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Abstract Least-squares spectral analysis, an alternative to the classical Fourier trans-
form, is a method of analyzing unequally spaced and non-stationary time series in
their first and second statistical moments. However, when a time series has com-
ponents with low or high amplitude and frequency variability over time, it is not
appropriate to use either the least-squares spectral analysis or Fourier transform. On
the other hand, the classical short-time Fourier transform and the continuous wavelet
transform do not consider the covariance matrix associated with a time series nor do
they consider trends or datum shifts. Moreover, they are not defined for unequally
spaced time series. A new method of analyzing time series, namely, the least-squares
wavelet analysis is introduced, which is a natural extension of the least-squares spec-
tral analysis. This method decomposes a time series to the time–frequency domain
and obtains its spectrogram. In addition, the probability distribution function of the
spectrogram is derived that identifies statistically significant peaks. The least-squares
wavelet analysis can analyze any non-stationary and unequally spaced time series
with components of low or high amplitude and frequency variability, including datum
shifts, trends, and constituents of known forms, by taking into account the covari-
ance matrix associated with the time series. The outstanding performance of the
proposed method on synthetic time series and a very long baseline interferome-
try series is demonstrated, and the results are compared with the weighted wavelet
Z-transform.
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1 Introduction

A time series is a sequence of data points measured at discrete time intervals and may
not be sampled at equally spaced intervals or it may contain data gaps, and so it is
unequally spaced. Sometimes, and depending on the purpose of specific experiments,
researchersmay intentionally define a variable sampling rate to avoid aliasing (Shapiro
and Silverman 1960; Pagiatakis et al. 2007). In certain experiments, measurements
may also have uncertainties (variances) based on instrument calibration and thus may
also be unequally weighted.

If all statistical properties of a time series (i.e., the mean, variance, all higher order
statistical moments, and auto-correlation function) do not change in time, then the time
series is called stationary. A time series is called non-stationary if it violates at least one
of the assumptions of stationarity (Brown and Hwang 2012). A non-stationary time
series may contain systematic noise, such as trends (linear or exponential or others)
and/or datum shifts (offsets) indicating that its mean value is not constant in time.
The second moments (central and mixed moments) of the time series values form
a symmetric matrix called the covariance matrix (Vanicek and Krakiwsky 1986). In
certain fields, such as geodesy, geophysics, and astronomy, a time series usually has
an associated covariance matrix which means that the time series is non-stationary
in its second statistical moments. In geodynamic applications, seismic noise may
contaminate the time series of interest or certain components of the time series may
exhibit variable frequency, such as linear, quadratic, exponential or hyperbolic chirps.
The reader is referred to Kay and Marple (1981), Mallat (1999), Brown and Hwang
(2012) for more details.

Time series analyses have almost exclusively been performed using the classical
Fourier method and its modifications (Kay and Marple 1981; Stein and Shakarchi
2003), often incorrectly postulating that the time series under consideration is sta-
tionary, resulting in erratic results. It is not unusual to see that many researchers even
attempt to modify the original raw measurements by interpolation, editing, or offset
removal, often using empirical and questionable approaches, simply to satisfy the
stringent requirements of the Fourier transform.

The least-squares spectral analysis (LSSA) was introduced by Vanicek (1969,
1971) for the purpose of analyzing non-stationary (in the first and second statisti-
cal moments) and unequally spaced time series. The LSSA has been described in
detail in many publications (Lomb 1976; Wells et al. 1985; Craymer 1998; Pagiatakis
1999) and applied in many experiments (Scargle 1982; Hui and Pagiatakis 2004; Abd
El-Gelil et al. 2008; Psimoulis et al. 2008; Wu et al. 2010). Conceptually, this method
estimates a spectrum based on the least-squares fit of sinusoids to the entire time
series.

In the LSSA, trends, datum shifts and the covariance matrix associated with a time
series are parameterized and consequently estimated concurrently with the calcula-
tion of the spectrum (Wells et al. 1985). However, the LSSA cannot generally be used
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for time series whose components change amplitude (e.g., transient signals) and fre-
quency (e.g., doppler-shifted signals) over time because it decomposes a time series
to the frequency domain rather than to the time–frequency domain (similar to Fourier
analysis). Craymer (1998) compared the LSSA with Fourier analysis (discrete) and
need not be repeated here. Suffices to say that the Fourier analysis is a special case of
the LSSAwhen the time series is strictly stationary, equally spaced, equally weighted,
and with no gaps.

In order to measure the frequency variation of sounds, Gabor (1946) introduced
the short-time Fourier transform (STFT) to analyze piece-wise stationary and equally
spaced time series. He basically endeavored to obtain the spectrum of a time series,
in short-time intervals (or within a window which translates through the entire time
series) rather than considering the entire time series at once (Mallat 1999). Since in
the STFT the sinusoidal functions that do not complete an integer number of cycles
within a window are not orthogonal, the segment of the time series within such win-
dow cannot be represented by linear combination of these sinusoids properly. This
increases the bandwidth of the spectrum (poor frequency resolution) corresponding
to these sinusoidal functions in the frequency domain (Mallat 1999). Note that the
STFT does not consider the correlation between the sinusoidal functions when they
are not orthogonal within a window. In the STFT, the window length is fixed during
translation in time, which is not appropriate for analyzing time series with components
of high frequency variability over time.

The continuous wavelet transform (CWT) is a well-established method that com-
putes a scalogrambased on the dilations and translations of a (mother)wavelet function
(Mallat 1999). One may also convert the scalogram to a spectrogram using dif-
ferent approaches that each has its own advantages and disadvantages (Hlawatsch
and Boudreaux-Bartels 1992; Sinha et al. 2005). The CWT spectrogram has high-
frequency resolution (better frequency localization) at low frequencies and high-time
resolution (better time localization) at high frequencies and vice versa (Mallat 1999;
Sinha et al. 2005). In the CWT, if one uses an inappropriate wavelet, then the
CWT spectrogram may give misleading and physically meaningless results (Qian
2002).

Since unequally spaced wavelets are not defined, the CWT and discrete wavelet
transform are not appropriate for analyzing an unequally spaced time series unless
one uses an interpolation method to fill in the missing data or shrinks the wavelet
(Hall and Turlach 1997; Sardy et al. 1999). However, the interpolation is not an
acceptable approach as it damages the time series and results in erratic spec-
trograms in the time–frequency domain especially for non-stationary time series
(Hayashi and Yoshida 2005; Rehfeld et al. 2011). Moreover, it is not appropri-
ate to apply the STFT or CWT (based on their definitions) to unequally spaced
and/or unequally weighted time series that may also have trends (Foster 1996; Mallat
1999).

