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Abstract It is necessary to understand the diffusive behavior of the volatile phase
in order to interpret the control mechanisms of the bubble size in volcanic rocks and
the processes influencing the eruption itself. A simple numerical model is proposed,
based on the time-dependency of the diffusion equation for a hollow sphere, to sim-
ulate incorporation of atmospheric noble gases in pumice for Vesuvian (i.e., Plinian)
eruptions. During a Vesuvian eruption, melt fragments are ejected into the air. The
resulting pumice samples collected after the eruption phase exhibit a significant incor-
poration of elementally and isotopically fractionated atmospheric noble gases. The
noble gas content of the trapped gases then potentially provides useful data with which
to constrain the timescales of cooling for the samples. The system can be adequately
described as a diffusion process into a hollow sphere through the one dimensional
diffusion equation for a spherically symmetrical geometry. Diffusion coefficients are
time-dependent to include the effect of an exponential decay of temperature with time.
The complexity of this system requires numerical resolution of the diffusion equation
due to the diffusion coefficient temperature dependency. The outer boundary condi-
tion is fixed with a given noble gas concentration via an inhomogeneous Dirichlet
boundary condition, while the inner boundary condition is set as a flux-free boundary.
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The numerical model allows the noble gas content, and thus the noble gas elemental
and isotopic ratios entering the bubble, to be modeled as a function of time, hollow
sphere thickness, diffusion coefficients, initial and final temperatures, and quench rate.

Keywords Diffusion processes - Vesuvian eruption - Noble gas - Numerical modeling

1 Introduction

Numerical approaches of kinetic processes during magma degassing have important
applications in the study of nucleation and bubble growth. Nucleation and bubble
growth are important processes for understanding eruption mechanisms and degassing
processes (Sparks et al. 1978). Nucleation is controlled by growth through the depletion
of the degassing component from melt. For example, Toramaru (1995) numerically
solved nucleation and growth processes of bubbles in viscous melts based on a formula-
tion involving viscosity effects on nucleation and moments of bubble size distribution.
Proussevitch and Sahagian (2005) also investigated the dynamics of diffusive bubble
growth in magmas. Their numerical model includes the effect of gas diffusion in the
melt, the hydrodynamics of the melt surrounding growing bubbles and the complex
interaction between hydrodynamics and diffusion. The model is based on a cell model
describing diffusion-induced growth of closely spaced bubbles in melts. Their numeri-
cal model reveals the sensitivity of the diffusive bubble growth related to the distances
between two bubbles within the magma, the volatile concentration in the melt, the
initial pressure, the viscosity of the liquid, and the diffusivity of the gas. Such doc-
umentation of the evolution of gas fraction in the melt and bubble wall thickness as
a function of time makes it possible to estimate bubble disruption thresholds, which
bear on volcanic eruption mechanisms. Model results can be applied to the larger-
scale problem of magmatic degassing in terms of bubble coalescence, flotation and
the development of foams in magma chambers, vent systems and ultimately to the
dynamics of eruption mechanisms (Proussevitch and Sahagian 2005). Proussevitch
and Sahagian (2005) developed a numerical model characterized by treatment of the
transient problem, specific eruption triggers (as instantaneous decompression events),
disequilibrium degassing, full-scale bubble growth module and steady-state eruption.
They found that the conduit geometry is critical to determining the nature of the erup-
tion. They also observed that the eruption occurs within 2 min of the trigger, showing
the rapidity of the degassing.

