108)

The nondimensional corner frequency is

Ωc = √
1 + α′, (109)

and its dimensional value is

ωc = T2b
t ′

Ωc. (110)

6 Discussion

In this section, the influence of the difference between the asperity areas on several
features of the model is investigated. For the sake of the present discussion, it is
assumed that the size of asperity 1 remains fixed, whereas asperity 2 can be smaller
(ξ < 1) or larger (ξ > 1). In the following, very small or large values of the parameter
ξ (e.g. ξ = 0.1 or ξ = 10) are not considered, since they are not significant: in fact,
they would imply that one asperity is considerably smaller than the other, so that its
contribution to fault dynamics and moment release during a seismic event would be
negligible. First, the evolution of the tangential forces on the asperities during a global
stick phase is considered. Combining (20) with (35), the forces F1 and F2 duringmode
00 are

F1(T ) = −X̄ + αp − VT, F2(T ) = −ξ Ȳ − αp − ξVT . (111)

Accordingly, the forces on the asperities do not evolve with the same rate, since

Ḟ1 = −V, Ḟ2 = −ξV . (112)
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In conclusion, |Ḟ2| > |Ḟ1| if asperity 2 is larger than asperity 1, and vice-versa.
A significant implication of (111) concerns the meaning of the variable p defined

in (37). In fact, the difference

F1(T ) − F2(T ) = −X̄ + ξ Ȳ + 2αp + (ξ − 1)VT, (113)

does not remain constant during an interseismic interval, except for the limit case
ξ = 1, for which it results

F1 − F2 = (1 + 2α)p. (114)

As a result, the variable p no longer describes the stress inhomogeneity on the fault
in a univocal way (Dragoni and Santini 2012). Nevertheless, it still controls which
asperity fails the first in a seismic event, as shown when describing the subsets of the
sticking region. Next, the dependence of slip duration and amplitude on the size of the
asperities is investigated. The parameter ξ appears in the solutions of dynamic modes
involving the slip of asperity 2, as shown when discussing mode 01 and mode 11. For
the sake of simplicity, only one-mode events 01 are considered. Figure3 shows the
slip duration (65) and final slip amplitude (66) in a one-mode event 01, as functions
of ξ . They are expressed in units of the slip duration (50) and final slip amplitude (51)
associated with a one-mode event 10, respectively. Notice that the slip durations T1b
and T2b coincide in the limit case ξ = 1 (asperities of equal areas), whereasU2b < U1b
for any value of ξ , since asperity 2 is assumed to be weaker then asperity 1. In turn,
the source function of the event is affected by ξ : for larger values of this parameter,
the source function reaches a larger maximum value that is delayed in time, as shown
in Fig. 4.

Next, the effect of the parameter ξ on the sticking region Q of the system is inves-
tigated. The area AQ of the sticking region was given in (30): it is shown in Fig. 5 as a
function of ξ , in units of the area A∗

Q corresponding to the limit case ξ = 1 (asperities
of equal areas). The graph clearly shows that the area AQ is smaller than the area A∗

Q
for ξ < 1; the opposite holds for ξ > 1. As a matter of fact, the overall inertia of
the system decreases when ξ < 1 and the set of states corresponding to stationary
asperities is reduced in turn; the opposite holds when ξ > 1. Figure6a shows the area
AS of the subset S of the sticking region from which events involving the simultane-
ous slip of the asperities take place, as a function of ξ . A deeper insight is presented
in Fig. 6b, showing the dependence on ξ of the areas AS1 and AS2 of the subsets S1
and S2. On the whole, as the overall area of the asperities gets larger, the probability
that the system gives rise to events involving the simultaneous slip of the asperities
decreases. More specifically, the subset S1 decreases with ξ , since the slip of asperity
1 is less likely to trigger the failure of asperity 2 if its size grows. On the contrary, the
subset S2 increases with ξ , since a larger size entails a larger slip amplitude of asperity
2 and, in turn, a larger stress transfer to asperity 1; as a result, it is easier for the slip of
asperity 2 to trigger the failure of asperity 1. Notice that there exists a particular value
of ξ in correspondence to which S1 and S2 are equal to each other. This value must be
evaluated numerically and depends on the particular combination of the parameters
α, β, γ and ε.
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Fig. 3 a Slip duration and b final slip amplitude in a one-mode event 01, as functions of ξ (α = 1, β =
0.5, γ = 1, ε = 0.7). They are normalized to the slip duration and final slip amplitude associated with a
one-mode event 10, respectively