There are a number of methods developed and applied to non-stationary time series,
such as Wigner-Ville distribution (Classen and Mecklenbrauker 1980a, b, c; Baydar
and Ball 2001), Hilbert–Huang transform (Huang et al. 1998; Barnhart 2011), empir-
ical wavelet transform (Gilles 2013), tunable-Q wavelet transform (Selesnick 2011),
and ensemble empirical mode decomposition (Huang and Wu 2009; Ren et al. 2014).
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Each of them has its own advantages and weaknesses (Chen and Feng 2003; Huang
andWu 2008; Guang et al. 2014), and they are not generally appropriate for analyzing
non-stationary and non-ergodic time series that are unequally spaced and unequally
weighted.

There are several other methods proposed by researchers for analyzing unequally
spaced and non-stationary time series. Foster (1996) proposed a new method of
time–frequency analysis, namely, the weighted wavelet Z-transform (WWZ), which
performs very well in detecting the periodicities of the signals in both equally and
unequally spaced time series. Amato et al. (2006) use a wavelet-based reproducing
kernel Hilbert space technique and show that their technique is superior in terms of
the mean squared error. Mathias et al. (2004) propose a method that is based on the
least-squares method to deal with the undesirable side effects of nonuniform sampling
in the presence of constant offsets.

In this contribution, a newmethod is developed that can analyze non-stationary time
series in the first and second statistical moments that are also unequally spaced and
comprise constituents of low/high amplitude and frequency variability over time. This
method, namely, the least-squares wavelet analysis (LSWA), is a natural extension of
the LSSA and can analyze rigorously any type of time series without anymodifications
or editing (Sect. 2.1). The practical implementation steps of the LSWA for equally
and unequally spaced time series are demonstrated, and some of the advantages of the
LSWA over the CWT are shown on two synthetic equally spaced time series (Sect.
2.2). In Sect. 2.3, the WWZ is described in detail and compared to the LSWA. In
Sect. 2.4, stochastic surfaces (confidence level surfaces) are obtained above which the
peaks in the least-squares wavelet spectrograms are statistically significant at certain
confidence level (usually 95 or 99%). As an application of the LSWA, a very long
baseline interferometry length time series is analyzed in Sect. 3.

2 Methods

2.1 Least-Squares Wavelet Analysis

Conceptually, the approach is to decompose a time series into time–frequency domain
by an appropriate segmentation of the series and calculate spectral peaks based on
the least-squares fit of sinusoids (other functions may be chosen as well) to each
segment. The segmentation is similar to the one in the CWT, and computing the
spectral peaks is similar to the LSSA, so the approach is a combination of the CWT
and the LSSA.

Suppose that f = [
f (t j )

]
, 1 ≤ j ≤ n, is a discrete time series of n data points; here

the t j ’s are not necessarily equally spaced. Let � = {ωk; k = 1, . . . , κ} be a set of
spectral frequencies, and let y be an arbitrary segment of the time series that contains
L(ωk) samples such that ωk can be resolved within it

� =
[
cos

(
2πωk ti+ j− 1

2 (L(ωk )+1)

)
, sin

(
2πωk ti+ j− 1

2 (L(ωk )+1)

)]
, (1)

y =
[
f
(
ti+ j− 1

2 (L(ωk )+1)

)]
, (2)
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where 1 ≤ i ≤ L(ωk) and

L(ωk) :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

⌊ L1M

ωk

⌋
+ L0 if

⌊ L1M

ωk

⌋
+ L0 is odd,

⌊ L1M

ωk

⌋
+ L0 + 1 otherwise,

(3)

where symbol �∗� indicates the largest integer no greater than ∗, L0 is a fixed number
of data points, L1 is a selected number of cycles of the sinusoidal base functions, M
is the average number of data points per unit time, and ωk is the number of cycles per
unit time (ωk ∈ �). For instance, for an equally spaced time series recorded with a rate
of one sample per millisecond, if frequency is in Hertz, then M = 1000 (data points
per second), and if L1 = 2, then two cycles of sinusoidal base functions of frequency
ωk will be fitted to a segment of the time series with L(ωk) data points. Also, L0 is the
selected number of additional samples considered in the least-squares fit to achieve
the desired time and frequency resolution in the spectrogram (see Sect. 2.2 for more
details).

For simplicity of notations, L is used instead of L(ωk) from now on. For each k,
1 ≤ k ≤ κ , and each j , 1 ≤ j ≤ n, if 1 ≤ i + j − (L + 1)/2 ≤ n, then the size of y
in Eq. (2), which is the same as the number of rows in � given by Eq. (1) is

R( j, k) :=
⎧
⎨

⎩

(L − 1)/2 + j if 1 ≤ j < (L + 1)/2,
L if (L + 1)/2 ≤ j ≤ n − (L − 1)/2,
(L + 1)/2 + n − j if n − (L − 1)/2 < j ≤ n.

(4)

Note that when L1 = 0, R( j, k) is independent from the choice of ωk . Assume that
P = Cf

−1 is the associated weight matrix of f , and Py is the principal submatrix of P
of dimension R( j, k) (see below for more details).

If f contains constituents of known forms (φ1, . . . , φq ) but of unknown amplitudes
(e.g., trends or sinusoids of constant frequencies), then for each pair (t j , ωk) let

� =
[
φ1(ti+ j− 1

2 (L+1)), . . . , φq(ti+ j− 1
2 (L+1))

]
, (5)

� =[
�,�

]
, (6)

where � is given by Eq. (1) and use the model y = � c to determine ĉ using the
least-squares method. Therefore,

ĉ = N−1�
T
Pyy, (7)
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where T signifies transpose and N = �
T
Py� (matrix of normal equations). Let

J = � N−1�
T
Py. Define the weighted least-squares wavelet spectrogram (LSWS) as

s(t j , ωk) = yTPyJy
yTPyy

∈ (0, 1), (8)

where 1 ≤ j ≤ n and 1 ≤ k ≤ κ . The justification of the name comes from the fact
that when L1 �= 0, the size of y decreases as the frequency increases in the calculation
of the spectrogram using the least-squares method similar to the CWT. Notice that if

f is equally spaced, equally weighted, and � = �, then ĉ
T
ĉ has similar properties to

the STFT with a rectangular window when L1 = 0, and it has similar properties to
the CWT when L1 �= 0. However, Eq. (8) shows how much of � ĉ is contained in y.

