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Abstract Mining operations face a decision regarding additional drilling several times
during their lifetime. The two questions that always arise uponmaking this decision are
whether more drilling is required and, if so, where the additional drill holes should be
located. The method presented in this paper addresses both of these questions through
an optimization in a multi-armed bandit (MAB) framework. The MAB optimizes the
best infill drilling pattern while taking geological uncertainty into account by using
multiple conditional simulations for the deposit under consideration. The proposed
method is applied to a long-term, multi-element stockpile, which is a part of a gold
mining complex. The stockpiles in this mining complex are of particular interest due
to difficult-to-meet blending requirements. In several mining periods grade targets of
deleterious elements at the processing plant can only be met by using high amounts of
stockpiled material. The best pattern is defined in terms of causing the most material
type changes for the blocks in the stockpile. Material type changes are the driver for
changes in the extraction sequence, which ultimately defines the value of a mining
operation. The results of the proposed method demonstrate its practical aspects and
its effectiveness towards the optimization of infill drilling schemes.
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1 Introduction

Optimizing an infill drilling pattern can be linked to a more general problem present
in many different applications such as stock markets, research effort direction, project
development, and others. The more common term for this problem used across these
various industries is the valuation of future information (under uncertainty). In terms of
the economic utility theory, Schlee (1991) proves that perfect information always has
a positive value. However, the requirement of a payment to retrieve this information
might render the total value negative, causing a need to valuate this future information
properly. In the mineral industry, Chorn and Carr (1999) assess the value of future
information for decisions on additional capital investments, and Prange et al. (2008)
valuate information gathering campaigns on the sealing capacity of a fault system.

In the aforementioned works, the value of future information is a monetary value.
This is hard to quantify for a mineral deposit. Boucher et al. (2005) indirectly do this
via amisclassification cost ofmaterial. Thismisclassification refers to ore versuswaste
based on a fixed cut-off grade and one processing stream. However, this is usually not
the case in a mining complex. Menabde et al. (2007) show that it is optimal to use a
variable cut-off grade that comes directly from the schedule optimization. This makes
it impossible to evaluatemisclassification errorswithout rescheduling the deposit. This
effect is strengthened if multiple processing streams are considered in combination
with the blending of material from different sources, as in the application presented
below.

Barnes (1989), Diehl and David (1982), Gershon et al. (1988), Delmelle and
Goovaerts (2009) and others explore infill drilling optimization by focusing on min-
imizing the kriging variance or trying to locate zones of high kriging variance as
prime spots for additional drilling or alternative approaches . A flaw in using krig-
ing variance as a measure of variability is that it only captures the geometric part
of the uncertainty for a drilled deposit and does not take into account the variability
of grades (Goovaerts 1997; Journel and Kyriakidis 2004; Rossi and Deutsch 2014).
Ravenscroft (1992) shows that working with geological simulations is the best way
to represent variability in a deposit and that estimated orebody models give a flawed
representation of the true variability in a deposit. Therefore, simulations are used in
this approach to infill drilling optimization and the assessment of additional patterns
under geological grade uncertainty. Goria et al. (2001) also propose a method based
on conditional simulations to assess the value of additional drill holes. An important
conclusion from this work is that additional drilling does not necessarily reduce the
variability in the deposit. Boucher et al. (2005) propose a method for the optimization
of infill drilling that also makes use of simulated orebody models and compares the
cost of drilling additional drill holes to the misclassification cost of the material. The
aforementioned works inform the additional drill holes with a simulated grade, drawn
from simulations based on the initial exploration data. This is used as a possibly ”true”
grade in the added value calculations. A similar approach is taken here.

The major contribution of the proposed method is the use of multi-armed bandits
(MAB) for the optimization. Their benefit is that they provide an elegant solution to
the requirement of testing every single simulation as possibly ”true” representation
multiple times. The MAB framework origins in the world of casinos. The initial
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problemcomes fromplaying a rowof slotmachines (commonly referred to as an armed
bandit) in a certain sequence in order to maximize the total long-term reward from
playing these machines. This provides an analogy with the well-known exploration
versus exploitation trade-off present in many other applications such as clinical trials
and internet advertisements. The exploration versus exploitation trade-off in infill
drilling exists in the availability of many possible locations for additional drill holes
with each an unknown outcome. The proposed method applies the MAB framework
to find the best infill drilling pattern from a predefined set of patterns.

