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Abstract Uncertainty quantification for subsurface flow problems is typically accom-
plished through model-based inversion procedures in which multiple posterior
(history-matched) geological models are generated and used for flow predictions.
These procedures can be demanding computationally, however, and it is not always
straightforward to maintain geological realism in the resulting history-matched mod-
els. In some applications, it is the flow predictions themselves (and the uncertainty
associated with these predictions), rather than the posterior geological models, that are
of primary interest. This is the motivation for the data-space inversion (DSI) procedure
developed in this paper. In the DSI approach, an ensemble of prior model realizations,
honoring prior geostatistical information and hard data at wells, are generated and
then (flow) simulated. The resulting production data are assembled into data vectors
that represent prior ‘realizations’ in the data space. Pattern-based mapping operations
and principal component analysis are applied to transform non-Gaussian data vari-
ables into lower-dimensional variables that are closer to multivariate Gaussian. The
data-space inversion is posed within a Bayesian framework, and a data-space random-
ized maximum likelihood method is introduced to sample the conditional distribution
of data variables given observed data. Extensive numerical results are presented for
two example cases involving oil–water flow in a bimodal channelized system and
oil–water–gas flow in a Gaussian permeability system. For both cases, DSI results for
uncertainty quantification (e.g., P10, P50, P90 posterior predictions) are compared
with those obtained from a strict rejection sampling (RS) procedure. Close agreement
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between the DSI and RS results is consistently achieved, even when the (synthetic)
true data to be matched fall near the edge of the prior distribution. Computational sav-
ings using DSI are very substantial in that RS requires O(105–106) flow simulations,
in contrast to 500 for DSI, for the cases considered.

Keywords Data-space inversion · Uncertainty quantification · History matching ·
Model-inversion · Data assimilation · Subsurface flow · Reservoir simulation

1 Introduction

Reservoir performance forecasting is a key component in the management of oil and
gas assets. Forecasts are typically generated by solving a forward flow problem for
some number of possible reservoir/geological models. Because geological parameters
such as permeability are highly uncertain, production (flow) data are used to infer
possible values for these parameters. This process is referred to as inverse modeling,
data assimilation or, in the context of reservoir simulation, history matching. Although
there is a very wide body of literature on the development and application of inverse
modeling for subsurface flow problems, the resulting procedures remain computation-
ally expensive, and not entirely robust, for realistic systems with a large number of
unknown parameters.

The goal in this paper is to introduce a new data-space inversion (DSI) procedure
to efficiently generate multiple forecasts, within a Bayesian framework, which are
conditioned to flow-based observations. In the DSI method, the quantities of interest,
which in this study are water injection rates and production rates for each fluid phase,
are treated as random data variables with a prior probability density function (PDF).
This prior PDF is estimated from data forecasts (i.e., flow simulations) performed
for an ensemble of prior model realizations. In the examples here, 500 prior flow
simulations are used, though these can all be performed at once, in parallel. Reservoir
predictions are then generated by directly sampling the posterior PDF of data variables
given observed data. This data-space sampling is very inexpensive computationally,
which enables the efficient generation of multiple forecasts as required for uncertainty
quantification.

Most previous data-assimilation approaches entail model-based inversion, where
the goal is to find geological models which, when used as input to a flow simulator,
provide flow results in agreement with observed data. A model in this context can be
viewed as the porosity and permeability values for each block in a simulation grid.
Because the DSI methodology is not a model-based method, the discussion of this
extensive literature will be fairly brief. A comprehensive description of general inverse
modeling is provided by Tarantola (2005). Data assimilation for history-matching
oil/gas reservoirs is described in the book by Oliver et al. (2008) and, more recently,
in the review paper by Oliver and Chen (2011). A number of different model-based
formulations have been proposed. Gradient-based approaches (Sarma et al. 2006;
Gao and Reynolds 2006) seek to obtain models by minimizing an objective function
that includes data andmodel mismatch terms (the latter is essentially a regularization).
Adjoint procedures are typically applied to construct the required gradients. Sampling-
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based approaches (Mosegaard and Tarantola 1995; Park et al. 2013) consider a very
large set of prior models that honor all available prior information and then retain,
with higher probability, those models that best fit the observations.