These studies have demonstrated that numerical modeling is a powerful tool for
studying and improving our understanding of magma degassing processes. They show
that the growth of bubbles and nucleation as a consequence of volatile exsolution has a
major impact on the dynamism of the volcanic eruption. Bubble growth rates are con-
trolled by volatile diffusion rates, eruption timescales and volatile solubility. Volcanic
eruptions are usually thought to be driven by exsolution of a volatile phase under mag-
matic conditions such as elevated temperature and pressure (Anderson 1975; Sparks
etal. 1978; Sparks 2003; Tait et al. 1989; Jaupart 2000). Non-equilibrium fractionation
among volatile phases, driven by their different diffusivities, are known to be common
during magma decompression and degassing (Paonita and Martelli 2007; Gonnermann
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and Mukhopadhyay 2007). Recently, studies on both elemental and isotopic noble gas
ratios have recorded non-equilibrium fractionation in pumice in which some vesicles
are preserved (Pinti et al. 1999; Ruzié and Moreira 2010). Noble gases are known to be
chemically inert, and thus can be used to investigate physical processes during magma
degassing. Even if such fractionations are related to kinetic processes, they are rarely
observed in terrestrial samples (Kaneoka 1980). Fractionation has been calculated by
diffusion of noble gases in pumice vesicles through a glass wall (i.e., after pumice
quenching) (Pinti et al. 1999). Pinti et al. (1999) concluded that noble gas isotopic and
abundance fractionations (relative to the atmospheric composition) reflect the initial
magmatic temperature, the cooling rate of the eruption column and the bubble’s wall
thickness. However, based on the Proussevitch and Sahagian (2005) cell model, Ruzié
and Moreira (2010) determined that noble gas diffusion through the liquid shell (i.e.,
at magmatic temperature) can explain the observed noble gas fractionation in pumice
without requiring a post-quenching diffusion. Their model was able to determine
characteristic times of magma ascent on the order of a few 100 s. Ruzié and Moreira
(2010) also demonstrated that Ar diffusion through the glass shell at ambient tempera-
ture would be too slow to generate the compositions observed and concluded, instead,
that the fractionation processes must have occurred in the magmatic phase, prior to
fragmentation. Both of the studies used either linearly decreasing (Pinti et al. 1999)
or constant (Ruzié and Moreira 2010) temperature. However, Amalberti et al. (2016)
showed that heavy noble gas diffusivities (e.g. Ar) recorded in silicate glass close
to the T'g, the glass transition temperature, are sufficient to allow incorporation and
kinetic fractionation of atmospheric noble gases on timescales that are reasonable for
Plinian eruptions. Nevertheless, the temperature dependency of the diffusion equation
during eruption has never been investigated through numerical modeling. A simple
but rigorous numerical simulation is proposed to examine the potential incorporation
of gases, notably noble gases, into a preexisting bubble during the cooling stages of
magma (i.e., exponential decrease of the temperature). This numerical model provides
new insights into the behavior of the volatile phase during the extreme temperature
variations that take place during magma quenching. More generally, the numerical
model presented here can be applied in studies where the variation of the diffusion
equation as a function of temperature is needed.

2 Starting Equation and Approach Undertaken

Variations of diffusion coefficient related to the exponential decreasing of temperature
have never, up to now, been applied to a degassing model that attempts to explain the
signature of the volatile phase during magna degassing. Previous models used simple
approximations of temperature behavior during eruptions that do not accurately reflect
the time-dependent behavior of diffusivities. In order to investigate the incorporation
and fractionation of atmospheric noble gases into the bubbles, hollow sphere geometry
was used. Similarly to Pinti et al. (1999), the gases are allowed to diffuse through a
hollow sphere, based on a specific mathematical solution of the diffusion equation
given by Crank (1975)
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where M;/M « is the gas fraction entering or leaving the hollow sphere at the specific
time ¢, a and b being the hollow sphere limits (a < r < b). However, this solution
is valid for a constant diffusion coefficient: Eq. (1) cannot be applied to evolving
temperatures (and therefore diffusivities) that will occur when pumices erupt.

To further investigate this problem, the temperature dependency of diffusion given
by the Arrhenius relation need to be taken into account

D (T) = Dye®t, 2)

where Dy is the pre-exponential term, corresponding to an imaginary diffusivity at
T = o0, E, is the activation energy for diffusion, and R is the gas constant.