This paper considers additional information for a mineral deposit to be valuable
if the extraction schedule is influenced. Differences in extraction schedules are often
caused by a change in material types of various blocks. Therefore, value is linked
to material type changes, the main driver of schedule changes. The definition of the
best pattern is the one that adds the most value to the knowledge. According to this
paper’s definition of value, the best infill drilling pattern is the one that causes the
most material type changes, implicitly linked to schedule changes. The case study
presented herein requires simulations of a multi-element stockpile. This requires a
simulation technique capable of dealing with multiple spatially correlated variables.
The simulations throughout the remainder of this work are all generated using mini-
mum/maximum autocorrelation factors (MAF) (Switzer and Green 1984). Desbarats
and Dimitrakopoulos (2000) describe theMAF-technique in a mineral science context
by applying it to the simulation of pore-size distribution. Boucher and Dimitrakopou-
los (2009) apply it directly to the block support level by combining it with direct block
simulation (Godoy 2002); it is this direct block method that is used below.

The three main contributions illustrated above show that this method distinguishes
itself from the past work through all three of them. Firstly, a new framework in infill
drilling optimization, the MAB, takes patterns and the interactions between the con-
stituting drill holes into account. Secondly, an unused definition of added value in the
form ofmaterial types changes which effectively have the possibility to changemining
schedules, the real value drivers of mining operations. Finally, the applicability to a
multi-element deposit, by using MAF simulation, which stresses the importance of a
proper value definition even more.

In the following sections, first the details of the proposed method are addressed.
Once the method is explained, the need for additional information for stockpiles is
illustrated and an application of the infill drilling optimization for a long-term, multi-
element stockpile is shown. Finally, a conclusion and recommendations for future
work are given.

2 Method

2.1 Multi-Armed Bandits

The classic and simplest MAB framework follows the four basic rules formulated
below as in Mahajan and Teneketzis (2008). The state for an arm is the internal time,
which is equal to the number of times the arm has been played.
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1. Only one arm is played at each time-step. The reward from this play is uncontrolled,
meaning that the operator only controls what arm is played not how it is played.

2. Not played arms remain frozen, meaning they do not change state.
3. A frozen arm will not give a reward.
4. All arms are independent.

There are many variants of MAB problems where one or more of these rules are
omitted or altered, which makes them considerably more complicated to understand
and solve. Therefore, the focus of the following sections will only be on these simple
bandits, as they are sufficient to address infill drilling.

The objective function of the MAB problem, k with arms, is given in Eq. (1). The
same formulation as in Mahajan and Teneketzis (2008) is used

J γ = E

[∑∞
t=0

β t
∑k

i=1
Ri (Xi (Ni (t)), Ui (t))|Z(0)

]
, (1)

with, J γ , the objective function value under policy γ , defined by Ui (t). The discount
factor with time t , β t , reflects that earlier rewards are higher valued than later rewards,
like in a Net Present Value (NPV) calculation. The time t is a measure for the number
of iterations/plays. The reward of arm i, Ri (Xi (Ni (t)), Ui (t)), depends on Xi (Ni (t)),
the state of arm i at time t , which depends on Ni (t), the local time of arm i at time t ;
the number of times arm i has been played before time t . The policy decision, Ui (t),
determines whether or not arm i is played at time t . Finally, Z(0), the initial state of
all arms i . The objective function value is calculated by taking the expected value over
the summations over time and the number of arms conditional to the initial states of
all arms. The goal is to find the optimal scheduling policy that determines the values
of Ui (t) for every arm i and time t in such a way that the total expected reward is
maximized. The MAB problem can also be used to find the best performing arm,
instead of a schedule of when each arm should be played. The best arm is just the only
one that occurs in the schedule after some initial exploration of the other arms.