In order to show the influence of the asperity area on the radiation of elastic waves
during fault slip, the moment rate spectrum (106) associated with one-mode events
01 is considered first. It is shown in Fig. 7 for different values of the parameter ξ .
As asperity 2 gets larger, the corner frequency (109) diminishes, so that the content
of relatively high frequencies is reduced. Next, the seismic efficiency of the fault is
discussed. It is defined as the ratio

η = ΔR

ΔW
(115)

between the nondimensional seismic energy ΔR and the nondimensional total energy
change ΔW associated with a seismic event. An event made up of n slipping modes
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Fig. 4 Source function of a one-mode event 01 for different values of the parameter ξ (α = 1, β = 0.5, γ =
1, ε = 0.7)
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Fig. 5 The area AQ of the sticking region Q, as a function of the parameter ξ (α = 1, β = 0.5). It is
normalized to the area A∗

Q corresponding to ξ = 1

starting at time Ti (i = 1, 2, . . . n), when the state of the system is (Xi ,Yi ), is consid-
ered. Following Dragoni and Santini (2015), the seismic energy released during the
event can be calculated as

ΔR = −γ

n∑
i=1

Ti+1∫
Ti

(Ẋ2
i + ξ Ẏ 2

i ) dT, (116)
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Fig. 6 a The area AS of the subset S of the sticking region Q and b the areas AS1 and AS2 of its subsets
S1 and S2, as functions of the parameter ξ (α = 1, β = 0.5, γ = 1, ε = 0.7)

where Ẋi and Ẏi are the slip rates of the asperities during the event. During a sticking
mode, the total energy of the system is

W (X,Y ) = 1

2
(X2 + ξY 2) + 1

2
α(X − Y )2. (117)

Accordingly, the total energy change in the event is given by

ΔW = W (X1 −U1,Y1 −U2) − W (X1,Y1), (118)

where U1 and U2 are the final slip amplitudes (91) of the asperities.
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Fig. 7 Moment rate spectrum of a one-mode event 01 for different values of the parameter ξ (α = 1, β =
0.5, γ = 1)

In the case of a two-mode event 10-01, it results

T1 = 0, T2 = T1b, T3 = T1b + T2b, (119)

U1 = U1b, U2 = U2b, (120)

and the initial state is given by (77) with p = p1 defined in (79). In the case of a
two-mode event 01-10, it results

T1 = 0, T2 = T2b, T3 = T1b + T2b, (121)

U1 = U1b, U2 = U2b (122)

and the initial state is given by (82) with p = p2 defined in (84). The seismic efficiency
calculated from (115) is the same for the two events. Its analytical expression is too
complicated to be reported here: its dependence on ξ is shown in Fig. 8. It can be
concluded that the seismic efficiency associated with events due to the consecutive,
but separate failures of the asperities increases with the overall size of the asperities.

7 An Application: The 2007 Pisco, Peru, Earthquake

The Mw 8.0 Pisco (Peru) earthquake of 15 August 2007 occurred as the result of
thrust faulting at the interface between the Nazca and South American plates, with a
seismic moment estimated between 1.8 and 2 × 1021 Nm (Lay et al. 2010). The slip
distribution inferred from the joint inversion of teleseismic body waves and InSAR
data indicates the presence of two distinct asperities (Sladen et al. 2010): a shallower,
larger one (asperity 1), where the maximum coseismic slip was attained, and a deeper,
smaller one (asperity 2). The earthquake initiated with the slip of asperity 2, followed
by the slip of asperity 1 after a brief time interval.
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Fig. 8 Seismic efficiency associated with two-mode events 10-01 and 01-10, as a function of the parameter
ξ (α = 1, β = 0.5, γ = 1, ε = 0.7)

The two phases of the earthquake were treated as distinct events by Lay et al.
(2010), who estimated seismic moments m1 = 1.2 × 1021 Nm and m2 = 3.5 × 1020