A partial differential equation (PDE) for diffusion into a sphere (i.e., a hollow
sphere) is also given by Crank (1975), which takes into account the temperature depen-
dency of diffusion D(T)

2
by

o e ®

where u = Cr, C is the concentration of the diffusing substance, r is the hollow sphere
thickness, and D(T') is the diffusion coefficient in Eq. (3). The relation that links the
temperature (7") and time (¢), for an exponentially temperature decay, is given by

T ()= (Tg — TL)e_% + Ty, )

where T g and T, are the initial and final temperatures (K), respectively, and v is the
exponential cooling rate (K s~!). There is no simple analytical solution to Eq. (3)
with an exponentially decaying temperature, since the PDE includes some variable
coefficients. To be able to simulate a temperature dependency on the diffusion equation
coefficient (D) (Eq. 3), the initial equation given by Crank (1975) was used for a
constant coefficient D (Eq. 2)

ou Da2u )
at  ar?’
A numerical model was developed where the temperature dependency of D(T)
can then be integrated easily by computing it at each time step during the simulation
calculation, the updated value of D being given by combining Egs. (2), (4) and (5)

M by ©)
ar ax2’
where u = Cr, setting C is the concentration of diffusing substance and r is the radius
of the system. The diffusion coefficient D (T (¢)) is temperature-dependent, ¢ is the
time variable and x the spatial radial coordinate.
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3 Mathematical Model and Numerical Approximation
3.1 Mathematical Modeling

Following Eq. (5), two boundary conditions need to be added to the time-dependent
diffusion equation at the endpoints a and b, the external and internal system boundary,
respectively, and an initial boundary condition u(t = 0, r) = up(r) to obtain a well-
posed initial boundary-value problem. On the external boundary r = b, the value of
the field u is fixed at a given constant gas concentration Co, [i.e., u(t, b) = Cp]. This
boundary condition is known as the inhomogeneous Dirichlet boundary condition in
the mathematics literature. At the internal boundary r = a, a free-barrier boundary
condition: d,u(t, a) = 0 is considered. Fixing the value of the normal derivative
trace at r = a to zero is called a homogeneous Neumann boundary condition. As a
consequence, the full model that is considered in this paper is the following initial
boundary-value problem: find the solution u to the evolution system

g—’;:D(r)g%, fort >0,a <r <b.
ou(t,r=a)=0, fort>0. 6)

C(,r=b)=0Cp for t > 0.
u(=0,r)=ug(r), fora <r <b.

It can be rigorously proven that under suitable smoothness conditions, there exists
one and only one solution « to this problem. The system being well-posed, it is now
ready for a numerical approximation to get a computed solution.

3.2 Numerical Scheme

For the interior numerical solution, a Crank—Nicolson finite difference scheme (Press
et al. 2007) was used, which is second-order accurate in time and unconditionally
stable. In addition, a second-order centered scheme was used to approximate the
second-order spatial derivative operator (Press et al. 2007). In order to solve system
Eq. (6) from t = 0 to a maximal time #y,x, the interval (0; #pax ) is uniformly discretized
into N segments (t,; t,+1), where t, = nAt,forn=0, ...,N — 1 with, 190 =0, ty = fmax
and At = tmax/N. Let’s now introduce a uniform discretization of (a; b) by using J
segments (1j; 1j41),j =0, ...,J — 1, withrg = a, r; = b and h = (b — a)/J. Following
this notation, r; = a + jh. The numerical approximation of the PDE arising in system
Eq. (6) can be written as follows

n+l _ yn nl oyl gyl noo—2ut
Wit —ul _ i (u/Jrl 2“./ +ul T )+ 2uj +uli_y
At 2h?

with D2 = (D" + D™)2, forn =0, ..., N — 1 and j = 0, ..., J — 1. The
approximation of u(t,, r;) is denoted by u,/. At the endpoint o = a and for consistency,
the second-order centered spatial approximation of the normal derivative is used
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un+1 +u”
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where r_1 = a — h is a ghost discretization point outside the physical computational
domain. Rewriting Eq. (7) for j = 0 and using the equation above provides the updating
equation for the numerical discrete model

L_'_ Dn+% un+1 Dn+% un+1 B i 3 Dn+% un 3 Dn+% un (8)
At h2 0 B2V T A Rz Y 2 b

Now, at point r; = b, one gets the discrete equation for the Crank—Nicolson scheme

un+1 +u
—( J 5 f)zcb:m'}*‘zzcza—u’}. 9)