2.2 Thompson Sampling

The optimization algorithm for the MAB is a heuristic algorithm called Thompson
sampling (Thompson 1933), a popular heuristic in artificial intelligence and for solving
MAB problems. The general idea of Thompson sampling is: always play the arm
with the highest likelihood of providing the highest reward. According to this rule,
it is always possible to explore arms that have not performed as well in the previous
iterations, but it is most likely that the best performing arms are exploited. This gives
a natural approach to the exploration versus exploitation trade-off in MAB. Important
to remark here is that infill drilling is never referred to as sampling to avoid confusion
with the solution algorithm, Thompson sampling.

Thompson sampling is chosen because it has shown excellent performance for
many problem instances (Agrawal and Goyal 2012; Chapelle and Li 2011; May and
Leslie 2011; Scott 2010), and it requires weaker assumptions on the knowledge of the
prior reward distributions of the arms. This is especially beneficial because it is not
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known how the material type changes due to a drilling pattern are distributed, hence,
the true reward distributions are unknown. This is common in many applications of
MABs and is usually overcome in Thompson sampling by assuming a uniform prior
over [0,1] for each arm. The prior is represented as a beta-distribution with parameters
α = 1 and β = 1 (B[1,1]). This leads to a pure exploration phase at the beginning of
the algorithm because all distributions are identical. The algorithm gradually evolves
to a pure exploitation phase of the highest reward-giving arm at convergence. The
beta-distribution is chosen to represent the reward distribution of the arms because it
is easy to interpret for the rewards and easy to update during the Thompson sampling
algorithm as well.

The distribution update depends on the reward of the pull. Traditionally, the dis-
tribution is updated according to whether a pull is a success (reward is 1) or a failure
(reward is 0). If it is a success, the posterior of arm i is updated to Bi(αt + 1, βt ) at
iteration t ; otherwise, it is updated to Bi(αt , βt + 1) at iteration t, αt and βt , which
are the parameters of the beta-distribution at iteration t updated for all previous iter-
ations. Because the reward is defined as the percentage of blocks that change their
material, it is not binary, but it is defined on [0,1]. This adds a slight complication to
the updating of the distribution. This complication is resolved by first performing a
Bernoulli trial with the reward between 0 and 1 as the success rate. The binary result of
the Bernoulli trial is then used to update the distribution in the same way as explained
above. Pseudo-code for the Thompson sampling algorithmwith Bernoulli trial updates
is provided in Algorithm 1. The parameters of the beta-distribution follow the same
definition as above. The parameter T in the algorithm is a generic parameter used to
denote the stopping time of the algorithm.

Algorithm 1: Thompson sampling with Bernoulli trial updates

1: for t = 1,2,…,T

2: for i = 1,2,…, numberOfPatterns do

3: sample(i) = sample reward distribution of pattern i at iteration t, Bi(αt, βt)

4: Play arm j = argmaxi[sample(i)] and observe reward r

5: success = observe outcome of Bernoulli trial with success rate r

6: if success == 1 then

7: Bi(αt + 1, βt)

8: Else

9: Bi(αt, βt + 1)

The Thompson sampling algorithm is proven to converge for the MAB problem by
Agrawal and Goyal (2012) and May et al. (2012), but it has no predefined termination
moment. Therefore, it is required to define a convergence criterion that works for the
application in consideration. In this paper, a simple criterion is defined, which has
shown satisfactory results. That is, if in the last 20% of iterations one arm is selected
to be played more than 90% of the iterations, then this is the best arm. Important to
note here is that this criterion is not checked for the first iterations (e.g. 100) to allow
for some initial exploration.
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2.3 Algorithm

The proposed method selects the best infill drilling pattern from a predefined set of
patterns. The representation of each pattern for infill drilling will be called an arm
in the MAB framework. These arms will be played/pulled (these terms will be used
interchangeably throughout the remainder of the text). When an arm is played, the
algorithm assesses the value for the pattern associated with that arm is set in motion.
The steps in this value assessment are the following (Fig. 1 demonstrates the general
flow of the algorithm):

1. The grades in the drill holes of the selected pattern are drawn from an initial
simulation, which is set to be the possibly ‘true’ representation of the deposit.

2. The drill holes of the pattern linked to the pulled arm are used as additional data
to the initial exploration data for the re-simulation of the deposit.