Ensemble-based approaches such as ensemble Kalman filtering (Evensen 2003;
Aanonsen et al. 2009) and ensemble smoothers (Evensen and van Leeuwen 2000;
Emerick andReynolds 2013) use a set ofmodels,which are updated to improve the data
match when new observations are available. There are some similarities between the
DSI formulation and ensemble smoothers. For example, in both approaches, an initial
ensemble of models and associated forecasts are needed to estimate the distribution of
data and/or model variables. However, by inferring data variables directly, and only
in the data space, DSI avoids the challenging model calibration step that arises with
ensemble smoothers (as well as with other history-matching approaches) when the
relationship between the model and data variables is highly nonlinear.

A number of techniques have been developed to generate forecasts without requir-
ing posterior physical models (posterior models are models that provide simulation
results that fit the observations). Artificial intelligence approaches, such as artificial
neural networks, have been applied for reservoir forecasting (Mohaghegh 2005). These
methods focus more on prediction accuracy rather than uncertainty quantification and
often require a large amount of data to train a reliable model. They are therefore not
well suited for the production forecasting problem considered here, in which only a
limited amount of observed production data are available and the goal is to quantify
uncertainty. In the context of weather forecasting, Krishnamurti et al. (2000) pro-
posed multimodel ensemble forecast analysis. This approach was further refined by
Pagowski et al. (2005) and later extended by Mallet et al. (2009) to allow sequential
data assimilation. The basic idea of ensemble forecast analysis is to construct the fore-
cast as a linear combination of simulation results from an ensemble of prior models.
The weightings used in the linear combination are determined by constraining the
forecast to match observations.

The procedures mentioned above, however, only produce a single forecast and
are thus not suitable for uncertainty quantification. Scheidt et al. (2015) proposed a
prediction-focused analysis (PFA) approach for uncertainty assessment in a subsurface
solute-transport problem. They first projected, separately, the forecast and historical
data responses (pollutant concentration at multiple time steps), from an ensemble of
prior models, to very low-dimensional spaces. The relationship between historical
data and predictions was then constructed by applying a kernel smoothing algorithm
in the joint space of the two low-dimensional spaces. Scheidt et al. (2015) showed
that PFA provided reasonable uncertainty quantification for the problem considered.
However, the kernel smoothing algorithm used in that work is only appropriate for
projected spaces of low dimension. This requirement will likely become problematic
when the number of observed and forecast data increases. Satija and Caers (2015) later
modified the PFA approach by introducing a linear regression to address the issue of
dimension reduction. This approach, however, attempts to linearize the relationship
between historical and forecast data responses, which may not always be appropriate
for the types of reservoir forecasting problems considered in this paper.

In our DSI procedure, mapping operations are introduced to transform the non-
Gaussian data variables to mapped variables that are close to Gaussian. Principal
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component analysis is also applied in the mapped data space both for dimension
reduction and to avoid the calculation of a potentially poorly conditioned pseudo-
inverse matrix. To generate multiple samples from the posterior distribution of data
variables given observed data, we apply the randomized maximum likelihood (RML)
method (Kitanidis 1986;Oliver et al. 1996; Reynolds et al. 1999). Because theDSI pro-
cedurewithmapping operations relaxes theGaussian assumption on the distribution of
data variables, it can be applied for cases with realistic phase-rate and/or bottom-hole
pressure data from a number of wells. In addition, the incorporation of observation
data error, in the form of the data covariance matrixCD, can be readily achieved within
the DSI formulation. Once simulation results from prior models are obtained, the DSI
procedure can be performed efficiently (in amatter ofminutes for the problems consid-
ered here) over a range of CD, which allows for the efficient assessment of the impact
of this important quantity on predictions. In model-based procedures, by contrast, the
use of different CD would require one to repeat the modeling calibration procedure,
which is very time-consuming. It is important to emphasize, however, that DSI does
not provide posterior geological models—only posterior forecasts/data vectors.