Considering Eq. (7) for j = J — 1, the linear relation is deduced as follows

1 1 1 1 1
_Dn+7 un+1 + L + D"*2 Mn+1 _ D" M L _ D"z Wt o+ D’H—Zcb
At K2 T=17 op2 TI=27\ Ag h2 J-1 o

(10)

The real-valued vector fields can be expressed as u" = (u;")o<j<j—1 € R’ and
b" = (bj")o<j<j—1 € R' suchthath;_," = h=2D"12C},and b;" =0 forj =0, ...,J —2.
The J x J real-valued sparse positive definite matrix is defined as follows

2-20 ... 0 00
0-12 -10 00O
1 00 -12-100

A=salo. o] an
0...0 —12 —10
00 0 ...0 —12

Then, Eqs. (7), (8) and (10) can be recast under the form of a linear system

<Ait + D"*iA) ut = <Alt - D""%A) u" +b", (11)

where I is the identity matrix of size J x J. If an initial datum uq is given, then the
initial vector is trivially defined by u = (uo(rj"))o<j<s—1. The resulting scheme is
globally second-order in both space and time, and unconditionally stable. Each time
step of the algorithm requires the numerical solution to the n-dependent linear system
of Eq. (11). This can be done efficiently and accurately thanks to an LU factorization
(Press et al. 2007) based on the Thomas algorithm for a tridiagonal system (Press
et al. 2007). Therefore, each time step requires only about J elementary operations.
The memory storage is very low and on the order of J. In conclusion, this solution
provides a fast, accurate and stable numerical method for solving Eq. (6) for any
time-dependent concentration function D.
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4 The Resulting Code and How to use it

The Matlab source code is provided. The source code has been written for Matlab
version 2014b. Issues might be encountered for earlier versions. Based on the previ-
ous discretization scheme, the Matlab solver has been developed in three parts: the
main part, named “Diffusion_main.m”, consists of a GUI interface which calls two
functions: “function_gasl.m” and “function_gas2.m”. The code is given in the sup-
plementary material. Run the Diffusion_main script to launch the GUI interface. The
model parameters and the GUI interface are shown in Fig. 1. The resulting data are
plotted in three dimensions (time, distance and concentration). Data can be exported
to an Excel file, which is automatically named “ResultsFiles.xIsx’”” comprised of sheet
1: the Gas 1 data, sheet 2: Gas 2 data; sheet 3: the ratio of Gas 1/Gas 2; sheet 4: the
simulation time, and sheet 5: the corresponding temperature. Note that all the data are
written in the first row of each sheet.

5 Application Examples
5.1 Numerical Validation of the Computational Model

A comparison of the results given by the numerical simulation to different experi-
mental and analytical data and solutions is provided. Given that the model is derived
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I

Fig. 1 Maltlab GUI interface
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Fig. 2 Results of numerical (dark line) versus analytical (data points) solutions for the general diffusion
Eq. (3) with constant D. Diffusion parameters are fixed with # = 1000 s (the simulation time) and a = 0.01 cm
(the hollow sphere thickness). The x axis is expressed with the dimensionless parameter rla?, with r =0
and r = a, at respectively the center and the edges of the hollow sphere. Symbols are as follow: solid

circle for D = 1 x 1072 em? s~1, solid square for D = 8 x 1079 em? s~ !, half-filled square for
D=2x10"8cm?s !, open square for D =4 x 1078 cm? s~ and open circle for D = 8 x 10-8 cm2 ™!