3. After the re-simulation with additional data, the blocks of the re-simulation are
classified according to a material classification guide.

4. The reward or contribution from pulling that arm is defined as the percentage of
blocks that have changed material classification in the re-simulation compared to
the possibly ‘true’ deposit. Optimizing for this reward is in line with the definition
of the best pattern given above.

5. The Thompson sampling solution algorithm updates the current arm and the next
arm is selected.

After convergence of the algorithm, the whole procedure is repeated for other
simulations of the deposit as a possibly ”true” deposit in order to test the sensitivity
of the method to this choice. The best pattern is then selected over the results of all
of these possibly ”true” deposits. By considering multiple simulations as possibly
”true” deposits, the method is able to give an assessment of the performance of all
patterns under geological uncertainty, which leads to the quantification of the upside
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Fig. 1 High-level schematic representation of the MAB optimization algorithm
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potential and downside risk for each pattern. All of the patterns in one MAB set-up
are comparable in the sense that they belong to what is called the same budget class,
which means that they all have the same amount of drill holes and thus represent a
similar drilling cost. The procedure is repeated for different budget classes of patterns,
where each budget class represents patterns with a different number of holes than in
the other classes. A separate MAB is required to optimize within each budget class,
as the rewards of patterns with more holes cannot be directly compared to the rewards
of patterns with fewer holes.

3 Case Study–A Long-term, Multi-element Stockpile

The case study presented below illustrates the optimization of the infill drilling deci-
sion for a long-term, multi-element stockpile of a gold mining complex in Nevada,
USA. This complex consists of two open pit mines, an underground mine and sev-
eral stockpiles. The downstream processing includes an autoclave, an oxide mill and
multiple heap leaches. Deleterious compounds are co-simulated with the gold grade
because of strict grade requirements on them to guarantee efficient processing recov-
eries. Knowledge of the grade of these compounds can assure blending of ore from
different sources to meet the constraints at the processing facilities. The compounds
being considered are sulphide sulphur, organic carbon and carbonate, next to gold as
the paying metal. This case study focuses on one stockpile in the mining complex.

For this case study, three classes of patterns are considered, each corresponding
to a different budget. The first budget class has patterns with five holes, the next
class has patterns with ten holes, and the last class has patterns with 15 holes. Eight
patterns, based on the ideas provided to us by the mine site, are considered for the
optimization in each class. For each class, the procedure is repeated for 20 simulations
as possibly ”true” stockpiles to guarantee that the results are independent from the
selected possibly ”true” stockpile. This also assesses the performance of the patterns
under geological uncertainty. A validation step tests all patterns with simulations not
used in the optimization procedure and shows that the results are independent of the
simulations employed.

3.1 Stockpile Simulations

As mentioned in the introduction, the MAF technique with direct block simulation
(Boucher and Dimitrakopoulos 2009) is used to generate the stockpile simulations
because there are four correlated compounds of interest. The MAF technique decor-
relates the variables via two eigenvalue decompositions, first on the covariance matrix
of the original data and second on the covariance matrix at a chosen lag. The result-
ing decorrelated variables can be simulated independently and maintain their spatial
correlations after back transformation. The first element is gold (Au), which is the
produced metal. Sulphide sulphur (SS), organic carbon (OC), and carbonate (CO3)
are of importance for the working of the downstream processing facilities. The main
constraints at the autoclave, where the sulphide material from the stockpile is pro-
cessed, are a maximum organic carbon content and an upper and lower bound on the
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Fig. 2 Histograms of the material variability at the block level over all 20 stockpile simulations

sulphide sulphur-carbonate ratio. Using the above mentioned method, 20 simulations
are generated each containing 204 blocks within the shape of the stockpile. The block
size is 30×30×20 ft. This is the same as in the mines feeding the stockpile and pro-
cessing streams because the same mining selectivity is used for both the stockpiles
and the mines.