Nm for the slip of asperity 1 and 2, respectively. With an average rigidity μ = 30 GPa
and assuming A1 = 4200 km2 and A2 = 2400 km2 for the area of asperity 1 and 2,
respectively, the average slips of asperities 1 and 2 are, respectively

u1 = m1

μA1
= 9.5m, u2 = m2

μA2
= 4.8m, (123)

where the definition of scalar seismicmoment was exploited. Finally, it is assumed that
the relative velocity of tectonic plates at the Peru trench is v = 6 cm a−1 (Sladen et al.
2010) and that the fault is subject to a shear strain rate ė = 10−15 s−1, an average of
the values provided for the Peruvian interface between the Nazca and South American
plates by the GEM Strain Rate Model. With the data listed above, the parameters
of the model are evaluated. From (14), α = 0.2. The value of β can be estimated
from the ratio u2/u1 between the slips of the asperities (Dragoni and Santini 2012):
accordingly, β = 0.5. The best fit with the observed source function of the earthquake
is obtained with γ = 1.3, a value corresponding to a seismic efficiency η 	 0.16.
It is assumed that ε = 0.7 (Jaeger and Cook 1976). Finally, the ratio A2/A1 yields
ξ = 0.6.

In terms of the present model, the 2007 earthquake can be described as a two-mode
event 01-10 with a finite time interval between the slips of the asperities. Specifically,
it is assumed that the slip of asperity 2 takes place over the time interval t1 ≤ t ≤ t2,
with t1 = 0 s and t2 = 38 s, whereas the slip of asperity 1 takes place over the time
interval t3 ≤ t ≤ t4, with t3 = 60 s and t4 = 105 s. The action of tectonic loading
during the time gap of 22 s that separates the slips of the asperities is excluded, since
its effect is negligible over such a short time. Accordingly, the state of the fault at the
onset of the earthquake (t = t1) is given by (82), that is
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Fig. 9 Orbit of the Pisco (Peru) fault during the 2007 earthquake. The dashed line corresponds to p = p2.
The event starts at point P1 with the slip of asperity 2; the orbit then reaches Line 1 at point P2, triggering
the slip of asperity 1 up to point P3, where the event terminates. For reference, the point P defined in (29)
is also shown

X1 = β − (1 + α′)p2, Y1 = β − α′ p2, (124)

where p2 	 −0.31 from (84). At the end of mode 01 (t = t2), the state is given by
(83), that is

X2 = X1, Y2 = Y1 − βκ2U
′. (125)

In accordance with the previous assumptions, this is also the state of the fault at the
onset of mode 10 (t = t3). Finally, the state at the end of the event (t = t4) is given by
(85), that is

X3 = X2 − κ1U, Y3 = Y2. (126)

The orbit of the system during the earthquake is shown in Fig. 9.
Next, the observed seismic moment rate is reproduced. In dimensional form, the

moment rate predicted by the model is

ṁ(t) = m0
1
1 + α

2

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

βχ2

ω2
sinω2χ2(t − t1) e

− γ
2 χ2(t−t1), t1 ≤ t ≤ t2

χ1

ω1
sinω1χ1(t − t3) e

− γ
2 χ1(t−t3), t3 ≤ t ≤ t4,

(127)

where

χ1 = T1b
t4 − t3

, χ2 = T2b
t2 − t1

, (128)

while
m0

1 = μA1u, (129)
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Fig. 10 Modelled source function (solid line) of the 2007 Pisco (Peru) earthquake, compared with the
observed source function (dashed line) reported by Sladen et al. (2010)

is the seismic moment released by asperity 1 in the limit case γ = 0: accordingly, it
results u = u1/κ1. The modelled moment rate is shown in Fig. 10 together with the
observed moment rate reported by Sladen et al. (2010). The two main peaks of the
source function and its shape are reasonably well fit by the model. The final seismic
moment provided by the model is

m0 =
(

κ1 + 1 + α

1 + α′ βκ2

)
m0

1 	 1.7 × 1021 Nm, (130)

in good agreement with the observations.

8 Conclusions

A discrete model of a fault containing two asperities characterized by different areas
and frictional strengths was presented. The fault is assumed to lie in an elastic shear
zone enclosed by two tectonic plates. Owing to tectonic loading, the fault is subject
to a constant strain rate.

The leading role of asperities in fault dynamics was exploited to study the fault as a
dynamical system with two state variables, corresponding with the slip deficits of the
asperities. Four dynamic modes characterize the dynamics of the system: one sticking
mode, during which stress is accumulated on the fault and asperities are stationary,
and three slipping modes, associated with a seismic event due to the failure of one
or both the asperities at a time. Complete analytical solutions for the corresponding
equations of motion were provided; subsequently, the expressions of the moment rate
functions and seismic spectra associated with the most frequent seismic events were
derived.
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The type of seismic event generated by the fault can be discriminated from the
knowledge of the state of the system at the beginning of the interseismic interval
preceding the event. Specifically, the different seismic events predicted by the model
correspond with specific values of a variable related with the difference between the
slip deficits of the asperities at the beginning of the interseismic interval.