This paper is organized as follows. In Sect. 2, the basic data-space inversion (DSI)
formulation is introduced under the assumption that the prior distribution of data vari-
ables is Gaussian. Results for a simple test case are then presented. Next, in Sect. 3, we
present mapping operations to transform the non-Gaussian data variables into more
nearly Gaussian variables, and we introduce PCA to reduce the dimension of the data
space. The use of this extendedDSI for generatingmultiple (RML) posterior data sam-
ples is then described. In Sect. 4, the extended DSI procedure is applied for a bimodal
channelized system.We assess the accuracy of DSI by providing detailed comparisons
between DSI results for the quantification of uncertainty in production forecasts to
results from an exhaustive (and very expensive) rejection sampling procedure. A sim-
ilar assessment is performed for an oil–water–gas system, with a three-dimensional
Gaussian geological model, in Sect. 5. A detailed mathematical description of the
mapping operations is presented in the Appendix.

2 Basic Data-Space Inversion Formulation

In this section, we introduce a new data-space inversion (DSI) formulation within
a Bayesian framework. In the initial DSI formulation, the prior probability density
function (PDF) of the data variables is assumed to be Gaussian. In this case, analytical
solutions for the posterior PDF of the data variables conditioned to observed data can
be constructed. The basic DSI formulation is then applied for a reservoir performance
forecasting problem that displays a simple production response. In the following sec-
tion, we will describe the extended DSI formulation to deal with cases when the prior
PDF of the data variables is non-Gaussian.

2.1 Mathematical Formulation

In this paper, data variables refer to the uncertain quantities of interest, which in this
case are well production data at different time steps. The data variables are contained
in an Nd-dimensional column vector of the form
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dfull = [dT1 , dT2 , . . . ,dTk , . . . ,dTNh
, . . . ,dTNt

]T, (1)

where dk is the data vector at time step tk , Nh is the total number of time steps during
the history-matching period, and Nt is the total number of time steps until the end of
the forecast period. In the cases considered in this paper, dfull contains different types
of well production data variables (e.g., oil and water production rates and bottom-
hole pressure, or BHP, at different time steps) from multiple wells. The data variables
during the history-matching period are observed (measured) and assembled into an
Nobs-dimensional column vector dobs given by

dobs = [dTobs,1, dTobs,2, . . . ,d
T
obs,k, . . . ,d

T
obs,Nh

]T, (2)

where dobs,k represents the observation vector at time step k.
Our goal is to predict quantities of interest, that are part of the data vector dfull,

conditioned to observations dobs. The approach used to estimate dfull conditioned to
dobs is referred to as a data-space inversion (DSI) procedure. The data space is here
the space of all possible data vectors in the form of Eq. (1). Note that this data space is
different from the data space referred to by Tarantola (2005) and Oliver et al. (2008),
as their data space is of the same dimension as the observation vector shown in Eq. (2).

We adopt a Bayesian framework and treat dfull as a vector of random variables.
Thus the conditional PDF of dfull conditional to dobs can be written as

p(dfull|dobs) = p(dobs|dfull)p(dfull)
p(dobs)

∝ p(dobs|dfull)p(dfull), (3)

where p(dobs|dfull) is the conditional PDF of observing dobs given dfull, and p(dfull)
represents the prior PDF of the data variables, which is specified independent of
observed data. Because observed data are obtained by measuring the data variables
during the historical period, the relationship between dobs and dfull can be expressed
as

dobs = Hdfull + ε, (4)

where H is simply an Nobs × Nd matrix that selects (extracts) the elements in dfull
corresponding to dobs, and ε represents the vector of observation (measurement) errors
in the data. The observation errors are assumed to be Gaussian random variables with
mean 0 and covariancematrixCD. The conditional probability of observingdobs, given
dfull, is then equal to the probability of ε, that is

p(dobs|dfull) = p(ε = dobs − Hdfull)

∝ exp

(
−1

2
(Hdfull − dobs)TC

−1
D (Hdfull − dobs)

)
. (5)