The prior drilling of the stockpile is done on a regular grid with a 40 ft. spacing. In
total, there are 104 drill holes with one sample each. The height of the stockpile is 20 ft.
The size is±200000m3, which corresponds to±400kton. Figure2 shows thematerial
variability over all 20 stockpile simulations at the block level. The material is classi-
fied based on the material classification guide provided by the mining complex. The
distinction between the different sulphide materials (e.g. high sulphide versus medium
sulphide) is made based on gold grade. The difference between oxide versus sulphide
material comes not only from the gold grade, but also from the other compounds. The
mining complex flags the stockpile under consideration as medium sulphide material,
but Fig. 2 shows that in all simulations there is less than 30%medium sulphidematerial
present. High and low sulphide material usually dominate the material distribution in
the stockpile. These two material types also have a much higher variability in quantity
over all simulations than the medium sulphide material. This can be in part explained
by the fact that the gold grade criteria for the medium sulphide material are tighter
than for the low sulphide or the high sulphide, which does not have a cap for gold
grade. However, it still shows a high amount of misclassified material.

Similar results can be seen from Fig. 3, which demonstrates the spatial material
variability for two simulations on the block level. For this case study, the high and
low sulphide materials that dominate the material types in the stockpile. Figure3 also
shows that there is a large amount of spatial material variability in the stockpiles within
one simulation, but also from one simulation to another. This observation is one of the
main motivations for the application of the proposed method to stockpiles. It shows
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that more information is required to assess the local scale variability in stockpiles. This
is especially true for the stockpile in this mining complex because, in some periods,
it is the main contributor to the processed blend at the autoclave. Figure4 shows the
spatial material variability in two simulations for the four variables of interest. All
simulations show that the same main features are respected between two simulations,
but also that there is local scale variability for the grade within each simulation. The
gold simulations, at the top of Fig. 4, show the presence of high grades in the centre
and toward the top of the ball shape on the left side of the stockpile. The high sulphide
material zones shown in Fig. 3 are a result of these high gold grades.

3.2 Tested patterns

Figure5 shows the eight patterns that are considered in the optimization. The patterns
are always shown with all 15 additional drill holes on top of the initial exploration
drill holes which are represented as black crosses. The red squares (first five holes)
represent the budget class with five holes per pattern. The red squares and the green
triangles (second five holes) represent the budget class with ten holes per pattern. The
patterns have the same numbering over the budget classes because they are based on
the same idea for the location of the additional drill holes. The patterns are constructed
based on ideas provided to us by the mine site.

Pattern 1 is constructed as an evenly spread pattern through the whole stockpile.
Pattern 2 is constructed as a pattern that focuses on a high gold grade zone at the
top of the stockpile. Pattern 3 is constructed to mimic the delineation of the stockpile
on the road side. Pattern 4 is constructed to target some specific zones of high gold
grade spread over the stockpile. Pattern 5 is constructed to delineate the borders of the
stockpile more precisely. Pattern 6 is constructed based on the blocks (30×30×20 ft.)
that have the highest coefficient of variation in gold grade over the 20 stockpile sim-
ulations. Pattern 7 is constructed by randomly selecting drill hole locations. Pattern
8 is constructed as a mix of points and blocks with a size of 10×10×10 ft. with the
highest coefficient of variation over all 20 simulations. It was required to mix these
two scales to look at the highest coefficients of variation because the 15 points with
the highest coefficients of variation are located right next to another. A pattern like
that would not make sense. To add some diversity in the locations of the additional
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drill holes the blocks of size 10×10×10 ft. with the highest coefficient of variation
over all 20 simulations are considered as well.

3.3 Case Study Results

Figure6 shows the convergence results for the algorithm over all simulations for every
pattern in each budget class. Convergence results show how often the algorithm has
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Fig. 6 Convergence results over all 20 simulations for all patterns per budget class

converged on that specific pattern in that budget class for the 20 simulations as a
possibly ”true” deposit. The pattern that has been converged upon the most is called
the ”winner” of that budget class. For the ten- and 15-hole budget classes, there is
always a clear winner in pattern 1. However, for both budget classes, it has to be noted
that pattern 7 also shows comparable performance, especially for the 15-hole budget
class. Identifying a winner for the five-hole budget class is less obvious. Pattern 2 has
30% convergence, but patterns 1, 4, and 5 each have 20% too. This is only a small
difference and no clear decision on the winner can be made from this.