A more practical approach used in this contribution is first to remove (suppress)
the known constituents from each segment y, and then analyze the residual segment
ĝ. More precisely, first use the model y = � c to estimate c as

ĉ = N−1�TPyy, (9)

where N = �TPy�, and so ĝ = y − � ĉ. Then use the model y = � c = � c + � c
to estimate c as

ĉ = N−1�TPyĝ, (10)

whereN = �TPy�−�TPy�N−1�TPy� (see “Appendix A”). Let J = �N−1�TPy.
Define the weighted LSWS as

s(t j , ωk) = ĝTPyJĝ

ĝTPyĝ
∈ (0, 1), (11)

where 1 ≤ j ≤ n and 1 ≤ k ≤ κ . This spectrogram shows how much the sinusoids of
frequencyωk contribute to each residual segment of f and is called percentage variance
when multiplied by 100. This definition is very useful in searching for hidden signals
(short duration signals with very low amplitude with respect to the total amplitude of
the data points) in a time series (e.g., Example 3). The ordinary least-squares wavelet
spectrogram (LSWS) does not consider the weight matrix Py in the calculation of the
spectrogram.

To understand better how to determine the weight matrix Py for each segment y, a
simple example is provided. Let P be of order n = 10 and M = 10, ω1 = 2, L1 = 1,
and L0 = 0. It is easy to see that L(ω1) = 5, and so for j = 1 and j = 10, the top left
and the bottom right principal submatrices of P (margins) have dimension 3 (green
matrices in Fig. 1), and the submatrices shown in blue have dimension 5. Note that the
correlations between data points in the entire time series are considered in each Py due
to the inversion of the entire Cf . In practice, P is usually diagonal, which means the
correlations of the time series values are not given. Note that Py is a positive definite
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Fig. 1 The weight matrix P
with some of its principal
submatrices

matrix because P is positive definite (Harville 2008), and so Eqs. (7), (9), and (10) are
optimal.

The known constituents contaminate the spectrogram given by Eq. (8), but they do
not contaminate the spectrogram given by Eq. (11) because they are removed from
the segments of the time series. However, Eq. (8) shows how much the constituents
of known form and the sinusoids of a particular frequency simultaneously contribute
to the segments. Note that the least-squares spectrum (LSS) is a special case of the
LSWS that is independent of time and has only one segment (the entire time series).
The reader is referred to Wells et al. (1985) and Pagiatakis (1999) for more details.

2.2 Practical Implementation of the Least-Squares Wavelet Algorithm

To visualize the concept of the segmentation of a time series better, the term ‘window’
is used. In this contribution, two different characteristics for the window are used,
namely, its size and its length.

For a time series of n data points, a window of size R( j, k) given by Eq. (4) located
at t j , 1 ≤ j ≤ n, is a window that contains R( j, k) data points comprising (L − 1)/2
data points on either side of t j . If 1 ≤ j < (L + 1)/2, then a window of size R( j, k)
located at t j is a window that contains (L − 1)/2 data points on the right-hand side
and j − 1 data points on the left-hand side of t j ; this window is referred to as the left
marginal window. Similarly, one can identify the number of data points for the right
marginal window. From Eq. (1), when j runs from j0 to j1, a window of size R( j0, k)
located at t j0 translates to a window of size R( j1, k) located at t j1 . In the LSWA, at
each step, the sinusoids and the constituents of known forms are fitted simultaneously
to each segment of the time series within a window of size R( j, k) located at t j to
estimate their amplitudes and phases in the segment.

The length of a window located at t j , denoted by �(t j ), can be calculated as follows.
If (L + 1)/2 ≤ j ≤ n − (L − 1)/2, then

�(t j ) = t j+(L−1)/2 − t j−(L−1)/2. (12)

If 1 ≤ j < (L + 1)/2 (the left marginal windows), then

�(t j ) = t j+(L−1)/2 − t1, (13)
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Fig. 2 a An unequally spaced and b an equally spaced time series (blue diamonds) along with sinusoids
(cosine with red circles and sine with green circles) and some windows

and if n − (L − 1)/2 < j ≤ n (the right marginal windows), then

�(t j ) = tn − t j−(L−1)/2. (14)

From Eqs. (12), (13) and (14), it is clear that the length of the window located at t j
depends on the distribution of the ti s.

In order to illustrate these concepts, an unequally and equally spaced time series
along with the sine and cosine base functions of frequency ωk are illustrated in Fig.
2a, b, respectively. In Fig. 2a, the red window is of size 5 (includes five data points)
located at t7, the median time mark within the window. Similarly, the blue window is
of size 5 located at t8, which is again the median of the window. The length of the red
window is �(t7) = t9− t5, and the length of the blue window is �(t8) = t10 − t6. In this
case, �(t7) > �(t8). For the equally spaced time series (Fig. 2b), it is clear that the red
and blue windows have the same size and length. The left and right marginal windows
along with the green windows and the translations are shown in these figures.

For an unequally spaced time series, the window length varies, but the window size
remains constant during translation except for the marginal windows. For unequally
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Fig. 3 Window translation of an equally spaced time series (blue) for a sin(x) and cos(x) and b sin(2x)
and cos(2x)

spaced time series, if the length of the window is fixed during translation rather than
its size, then there may not exist enough data points within the window located at t j
to calculate s(t j , ωk). Thus, it is more appropriate to fix the size of the translating
window. Since in Eq. (1), j runs from 1 to n, one unit at a time, the window located at
t j overlaps with the window located at t j+1 by L − 1 data points when (L + 1)/2 ≤
j ≤ n− (L − 1)/2 (red and blue windows in Fig. 2a, b). The overlaps of the marginal
windows are also shown in Fig. 2a, b (green windows).

Figure 3a, b show the changes in the window size for an equally spaced time series
when L1 = 1 cycle with fixed L0. The window size decreases when the frequency
increases allowing the detection of short duration waves (signal, transients, etc.), and
L0 (a constant number of samples) increases the size of the window so that the reso-
lution may be adjusted based on the specific scope of analysis.