from the general form of the diffusion equation for a constant D (Eq. 5) (Crank 1975),
the output of the numerical solution for the D constant was compared with the analyt-
ical solution given by Crank (1975) for five different diffusion coefficients to validate
the accuracy of the method. The results are shown in Fig. 2. A good agreement is
observed between the analytical and the numerical solutions. Unfortunately, the ana-
lytical solution corresponding to our case is not provided by Crank (1975), even for a
linear decay of the temperature. Dodson (1973) used time-dependent diffusion coeffi-
cients (i.e., a linear decrease of the temperature) in a problem of diffusion in a cooling
solid in order to calculate the age of a rock or mineral from its accumulated products
of radioactive decay. Although the diffusion equations are solved with an analytical
solution, the addition of the radioactive decay brings a complexity not implemented
in our numerical model. In addition, an important condition for validity of the theory
in Dodson (1973) is that the cooling should be “slow”. Quantitatively, this means that
7, the time constant as defined by Dodson (1973), must be much greater than the
characteristic diffusion time a2/D(0), where D(0) is the diffusion coefficient at 1 = 0,
and a is the characteristic dimension of the system. In this case, the cooling time
constant is of the order of few 100 s for Ar diffusion in pumice during the quench.
However, a>/D(0) is of the order of 10 min at a temperature of 1000 K. We consider
an Ar diffusion coefficient at 1.3 x 107 cm? s~! at T = 1100 K (Amalberti et al.,
2016) and a characteristic diffusion length of 10 pm for the pumice wall (Whitman
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and Sparks 1986). Therefore, for the application (see below), the condition of a slow
cooling rate is not satisfied as specified by Dodson (1973).

Next, the comparison was extended to the experimental databases for a thin-source
diffusion experiment (Zhang and Cherniak 2010), for Th diffusion in a diopside melt
at 1473 K (Van Orman et al. 1998) and for Ar diffusion in a rhyolitic melt (experiment
RhyAr4-0) at 1375 K (Behrens and Zhang 2001). Thin source experiments mean that
diffusion proceeds from the surface of the material into its interior. The thin-source
experiments are performed at constant temperature (1473 K for Th and 1375 K for
Ar) for a time of 70.65 h (Th) and 1800 s (Ar). Such experiments refer generally to
the diffusion problem in a semi-infinite space, with the initial condition that all of
the diffusing species are at a single location of x = 0; and C = 0 for x > 0. This
mathematical problem is similar to that of a one-dimensional random walk where the
gas diffusion is one-directional. Hence, the concentration profile (i.e., the solution to
this diffusion problem) is given by (Crank 1975; Zhang and Cherniak 2010)

Xz X2
e i = Cpe™ aDr, (12)

C(x,1) = ,
(7 Dt)?

where x is the distance measured from the surface of the system, Cy is the concen-
tration at x = 0 and M is the initial mass of the diffusing atoms in the system per
applied area. From Egq. (5), the constant diffusion D for Eq. (12) is derived. Thus, this
problem corresponds to the presented model’s description, with the sole exception
that D is constant. Therefore, the numerical solution of Eq. (12) can be tested with the
parameters given by the study authors, such as D (at a given T'), the diffusion distance
(x), and the experiment duration (¢).

Results are displayed in Fig. 3 and show good reproducibility of the experimental
data by the model. In addition, the model also predicts very well the concentration
profile recorded by Carroll and Stolper (1991) (not shown here) for Ar diffusion in
Si0; glass at a pressure of 200-3785 bars and temperatures of 673-1173 K.

5.2 Plinian Eruption Timescales

The 38 Ar/3% Ar isotopic and 34Kr/3® Ar elementary ratios have been recently measured,
in bubble bearing pumices, during the last Plinian eruption of Pelé Mountain in Mar-
tinique (Ruzié and Moreira 2010). This data base provides a study case for estimating
the eruption timescale by using our numerical model, although Ruzié and Moreira
(2010) argued that these kinetic fractionations may originate only under magmatic
conditions (i.e., in the magmatic chamber). However, as pointed out by Pinti et al.
(1999) and Amalberti et al. (2016), kinetic noble gas fractionation may occur during
cooling of the magma. In order to document this possibility, a lava ejection from high
temperature (7o = 1,123 K) to room temperature (7, = 298 K) is simulated, using the
diffusion coefficients from Matsuda et al. (1989) for 8*Kr in obsidian and Drapper and
Carroll (1995) for Ar in Rhyolite, 3®Ar was calculated using Graham’s law (Eq. 13)