Figure7 shows the average reward over all 20 simulations for each pattern in each
budget class. For the ten- and 15-hole budget classes, it is pattern 1 that has the highest
average reward, as was expected from the convergence results in Fig. 6. The link
between these figures is apparent. However, the results for the five-hole budget class
are not as expected in the sense that it is pattern 1 and not pattern 2 that has the highest
average reward. This can be explained by pattern 2 strongly outperforming pattern
1 for some simulations as the possibly ”true” stockpile, while in others pattern 2’s
performance ismuchworse than pattern 1’s. Therefore, it can be concluded that pattern
1 is more robust against geological uncertainty than pattern 2. Figure7 corroborates
the observation of no clear winner for the five-hole budget class by demonstrating that
the average rewards of all patterns are very close to each other. It is hard for the MAB
to distinguish between patterns with such similar rewards.

Table1 shows the running times, the number of iterations, the number of times
the algorithm did not converge, and the patterns causing the non-convergence, for the
optimization of each budget class over all simulations. The differences between the
running times for the different budget classes observed in Table1 can also be explained
by the observations in Figs. 6, 7. Because the five-hole patterns yield similar average
rewards, the algorithm has difficulties finding the winner and, therefore, it requires
more iterations, and thus more time, to evaluate the patterns over all simulations. The
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Fig. 7 Average reward over all 20 simulations for all patterns per budget class

Table 1 Overview of the statistics of the algorithm for each budget class

Budget Class Running time Iterations Not converged Non-converging patterns

5 Holes 24h 24min 46s 25,465 3 2 vs. 6, 1 vs. 2, 1 vs. 4

10 Holes 13h 9min 31s 13,085 4 1 vs. 3, 1 vs. 2, 1 vs. 2, 1 vs. 4

15 Holes 8 h 41 min 31 s 9,378 2 1 vs. 2, 3 vs. 4

The last column shows the patterns that caused the non-convergence. The pattern that has the highest average
reward in case of a tie is marked in bold and is attributed the convergence

five-hole budget class requires almost three times more time than the 15-hole budget
class and almost twice the time than the ten-hole budget class. The number of iterations
to evaluate all patterns within one budget class for all simulations is very high. In fact,
it is higher than the brute force approach, which tests every pattern 20 times for
each simulation and then takes the average. This brute force tactic would result in
8×20×20=3200 iterations to evaluate each budget class. The numbers higher than
3200 in Table1 come from a few simulations with hard convergence problems that
add a lot of iterations to the total count. These also explain the high running times.

The number of non-converging simulations is low for every budget class. To get
it to zero, unnecessary large numbers of iterations are required because it is always
possible that two patterns perform very similarly for a certain simulation. Therefore,
it is not really seen as a problem because the algorithm still identifies the two patterns
that perform equally well in these cases. As a tiebreaker, the pattern with the highest
average reward is attributed the convergence. A summary of which patterns caused
the non-convergences for each budget class is also presented in Table1 in the last
column. A small sidenote is that a different set-up is used for the five-hole pattern
optimization. This set-up allows for 5000 instead of 2000 iterations as the maximum
iterations without convergence. Another addition to this set-up is a forced exploration-
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Fig. 8 Convergence results over all 20 simulations for all patterns per budget class when the ties presented
in Table1 are broken in the opposite way

phase at the start of the algorithm forcing each pattern to be played 20 times before
the algorithm starts doing its normal steps. Both measures are taken to overcome
convergence issues observed in initial tests.