For a time series (equally or unequally spaced), the sinusoidal functions (and the
constituents of known forms) are generally not orthogonal within a window of size
R( j, k) or length �(t j ) located at t j . The LSWA considers their correlations by the
off-diagonal elements of the matrix of normal equations (similar to the LSSA). For
each t j , Eq. (11) shows how much the sinusoids of frequency ωk contribute to the
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residual segment of the time series within a window of size R( j, k) or length �(t j )
located at t j .

Puryear et al. (2012) simultaneously include the sinusoidal functions with different
frequencies in the columns of design matrix �, which makes the system y = �c
underdetermined, and then they use constraints to calculate the spectrogram. However,
the LSWS is calculated by trying each frequency ωk one at a time, so the system is
highly overdetermined and thematrix of normal equations remains regular by selecting
appropriate L0 and L1, window size parameters.

When analyzing an unequally spaced time series, spectral leakages (peaks that
do not correspond to signals) appear in the LSS and LSWS. However, the leak-
ages are far less than the leakages in the Fourier transform because the correlation
among the sinusoids is considered for each frequency in the calculation of the LSS
and LSWS. Since the frequencies are examined one at a time (out-of-context), the
leakages appear in the LSS and LSWS. By considering the correlation among the
sinusoids of different frequencies (the frequencies of the constituents of known
forms), the spectral leakages will be mitigated (Craymer 1998), and this can be
achieved by simultaneously removing the constituents of known forms from the seg-
ments.

The selection of parameters L0 and L1 for the analysis of a time series mainly
depends on whether the time series is weakly or strongly non-stationary. In addition,
it depends on the time and frequency resolution as well as the number of constituents
being estimated within the windowwhose size should be adequate to avoid singularity
of the matrix of normal equations in a desired frequency band. Examples 1 and 3
show the effect of various selections of L0 and L1 on the true signal peaks in the
spectrogram for equally and unequally spaced time series. In many applications, for
time series with series more than 50 data points per unit time, it is recommended
that L0 be 20 to 30 samples, and L1 be 3 or 4 cycles to avoid the singularity of N
and N when removing the constituents of known forms (usually less than 10). In
practical applications, especially for unequally spaced time series, choosing � =
[1, t] makes the mean values of the segments approximately zero because even if
there is no systematic trend present in an unequally spaced time series, the sine and
cosine functions no longer have zero mean causing an error in determining the zero
point of the signals and reducing the percentage variance of the signal peaks in the
spectrogram.

In the following examples, whenever theCWT is applied for analysis, theMATLAB
command cwt(f , scales, wname) is used, where f is time series values, scales is vector
of positive scales for the CWT scalogram, and wname is name of a wavelet (e.g.,
morl for Morlet wavelet). One may convert the scales to frequencies using center
frequencies of scales by callingMATLABcommand scal2frq(scales, wname,DELTA)
to obtain a spectrogram, where DELTA is sampling period. This is not a correct
approach of analyzing unequally spaced time series. One of the advantages of the
LSWA over the CWT is that the LSWA does not convert any scale to frequency to
obtain a spectrogram, and it directly decomposes a time series to time–frequency
domain.
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Fig. 4 The equally spaced chirp signal given by Eq. (15) and its analyses

Example 1 In this example, the sensitivity of the LSWS for different window size
parameters is examined. Consider the following hyperbolic chirp signal (Mallat 1999)

f (t j ) = cos
( 230

2.3 − t j

)
, (15)

where t j = (0.001 j)s, and j runs from 1 to 2000 (Fig. 4a). Note that the instantaneous
frequency of the hyperbolic chirp is 230/

(
2π(2.3 − t j )2

)
Hz. Since there are 1000

data points per second, M = 1000.
Figure 4b shows the ordinary LSWSwith L0 = 201 and L1 = 0. It can be seen that

the true peaks at higher frequencies are not well resolved, in other words, the peaks
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lose their percentage variance in higher frequencies (arrows). The reason is that the
window size is fixed to 201 (except for the marginal windows), and the time series is
changing its frequency rapidly as time advances. Thus, the sinusoidal base functions
do not fit the segments of the time series at higher frequencies as well as they do at
lower frequencies.

The ordinary LSWS with L0 = 0 and L1 = 1 is shown in Fig. 4c. Although
the percentage variance of the true peaks in the spectrogram does not change across
the time–frequency domain, the spectrogram has low-frequency resolution at high
frequencies. Furthermore, the spikes appear in the spectrogram at the times when
the series has zero magnitude (arrows) because one cycle of sinusoids also fits those
segments that cross the horizontal axis. These spikes may also have applications as
they show the behavior of the time series.

If one selects L0 = 20 and L1 = 2, then the percentage variance of the spikes
decreases because two cycles and some additional data points are incorporated in
the fitting process resulting in a better resolution (Fig. 4d). In fact, the selection of
the window size parameters is based on the purpose of analysis that is similar to the
selection of window size in the STFT. The magnitude of ĉ in Eq. (10) is approximately
1 at the signal peaks.

Figure 4e shows the CWT after applying the MATLAB command cwt(f , scales,
wname) with wname=bior1.3, a biorthogonal wavelet that has similar structure to the
sinusoids (Cohen et al. 1992). Note that the scalogram is converted to spectrogram
using the center frequencies of scales. The color bar values represent the absolute
values of the CWT coefficients (abs CWT coefficients). The higher frequencies in the
CWT spectrogram are not well resolved and lose power (indicating that the amplitude
of the chirp signal is decreasing over time) because the spectrogram is computed in
terms of frequency bands (i.e., scales) that overlap each other more when frequency
increases (Sinha et al. 2005).

The spikes in the CWT spectrogram appear at the same positions as in the LSWS.
However, since the LSWS is normalized and the correlation among sinusoids is taken
into account, the spikes in the LSWS are sharper. Another advantage of the LSWS
is that the true peaks are not scattered as the CWT spectrogram because the least-
squares minimization is used in translation. Note that the LSWS shows how much the
sinusoids of a particular frequency within a window contributes to the segment of the
chirp signal within the window.

Example 2 Consider the following equally spaced time series which is the sum of two
hyperbolic chirp signals

f (t j ) = cos
( 230

2.3 − t j

)
+ cos

( 500

2.3 − t j

)
, (16)

where t j = (0.001 j)s, and j runs from 1 to 2000 (Fig. 5a). Note that the instantaneous
frequencies of the hyperbolic chirps are 230/

(
2π(2.3− t j )2

)
Hz and 500/

(
2π(2.3−

t j )2
)
Hz.