The influence of the different sizes of the asperities on several features of the model
was discussed. It was shown that the force rates on the asperities are not equal to
each other and that their difference does not remain constant during an interseismic
interval, in contrast with the case of asperities of equal areas. Focusing on events
associated with the failure of a single asperity, it was shown how the slip duration
and amplitude increase with the size of the asperity, while the corner frequency of the
seismic spectrum decreases. It was shown that the set of the state space corresponding
to stationary asperities grows with the overall area of the asperities; on the contrary,
the probability that the system gives rise to events involving the simultaneous slip
of the asperities decreases. Focusing on the radiation of elastic waves during events
associated with the consecutive, but separate slip of the asperities, it was shown how
the related seismic efficiency is affected by the overall size of the asperities.

As an application of the model, the 2007 Pisco, Peru, earthquake was considered.
This event was ascribed to the consecutive, but separate, slips of two asperities with
significantly different sizes. The earthquakewasmodelled as a two-mode event starting
with the slip of the weaker asperity, followed by the slip of the stronger one after a
finite time interval. The state of the fault at the onset of the event was characterized
and the orbit of the system during the event was drawn. The modelled moment rate
function of the earthquake was found to fit the observations reasonably well.

Online Resources

GEM Strain Rate Model available at http://gsrm2.unavco.org/gsrm2.html
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A Constants in the Solution for Mode 11

A.1 Case 10 → 11

The initial conditions are

X (0) = X̄ , Y (0) = Ȳ , Ẋ(0) = V̄ , Ẏ (0) = 0, (A.1)

where X̄ and Ȳ are the slip deficits of asperities 1 and2, respectively,when the asperities
start slipping together. Asperity 1, which was already slipping at the onset of mode
11, is associated with a certain rate V̄ , whereas asperity 2 is initially stationary. The
slip deficits X̄ and Ȳ satisfy the Eq. (24) of Line 2. The constants are
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A = 1

ωa

(
γ

2
B + 1

1 + ξ
V̄

)
, (A.2)

B = 1

1 + ξ

[
X̄ + ξ Ȳ − ε (1 + βξ)

]
, (A.3)

C = 1

ωb

(
γ

2
D − ξ

1 + ξ
V̄

)
, (A.4)

D = ξ

1 + ξ

[
X̄ − Ȳ − ε (XP − YP )

]
. (A.5)

A.2 Case 01 → 11

The initial conditions are

X (0) = X̄ , Y (0) = Ȳ , Ẋ(0) = 0, Ẏ (0) = V̄ , (A.6)

where X̄ and Ȳ are the slip deficits of asperities 1 and2, respectively,when the asperities
start slipping together. Asperity 2, which was already slipping at the onset of mode
11, is associated with a certain rate V̄ , whereas asperity 1 is initially stationary. The
slip deficits X̄ and Ȳ satisfy the Eq. (23) of Line 1. The constants are

A = 1

ωa

(
γ

2
B + ξ

1 + ξ
V̄

)
, (A.7)

B = 1

1 + ξ

[
X̄ + ξ Ȳ − ε (1 + βξ)

]
, (A.8)

C = 1

ωb

(
γ

2
D − ξ

1 + ξ
V̄

)
, (A.9)

D = ξ

1 + ξ

[
X̄ − Ȳ − ε (XP − YP )

]
. (A.10)

A.3 Case 00 → 11

The initial conditions are

X (0) = XP , Y (0) = YP , Ẋ(0) = 0, Ẏ (0) = 0, (A.11)

where it was taken into account that P is defined as the state of the fault that satisfies
the conditions for the failure of asperities 1 and 2 at the same time. Both asperities are
initially stationary and their velocities are null at the beginning of the seismic event.
The constants are
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A = γ

2ωa
B, (A.12)

B = 1

1 + ξ
(1 − ε) (1 + βξ) , (A.13)

C = γ

2ωb
D, (A.14)

D = ξ

1 + ξ
(1 − ε) (XP − YP ) . (A.15)
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