If all data variables are initially uncertain and the uncertainty can be represented
by a Gaussian PDF with mean dprior and covariance matrix Cpd, the prior PDF of the
data variables becomes
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p(dfull) ∝ exp

(
−1

2
(dfull − dprior)TC

−1
pd (dfull − dprior)

)
. (6)

In this paper, the prior mean dprior and covariance matrix Cpd are computed numeri-
cally from the simulated data vectors corresponding to an ensemble of prior reservoir
model realizations. Given an ensemble of Nr independently generated prior models
m1,m2, . . . ,mNr , the simulated data are computed via

(dfull)i = g(mi ), i = 1, 2, . . . , Nr, (7)

where g(·) represents the forward model, which relates model parameters to dynamic
data, and (dfull)i is an Nd-dimensional vector containing the simulated data corre-
sponding to the data variables in dfull. It is assumed that there is no modeling error
associated with the forward model. Thus the data vectors (dfull)i (i = 1, 2, . . . , Nr)

can be treated as independent realizations of the random vector dfull before condition-
ing to observed data. The prior mean for dfull is then computed as

dprior = 1

Nr

Nr∑
i=1

(dfull)i , (8)

and the prior covariance matrix is given by

Cpd = 1

Nr − 1

Nr∑
i=1

(
(dfull)i − dprior

) (
(dfull)i − dprior

)T
. (9)

Combining Eqs. (3), (5) and (6), the posterior PDF of a data vector dfull given a
vector of observations dobs is

p(dfull|dobs) = k exp

(
−1

2
(Hdfull − dobs)TC

−1
D (Hdfull − dobs)

−1

2
(dfull − dprior)TC

−1
pd (dfull − dprior)

)
, (10)

where k is the normalization constant. The function in the exponent in Eq. (10) is of
quadratic form with respect to the data vector dfull. Therefore, the posterior PDF of
dfull is Gaussian with mean d̃, which is given by either of the following two equivalent
expressions

d̃ = dprior +
(
HTC−1

D H + C−1
pd

)−1
HTC−1

D (dobs − Hdprior)

= dprior + CpdH
T(HCpdH

T + CD)−1(dobs − Hdprior). (11)

The covariance C̃ is expressed as
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C̃ =
(
HTC−1

D H + C−1
pd

)−1

= Cpd − CpdH
T(HCpdH

T + CD)−1HCpd. (12)

Detailed proofs to obtain the posterior mean and covariance matrix for linear Gaussian
models of this type were given by Tarantola (2005) and Oliver et al. (2008).

With the basicDSImethod, reservoir predictions conditioned to observations can be
generated directly by sampling the Gaussian distribution with mean d̃ and covariance
C̃ . This basic DSI method is expected to remain approximately valid for data vectors
that are ‘close’ toGaussian, though aswill be seen, themethod is not directly applicable
when the data vectors are strongly non-Gaussian.

2.2 Test Case

The basic DSI procedure will now be applied for production forecasting in an oil–
water problem. The reservoir model covers an area of 1 km× 1 km and is of thickness
50 m. Four water injection wells operate near each of the corners, and there is a
single producer at the center of the model (see Fig. 1a). The wells operate under
fixed bottom-hole pressure (BHP) controls of 200 bar for the producer and 250 bar
for all injectors. The relative permeability curves are shown in Fig. 1b. Capillary
pressure effects are ignored. Oil and water viscosities at standard conditions are 1.16
and 0.31 cp, respectively. The initial oil and water saturations are 0.9 and 0.1.

The reservoir is modeled on a 50 × 50 × 5 simulation grid. The log-permeability
field is assumed to be Gaussian with a mean of 5, which corresponds to a permeability
of around 148 md and standard deviation (σ ln k) of 2.5. We generate an ensemble of
Nr = 100 prior models that are conditioned to hard data using the sequential Gaussian
simulation algorithm within the SGeMS (Remy et al. 2009) geostatistical toolbox.
The log-permeability field of one prior model is shown in Fig. 1a. An exponential
variogram is used, with correlation lengths in terms of number of grid blocks specified
as l1 = 25 (in the x–y plane, along the I2–P1 direction in Fig. 1a), l2 = 5 (along
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Fig. 1 Reservoir model and relative permeability curves: a log-permeability field of one prior model
(conditioned to hard data), b oil and water relative permeability curves
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Fig. 2 DSI for oil production rate forecasts (model in Fig. 1a). aOPR from prior models, bOPR from DSI

the I1–P1 direction), and lz = 3. Porosity is assumed to be constant at 0.2. Flow
simulations are performed using Stanford’s Automatic Differentiation-based General
Purpose Research Simulator, AD-GPRS (Zhou 2012).