The CWT spectrogram with a Morlet wavelet (most commonly used; similar to
a sine wave in attenuation) is shown in Fig. 5b. One can see that the CWT peaks
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Fig. 5 The time series given by Eq. (16) and its analyses

lose power toward higher frequencies (white arrows). This might be misinterpreted as
the amplitudes of the hyperbolic chirps are decreasing over time (attenuating), which
is not true because the hyperbolic chirps constructed in this example have constant
amplitude over time. Comparing Figs. 4e and 5b, one can observe that using theMorlet
wavelet mitigated the effect of the spikes in the spectrogram.

Figure 5c shows the ordinary LSWSof the time series given byEq. (16) for L0 = 20
and L1 = 2. Using these window size parameters, the true signal peaks are very well
resolved, and their percentage variances do not change significantly across the time–
frequency domain. Similar to Example 1, the effect of the spikes (appears toward the
locations in time where the time series has zero magnitude) is also mitigated in the
spectrogram (white arrows).
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The spikes can bemitigated further by defining an appropriate weight function such
as the Gaussian function. For instance, let Py be the diagonal matrix of order R( j, k)
given by Eq. (4) for the window located at τ (choose τ = t j ) whose diagonal entries
are given by the following Gaussian function

G(i) = e−c(2πωk (ti−τ))2 , (17)

where c is a window constant, and the ti ’s are the times of the data points within the
window of size R( j, k). In astronomical applications, a popular value for c would
be 0.0125 (Foster 1996). By this selection of Py, the sinusoidal basis functions will
be adapted to the Morlet wavelet in the least-squares sense. The weighted LSWS is
illustrated in Fig. 5d by considering the weights defined by Eq. (17). It can be seen
that the effect of the spikes is mitigated compared to Fig. 5c, but the bandwidth of
the true spectral peaks increased (poor frequency resolution, inside the circles in Fig.
5c, d). Defining the weights using Eq. (17) may also change the true peak locations
(Foster 1996). Thus, it is recommended that the ordinary LSWS be used when there
is no covariance matrix associated with a time series.

Figure 5e shows the LSWS given by Eq. (11) in terms of power spectral density
(PSD) in decibels (dB) defined by

PSDLSWA = 10 log10

(
s(t j , ωk)

1 − s(t j , ωk)

)
. (18)

The values less than −40 dB are set to −40 dB. Note that the peaks shown by red
arrows in Fig. 5b–e are the alias effect of the signal cos

(
500/(2.3 − t j )

)
.

2.3 Comparison Between the Least-Squares Wavelet Spectrogram and the
Weighted Wavelet Z-Transform

In this section, the same notation is used as in Foster (1996) to define the WWZ.
Suppose that f = [

f (t j )
]
is a time series of n data points. For each τ (the window

location; can be the t j s or equally spaced times) and each ωk ∈ �, let φ1 = 1

φ2 = [
cos

(
2πωk(t1 − τ)

)
, . . . , cos

(
2πωk(tn − τ)

)]
,

φ3 = [
sin

(
2πωk(t1 − τ)

)
, . . . , sin

(
2πωk(tn − τ)

)]
, (19)

where 1 is the all-ones vector of dimension n. The inner product of two vectors
u = [u(t1), . . . , u(tn)] and v = [v(t1), . . . , v(tn)] is defined as

〈u|v〉 =
∑n

i=1 wi u(ti )v(ti )∑n
i=1 wi

, (20)

where wi is the statistical weight chosen as wi = e−c(2πωk (ti−τ))2 , and c is a window
constant, which may be selected as c = 0.0125 as discussed in Example 2. The
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constant c determines how rapidly the analyzing wavelet decays (Foster 1996). Let
S be the square matrix of order 3 whose ab entry is 〈φa |φb〉 (1 ≤ a, b ≤ 3). The
weighted wavelet Z-transform (WWZ) (power) is defined as

Z = (Neff − 3)Vy

2(Vx − Vy)
, (21)

where Neff = (
∑n

i=1 wi )
2/(

∑n
i=1 w2

i ) is the effective number of data points, Vx =
〈f |f〉−〈1|f〉2 is the weighted variation of the data, and Vy = ∑

a,b S
−1
ab 〈φa |f〉〈φb|f〉−

〈1|f〉2 is the weighted variation of the model function obtained by the least-squares
method (Foster 1996). Note that the term Vy/(Vx − Vy) in Eq. (21) is the estimated
signal-to-noise ratio (Foster 1996), and the numerator of Eq. (11) is the estimated
signal and its denominator is the sum of the estimated signal and noise (Pagiatakis
1999). The least-squares method used in the LSWS and WWZ is a great tool that
estimates the amplitude of a physical fluctuation much more accurately than the tra-
ditional Fourier transform. The amplitude of signals in the LSWA can be estimated
using Eq. (10) after finding the frequency or period of the signals using the LSWS
that is similar to the weighted wavelet amplitude (WWA) (Foster 1996). Both the
LSWS and WWZ are excellent in frequency localization of the signals; however,
the WWZ is a poor estimator of amplitude (Foster 1996), and the spectral peaks in
the WWZ lose their power toward higher frequencies similar to the CWT (Fig. 5b).
The latter shortcoming is caused mainly by the effective number of data points that
decreases when the frequency increases, making the numerator of Eq. (21) smaller.
Subtracting Vy from Vx in the denominator of Eq. (21) alters significantly the true
power of the signals that may not allow one to assess the behavior of the time
series, especially when searching for possible hidden signals with low power in a
time series.

In both the LSWS and WWZ, the locations of the windows can be equally spaced;
however, the locations are chosen to be at the times corresponding to the time series
values simply because there might be signatures in the time series gaps that cannot
be detected using the available data points. An unequally spaced pure sine wave of
cyclic frequency 10 cycles per annum (c/a) and amplitude 3 is generated by randomly
selecting 100 data points per year (M = 100) and demonstrated in Fig. 6a. The
ordinary LSWS is shown in Fig. 6b with L1 = 4, L0 = 10 and φ1 = [1]. The
percentage variance of the peak at 10 (c/a) is 100% at all times. Note that the spectral
leakages in the spectrogram are not significant at certain confidence level defined for
the distribution of the LSWS (Sect. 2.4). Figure 6b shows the WWZwith c = 0.0125.
The peaks at the cyclic frequency 10 (c/a) have variable power over time, but the
spectral leakages are mitigated (they exist, but with lower power) because of the
subtraction in the denominator of Eq. (21).