Da _ (M) 13
Dg  \Mp)
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Fig. 3 Results from numerical modeling (black curves) of the experimental data (open circles) for a thin-
source experiment for (top) Ar in a rhyolitic melt (Behrens and Zhang 2001) and (bottom) Th in a diopside
melt (Van Orman et al. 1998). The diffusion coefficients for Ar and Th are: D, = 2.14 x 1078 cm? s~
and D, = 5.3 x 10717 cm? s—1. Note that those values are for isothermal conditions

where Da, Dp and M 5, Mp are the diffusion coefficients and the masses of isotopes A
and B, respectively, and = 0.5 for gases. The diffusion data are summarized in Table 1.
Note that the diffusion coefficients are for material that does not match the pumice
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Table 1 Arrhenius parameters used in the numerical modeling shown in Fig. 4

Ea (kI mol™1) Do (cm? s™1)
Model a
Ar 152.5 0.0204 Drapper and Carroll (1995)
36Ar 152.5 0.0215 Graham’s law
84Ky 61.12 7.08 x 1078 Matsuda et al. (1989)
Model b
Ar 152.5 0.0204 Drapper and Carroll (1995)
36Ar 1525 0.0215 Graham'’s law
84Kr (100%) 100.5 5.84 x 1070 Matsuda et al. (1989)

composition because of a lack of experimental data in the literature. The results (i.e.,
eruption timescale) may therefore be underestimated. Moreover, Matsuda et al. (1989)
indicated that their sample’s shape may be affected by partial melting at 1273 K during
diffusion experiments, resulting in an error of 100% on the 3*Kr diffusion coefficient.
Two different simulations have been performed to take into account this variability
(models a and b, see Table 1). For the simulation, we have assumed a glass wall
thickness of 1 x 10~ cm [the lower limit in pumices (Whitman and Sparks 1986)]
and an exponential cooling rate, v at 5 K s~!. In our model, the initial noble gas ratios
are unknown. However, it seems that an atmospheric composition could represent
the starting point for most cases (Ruzié and Moreira 2010). Assuming this set of
parameters, the best fit for the noble gases’ isotopic and elementary ratios from our
simulation was given by an eruption time of 500 s (for the model with 100% error on
the 84Kr), see Fig. 4.

However, this result needs to be used with caution. The eruption time of 500 s
represents only the value for the analyzed pumices themselves, and may not be
representative of the entire eruption. Moreover, the diffusion coefficients are not rep-
resentative of the measured pumice composition, which may lead to underestimating
the eruption time. Note, also, that only parts of the data fit the model prediction line
(Fig. 4). This can be explained by the fact that the pumices were crushed to free the
noble gases contained in the bubble (see Ruzié and Moreira 2010). This experimental
method gives an average concentration of the noble gases over all bubbles contained
within the pumice. Thus, the approximation for a constant glass wall thickness may
not be applicable to the entire range of pumices analyzed. A more reliable approach
would be to use noble gas concentrations for a single bubble (by drilling with an
excimer laser through the pumice glass, for example). Unfortunately, such data for
bubble-bearing pumice are not yet available in the literature.

Nevertheless, based on some approximations, the model seems to be able to explain
the kinetic fractionation observed in some bubble-bearing pumices and also provides
an eruption timescale of 500 s.
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Fig. 4 Comparison between the simulation result (solid line) for model a and model b (see Table 1) and 84Ky
fractionation factor, F(84Kr), versus S8 Ar/30Ar. F(84Kr) represents the (84Kr/36Ar)bubble/84Kr/36Ar)atm0
ratio, where subscripts bubble and atmo represent the concentration in the bubble and in the air, respectively.
Small solid circles are the values given by Ruzié and Moreira (2010) for different pumices. The large unfilled
circle is the atmospheric composition

6 Conclusion

This study provides a simple but rigorous mathematical approach for solving time-
dependent diffusion equations with exponential temperature decay. The numerical
model’s accuracy was validated with an experimental database for experiments at
constant D (Van Orman et al. 1998; Behrens and Zhang 2001).

The model correctly explains some of the kinetic fractionation observed in bubble-
bearing pumices by atmospheric noble gas contamination during the cooling of
magma. The proposed model provides an eruption timescale if the diffusion coef-
ficients are known and the noble gas concentrations in the bubble can be individually
measured. In addition, our numerical model can be applied in studies where the vari-
ation of the diffusion equation as a function of temperature is needed.
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