Figure8 shows the convergence results if the ties in the non-convergence cases
of Table1 are broken in the opposite way, the average rewards for each pattern are
obviously unaltered in this case. For the five-hole budget class, pattern 1 gains 10%
and pattern 2 loses 10%, making pattern 1 the most converged upon as indicated by
the highest average reward in Fig. 7. Pattern 4 loses 5% and pattern 6 gains 5%, but
this does not alter the conclusions made above. For the ten-hole budget class, pattern 1
loses 15%but also gains 5%, thismeans a net-loss of 10%. Pattern 2 gains 10%, pattern
3 loses 5% and pattern 4 gains 5%. All these changes do not alter the conclusions for
the ten-hole budget class; it is still pattern 1 that performs the best. For the 15-hole
budget class, pattern 1 and 4 each loose 5% and patterns 2 and 3 each gain 5%. This
does not alter the conclusions either. However, the difference between the convergence
percentage of patterns 1 and 7 is only 5% in this case, making pattern 1 a less clear
winner in terms of convergence percentage. The difference in average reward is still
sufficient to conclude that pattern 1 is better than pattern 7 for the 15-hole budget
class. As an intermediate conclusion from the graphs in Figs. 6, 7, and the discussion
on the non-convergence, pattern 1 is the best performing pattern for each budget class.
In addition to this, it is important to remark that the five-hole patterns might not be
sufficient for this stockpile. This is concluded from the fact that their average rewards
are all very similar no matter where the exact locations of the drill holes are.

Figure9 compares the performance of the patterns over the budget classes. This
graph demonstrates the profiles (P10-P50-P90) on the best pattern’s reward over all
simulations compared to the average of the rewards of all patterns over all simulations.
The tenth percentile (P10) represents the downside risk and the ninetieth percentile
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Fig. 9 Profile of the best pattern per budget class versus the all-pattern average per budget class

(P90) represents the upside potential of the best pattern under geological uncertainty.
The five-hole best pattern average is lower than the all-pattern average for both other
budget classes. Also, the downside risk is much higher and the upside potential is
much lower. Therefore, in combination with the reasons mentioned above, it is not
recommended to choose a five-hole pattern for infill drilling in this stockpile. Purely
based on performance, pattern 1 with 15 holes is better than pattern 1 with ten holes.
However, the extra five holes also cost more to drill. Another observation is that the
downside risk for the 10- and 15-hole pattern 1 is almost equal. This means that they
both guarantee similar results in the worst-case scenario. This is an extra argument in
favour of pattern 1 with ten holes, especially if there are constraints on the budget that
are more important than having the best possible knowledge.

3.4 Validation of the Results

As a validation step, the performance of the patterns is tested on an alternate set of 20
simulations, which are not used in the optimization process. Every pattern is tested 20
times for each simulation in the alternate set. One test is the same as the evaluation
procedure in the MAB described above; the stockpile is re-simulated based on the
pattern data from the possibly ”true” stockpile plus the original data and the reward
is calculated. 20 tests for every simulation result in 400 rewards for every pattern in
each budget class. The rewards are summarized by their profile based on the tenth and
ninetieth percentiles as demonstrated in Fig. 10. This figure is the counterpart of Fig. 9.
For ease of comparison, the results of Fig. 9 are summarized with the black lines in
Fig. 10. The black lines are always very close to their counterpart from the tests on the
alternate set of simulations. The results of Fig. 10 lead to the same conclusion as made
for Fig. 9 above. The validation demonstrates that the proposed optimization method
produces results independent of the simulations used.
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the reward from the alternate set of simulations presented by the squares and diamonds

4 Conclusions

The paper presented above shows that the proposedMABalgorithm is able to select the
best pattern within a set of patterns of the same budget and provides a decision tool to
select the best pattern between sets of a different budget. Also, the case study demon-
strates how the method successfully quantifies the influence of geological uncertainty
on the performance of an infill drilling pattern. Additional to the performance of the
proposed infill drilling optimization algorithm, it is demonstrated that stockpiles can
be effectively simulated and that their local scale variability can be much higher than
expected. The method is applied to a stockpile in this case study but its applicability
is not limited to stockpiles. The proposed method can be used to optimize an infill
drilling campaign for any deposit in any stage, as long as some prior information on
the variables of interest is available.

The proposed approach could be improved by updating the original simulation after
every play according to the infill drilling data, instead of performing a re-simulation
at every iteration. Two methods that are suitable for this are conditional simulation by
successive residuals (Jewbali andDimitrakopoulos 2011) and ensemble Kalman filters
(Benndorf 2015). Another improvement to the algorithm could be to let it choose the
locations of the additional drill holes independently, rather than to constrain it to a set
of predefined patterns.
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