The LSWA can detect and suppress significant peaks (that takes into account the
correlations among the sinusoids of different frequencies), and so it can be used to
search for the possible hidden signals in a time series. Suppressing the significant peaks
simultaneously mitigates the spectral leakages in the LSS and LSWS of the unequally
spaced residual series and results in strengthening the peaks of possible hidden signals
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Fig. 6 An unequally spaced pure sine wave of cyclic frequency 10 (c/a) and its analyses

(see the following two examples). Another advantage of using the ordinary LSWS is
the computational efficiency that ismuch better than theWWZbecause theweights are
not involved in the computation. Moreover, the window size in the LSWS decreases
when frequency increases, whereas the window size in the WWZ is the same at all
times and frequencies (Eq. 19), significantly increasing the computational cost.

Example 3 Consider the following inherently unequally spaced time series simulated
for one month

f (t j ) = 5 + 20t j + (8 − 5t j ) sin(2π · 60t j ) + 2t j sin(2π · 5t j )
+ cos

( 150

1.3 − t j

)
+ h(t j ) + wgn(t j ), (22)

where 1 ≤ j ≤ 720, 0 ≤ t j ≤ 1, and wgn is white Gaussian noise generated by the
MATLAB function wgn. Also

h(t j ) =
{
(9 − 0.03 j) sin(2π · 120t j ) if 200 ≤ j ≤ 300,
0 otherwise.

(23)

The linear trend, the two sine waves of variable amplitudes and constant cyclic
frequencies 60 and 5 cycles per month (c/m), the hyperbolic chirp, the short duration
sine wave h given by Eq. (23) of variable amplitude and constant cyclic frequency
120 c/m, the white Gaussian noise and the time series f are illustrated in Fig. 7a–g,
respectively.

In this example, the intention is to search for signals h, the hyperbolic chirp, and
the sine wave of constant cyclic frequency 5 c/m. Note that the white Gaussian noise,
the linear trend and the sine wave of constant cyclic frequency 60 c/m are considered
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Fig. 7 The unequally spaced time series given by Eq. (22) and its constituents. a–f the constituents and g
the time series (the sum of the constituents)

noise in this example that highly contaminate the time series. A notable advantage of
the LSSA, LSWA, and WWZ is that one may select any set of spectral frequencies
based on the purpose of analysis. The set of cyclic frequencies chosen for the analysis
in this example is � = {1, 2, 3, . . . , 200} c/m.

Figure 7g shows that the time series has a trend. The LSS is illustrated in Fig. 8a
(white panel) after removing the trend. The LSS detects one strong peak at 60 c/m,
but it does not explain the nature of the constituent in f that creates this peak, in other
words, the LSS does not show whether this peak is for a wave of variable or constant
amplitude over time, or whether the duration of the wave is short or long.

Since there are 720 samples per month, M = 720. Figure 8b shows the ordinary
LSWSwith L0 = 10 and L1 = 4 after removing the trend (i.e., by setting� = [1, t]).
The peaks corresponding to sine wave of constant cyclic frequency 60 c/m can be
observed in Fig. 8b (horizontal reddish band in the spectrogram). The percentage
variances of the spectral peaks in the spectrogram show how much each residual
segment of f of size R( j, k) contains a constituent of cyclic frequencyωk . For instance,
the peaks shown by the left zoomed panel have lower percentage variance than the
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Fig. 8 The analyses of the unequally spaced time series shown in Fig. 7g

peaks shownby the right zoomedpanel indicating that theremight be other constituents
in the residual segments approximately from time 0.3 to 0.4 months.

Figure 8c shows the WWZ of the time series after removing the linear trend esti-
mated by the least-squares method (approximately 5+20t j ). Similar to the LSWS, the
WWZ shows the peaks corresponding to the sine wave of constant cyclic frequency
60 c/m, and the effect of the spectral leakages is mitigated. Although the peaks from
0.3 to 0.4 months lose their power (arrow), it cannot be ascertained that there might
be some hidden components of different frequency in that time period because of the
discussion before this example (Fig. 6c).

In the next step, one may suppress the peak at 60 c/m (remove the sinusoidal wave
of 60 c/m) to search for other possible signals. The LSS of the residual series after
suppressing the peak is shown in Fig. 8d. The LSS now shows several significant
peaks. Note that the sine wave of 60 c/m has variable amplitude. Since the sine wave
of constant amplitude is used to fit the entire f , the wave will not fit well to f , and so
some peaks appear around 60 c/m in the LSS for the residual series (red arrows). If
researchers are not aware of a phenomenon that causes variable amplitude waves in a
time series, this can be misinterpreted. Furthermore, the hyperbolic chirp and series h
cannot be studied from the LSS, and the LSS does not show the amplitude variation
for the sine wave of 5 c/m.

Selecting� = [1, t, cos(2π ·60t), sin(2π ·60t)] in theLSWAremoves the trend and
the constituent of cyclic frequency 60 c/m simultaneously from the segments of f (Fig.
8e). From Fig. 8e, one can study the spectral peaks corresponding to signals h (inside
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the circle), the hyperbolic chirp with variable frequency over time and the sine wave of
variable amplitude and constant cyclic frequency 5 c/m. Note that the actual nature of
these signals cannot be studied from Fig. 8d. The spectral peaks corresponding to the
sine wave of variable amplitude and constant cyclic frequency 60 c/m are completely
removed from the spectrogram shown in Fig. 8e because sinusoids within the windows
fit better to the segments of the series, but this is not achieved in the LSS (arrows in
Fig. 8d).

Figure 8f shows the WWZ of the sum of series shown in Fig. 7c–f. One can clearly
see that signal h is not completely detected (inside the circle). The reason is that the
effective numbers of data points are small in certain time periods of h that reduced
the power significantly, and also the WWZ is defined in terms of signal-to-noise ratio
that reduced the power of false peaks (mitigated the spectral leakages). A stochastic
surface (to be defined in the next section) can, in fact, flag the peaks shown by arrows
in Fig. 8e, g as noise at certain confidence level (usually 99%).

To see the sensitivity of the LSWS and WWZ to the window width, the window
size parameters are chosen as L1 = 2 and L0 = 20 with the same � as in Fig. 8e, and
the ordinary LSWS is shown in Fig. 8g. In addition, the WWZ is shown in Fig. 8h
by selecting c = 0.1. The frequency localizations in both spectrograms are now poor
(poor frequency resolutions), but the WWZ shows the significant variability of power
compare to Fig. 8f, and signal peaks are not well localized (arrows).

In Fig. 8e–h, since thewindow size decreaseswhen frequency increases, the spectral
peaks corresponding to signal h with cyclic frequency 120 c/m have higher time
resolution but poorer frequency resolution, and the spectral peaks corresponding to
signal of cyclic frequency 5 c/m have higher frequency resolution, but poorer time
resolution.

2.4 Stochastic Surfaces in the Least-Squares Wavelet Spectrograms

In this section, a similar methodology is used as in Pagiatakis (1999) to determine
stochastic surfaces for the least-squares wavelet spectrogram (LSWS) that define con-
fidence levels (usually 95 or 99%) above which spectral peaks in the LSWS are
statistically significant. It is also shown that the stochastic surfaces of the LSWS
are independent of the a-priori variance factor σ 2

0 , that is, the stochastic surfaces are
independent of any scale defect of the covariance matrix associated with the time
series. The reader is referred to Vanicek and Krakiwsky (1986) for more details on the
variance factor.

A remarkable property of the least-squares wavelet spectrogram defined by Eqs.
(8) and (11) is that it provides the percent of a specific component(s) (as defined by�)
contained in f . This ratio includes the weight matrix in both numerator and denomi-
nator, and as such, any scale defect in the covariance matrix cancels out. This leads
to the conclusion that the probability distribution function (PDF) of the spectrogram
does not depend on either the a priori or a posteriori variance factors. Therefore, the
derivation of the PDF of the spectrogramwill be based on previous work by Pagiatakis
(1999) considering only the case where the a priori variance factor is known since the
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treatment of the case of unknown a priori variance factor (a-posteriori variance factor
used) was in error.

Suppose that f has been derived from a population of random variables following
the multidimensional normal distribution N (0,Cf ), where Cf may not be regular.
Following similar techniques in Steeves (1981) and Pagiatakis (1999), it can be seen
that the LSWS given by Eq. (11) follows the beta distribution with parameters 1 and

/2, where 
 = R( j, k) − q − 2 (q is the number of constituents of known forms).
In other words, s(t j , ωk) follows

[
1+ (
/2)F
,2

]−1= β1,
/2, where F and β are the
F-distribution and the beta distribution, respectively. Therefore, the stochastic surface
at (1− α) confidence level (usually α = 0.01 or α = 0.05) for the spectrogram given
by Eq. (11) is

ζ(t j ,ωk ) =
[
1 + 


2
F
,2,α

]−1

. (24)

Following the discussion in Pagiatakis (1999), if s(t j , ωk) > ζ(t j ,ωk ), then the spectral
peak is statistically significant at (1 − α) confidence level.

Note that the stochastic surface given by Eq. (24) depends on the window size,
and it does not depend on the frequency when L1 = 0. The stochastic surface is also
independent of the time (the location of the window) except for the marginal windows.

Using the relation F
,2,α = F−1
2,
,1−α = (2/
)(α−2/
 − 1)−1 (Rao and Mitra

1971), Eq. (24) can be written as

ζ(t j ,ωk ) =
[
1 + 1

α−2/
 − 1

]−1

. (25)

Following similar techniques in Pagiatakis (1999), it is not difficult to see that the
spectrogram given by Eq. (8) follows β(q+2)/2,
/2 with the mean (q +2)/(
+q +2)
andvariance 2(q+2)
/

(
(
+q+2)2(
+q+4)

)
; however, in practice, the spectrogram

given by Eq. (11), following β1,
/2 with the mean 2/(
 + 2) and variance 4
/
(
(
 +

2)2(
 + 4)
)
, provides better results. The mean and variance of random variables

following the beta distribution are discussed in Johnson et al. (1995).
The next section demonstrates an application of the method to an unequally spaced

and unequally weighted real time series and shows the importance of the stochastic
surfaces in the identification of statistically significant spectral components in a time
series.

3 Application

Avery long baseline interferometry (VLBI) length time series is used as an application
of the LSWA. The VLBI baseline length series is between stations Westford in the
United States of America and Wettzell in Germany. The length of baseline changes
over time due tomany reasons such as atmospheric temperature (due to deformation of
the antennas), plate tectonic movement, and tides (Titov 2002; Campbell 2004). The
time series was obtained from www.ccivs.bkg.bund.de. The series comprises 1733
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Fig. 9 TheVLBI time series and its analyses using the LSS, LSWS, andWWZ.Note thatWLSS,WLSWS,
SS, 3D and 2D are the short forms for the weighted LSS, weighted LSWS, stochastic surface, three-
dimensional and two-dimensional representations, respectively

unequally spaced and unequally weighted baseline length estimates via the least-
squares method, from January 9th 1984 at 19:12:00 universal time (UT) to September
3rd 2014 at 16:48:00 UT (Fig. 9a).

Since there are 1733 samples in 30.6 years (unit time is a year), there are approx-
imately 57 samples per annum (M = 57). The window size parameters chosen for
the analyses are L1 = 4 cycles and L0 = 30 samples. The set of cyclic frequencies
selected for this analysis is � = {0.1, 0.2, 0.3, . . . , 12} c/a. Note that the linear trend
expresses the lengthening of the baseline due to the relative tectonic plate movement
on which the two VLBI antennae are mounted.

Figure 9b shows the ordinary LSWS of the VLBI series and its stochastic surface at
99% confidence level (gray surface) after removing the trend (by setting � = [1, t]).
The two-dimensional representation of Fig. 9b is shown in Fig. 9d. The constant
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Fig. 10 The unequally spaced temperature records at the VLBI sites aWestford dWettzell and their LSSA
b and c for Westford and e and f for Wettzell

annual frequency (1 c/a or ∼365 days, white arrows) and the semiannual frequency
(2 c/a or ∼182.5 days) are significant in certain years (red arrows), where ∼ indicates
approximation. The ordinary LSS also shows a significant peak of percentage variance
4.5% at period of ∼365 days (Fig. 9c). The linear trend estimated by the least-squares
method as 5998325.356 + 0.017t is removed from the time series, and the result of
the WWZ for the residual series is shown in Fig. 9e. Similar to the ordinary LSWS,
the WWZ shows the annual and semiannual peaks (arrows in Fig. 9d, e).

The weighted LSS and LSWS after removing the trend are shown in Fig. 9f, g.
Many peaks that are not significant in Fig. 9d, are now significant at 99% confidence
level (e.g., arrows). In the next step, the annual peaks (having the highest percentage
variance) are suppressed, and the spectrum and the spectrogram of the residual series
are shown in Fig. 9h, i, respectively. It can be seen that peaks shown by arrows from
year 1993 to year 1997 are not significant anymore (the spectral leakages). The peaks
at cyclic frequency 1.6 c/a (∼228 days, red arrow) are suppressed, and the spectrum
and spectrogram of the new residual series are shown in Fig. 9j, k, respectively. One
can observe that the spectral peaks shown by white arrows in Fig. 9i are no longer
significant in Fig. 9k. However, the semiannual peaks shown by red arrows and the
peaks inside the circles remained significant after simultaneously removing the linear
trend and sinusoids of cyclic frequencies 1 and 1.6 c/a.

In order to investigate what phenomena could possibly be causing the significant
peaks in the spectrogram, the atmospheric temperature records at both stations are
also analyzed. They are obtained from http://ggosatm.hg.tuwien.ac.at/DELAY/SITE/
VLBI/ almost at the same time period of the VLBI series (Fig. 10a, d). The least-
squares spectra of the Westford and Wettzell temperature series after removing the
trend are shown in Fig. 10b, e, respectively. The annual peaks in the spectra show that
the annual peaks in Fig. 9d, e, g are mainly due to the temperature variation causing
deformation of the antennas.

The annual peak is suppressed in each time series, and the least-squares spectra
of the residual temperature series of Westford and Wettzell are shown in Fig. 10c, f,
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respectively. The peak at 1.6 c/a in Fig. 10c shows that the Westford antenna is being
deformed with a period of ∼228 days (unusual atmospheric temperature variations),
and the evidence of its effect was observed in both spectrograms in Fig. 9g, i from year
1997 to year 2001. The LSS of theWestford temperature series from year 1997 to year
2001 (not shown here) has a significant peak at 1.6 c/a (∼228 days). The semiannual
peaks in the spectrograms that are significant since 1997 could also be physically
linked to the semiannual temperature variation at the Wettzell station as observed in
Fig. 10f. Similarly, the peaks shown inside the circles in Fig. 9k at cyclic frequency of
9.5 c/a (∼38 days) could possibly be caused by unusual temperature variation at the
Wettzell station.

4 Conclusions

The LSSA is a new appropriate method of analyzing non-stationary and unequally
spaced time series. Contrary to Fourier analysis, the LSSA can account for constituents
of known forms, such as trends and/or datum shifts simultaneously with periodic
constituents. The covariance matrix associated with the time series (if known) can
also be accounted for in the analysis. No editing of the time series of any sort is
necessary when using the LSSA. If a non-stationary (in the second moments) time
series comprises constituents of low/high frequency variability over time, neither the
LSSA nor the Fourier analysis is appropriate for the analysis because both methods
decompose the time series in the frequency domain, disabling the nature of constituents
in the time series.

The selection of sinusoidal functions in the LSWA allows one to directly decom-
pose a time series into the time–frequency domain by taking into consideration the
correlations among the sine and cosine functions and other constituents of known
forms as well as any correlated noise. The proposed method allows one to com-
pute spectrograms rigorously for equally and unequally spaced time series without
any modification or editing. The LSWS shows how much each constituent within a
window contributes to the segment of the time series within the window, enabling the
determination of the nature of constituents in the time series.When the fully populated
covariance matrix associated with the time series is provided, the LSWA considers the
correlations between the entire time series values in each segment.

For equally spaced and equally weighted time series, when L1 = 0 in Eq. (3), the
LSWS has similar time and frequency resolution to the STFT, and it has similar time
and frequency resolution to the CWT when L1 �= 0. In the LSWA, when L1 �= 0, the
size of the translating window decreases when the frequency increases and vice versa,
allowing the detection of all short- and long-duration constituents simultaneously,
particularly when they are in attenuation (e.g., free oscillations of the earth, resonant
phenomena). Caremust be takenwhen selecting L0 and L1. For instance, if thewindow
location approaches to a large gap in an unequally spaced time series, then the LSWA
will borrow data points corresponding to the neighboring time period when selecting a
large L0. Taking these neighboring data points into account may affect the percentage
variance of the true signal peaks in the spectrogram and may not be reliable when
the time series is strongly non-stationary. Therefore, the researchers need to know
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some basic information of the time series that are studying for the selection of the
window size parameters. The stochastic surfaces defined for the spectrogram show
the significant spectral peaks at a certain confidence level (usually 95 or 99%).

In future work, the cross-spectrogram between two (or more) time series will be
introduced, and its underlined PDF will be derived. Moreover, the phase information
about the two time series with their coherency will be discussed. This method will
allow one for instance to estimate the coherency between the VLBI length series and
temperature records.
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Appendix A: Derivation of Eq. (10)

A similar methodology is used as in Wells et al. (1985) and Craymer (1998) to obtain
Eq. (10). From the model y = � c = � c + � c, estimate c using the least-squares

method as ĉ = N−1�
T
Pyy, where N = �

T
Py�. Now write N−1 as

N−1 =
[

�TPy� �TPy�

�TPy� �TPy�

]−1

=
[
M1 M2
M3 M4

]
,

where

M1 =
(
�TPy� − �TPy� (�TPy�)−1�TPy�

)−1
,

M2 = −M1 �TPy� (�TPy�)−1,

M3 = −M4 �TPy� N−1,

M4 =
(
�TPy� − �TPy� N−1�TPy�

)−1
,

and N = �TPy�. Thus, from

[
x
ĉ

]
= ĉ = N−1�

T
Pyy =

[
M1 M2
M3 M4

] [
�TPyy
�TPyy

]
,

one obtains

ĉ = M3 �TPyy + M4 �TPyy

= −M4 �TPy� N−1�TPyy + M4 �TPyy

= M4 �TPy

(
y − � N−1�TPyy

)

= N−1�TPyĝ.
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where N = M4
−1 = �TPy� − �TPy� N−1�TPy�, and ĝ = y − � N−1�TPyy is

the estimated residual segment. Note that for each frequency, N is a square matrix of
order two, and so its inverse is computationally efficient.
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