The history-matching period is the first 300 days. During this period, oil production
rate (OPR) data at P1 are measured. The goal is then to predict OPR until 1500 days.
For validation purposes, a ‘true’ model is generated and simulated, against which the
prediction results will be compared. This model is consistent with the prior geological
description, but it is not included in the set of 100 priormodels usedwithin theDSI pro-
cedure. Figure 2a shows the simulated data from all prior models. The vertical dashed
line separates the history-matching and forecasting periods. The observed data, shown
as red circles in Fig. 2a, are generated by adding randomGaussian noise to OPR results
using the ‘true’model. Themeasurement errors are assumed to be independentlyGaus-
sian distributed, with zero mean and covariance matrix CD. The standard deviation of
the measurement error is specified to be 2% of the corresponding rate data. Simulated
data are reported every 30 days. We thus have dobs ∈ R

10×1 and dfull ∈ R
50×1.

To generate predictions that are conditioned to observations using the DSI method,
we assemble the simulated data into data vectors (dfull)i (i = 1, 2, . . . , Nr) and com-
pute the prior mean dprior and covariance matrix Cpd using Eqs. (8) and (9). Then,
the posterior mean d̃ and covariance matrix C̃ are obtained from Eqs. (11) and (12).
Finally, predictions are generated by sampling the multivariate Gaussian distribution
with mean d̃ and covariance C̃ . Figure 2b shows 25 conditioned predictions (blue
curves). The predictions are seen to closely match the observed data, and they dis-
play a much smaller range of uncertainty compared with predictions from the prior
models (Fig. 2a). The true production data (dashed red curve) lie within the range of
predictions obtained from DSI. These results demonstrate that the basic DSI method
can provide reasonable uncertainty quantification for this simple case.

3 Data-Space Inversion for Non-Gaussian Data Variables

In the previous section, we described the basic DSI method and showed that it is able
to provide an accurate forecast for the simple example considered. However, the basic
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DSI method assumes that the data vector dfull is (multivariate) Gaussian a priori, and
this is not always a valid assumption. In this section, we describe an extended DSI
procedure that enables the method to treat cases in which the prior distribution of data
variables is non-Gaussian. The first step in this extended DSI procedure is to reparam-
eterize the data variables such that the new variables, denoted by ξ , are approximately
(multivariate) Gaussian a priori. This idea of transforming non-Gaussian variables
to approximately Gaussian variables has been applied by Gu and Oliver (2006) and
Chen et al. (2009) to improve the performance of EnKF procedures. However, these
investigators only considered the transformation (reparameterization) of water satu-
ration data. To the best of our knowledge, general techniques for reparameterizing
non-Gaussian production data variables have not been presented. In this section, the
reparameterization of data variables for a particular reservoir flow response will be
illustrated. A detailed mathematical treatment, which is applicable to a wide range of
production data variable types, is presented in the Appendix.

3.1 Transformation of Non-Gaussian Data Variables

The data transformation for a commonly observed reservoir flow response is now
described. Figure 3a shows a typical example of simulated water cut data from an
ensemble of prior reservoir models (these models were considered in Sun (2014);
detailed descriptions of the problem setup are not provided here since the purpose
is to illustrate data-variable transformations). Water cut (Fw) in a production well,
which is the fraction of water in the produced fluid, is defined as Fw = qw/(qw +qo),
where qw and qo are the flow rates of water and oil in the well. Similar water cut
behavior will be seen in the examples considered in Sects. 4 and 5. It is assumed for
now that the data vector dfull only includes water cut at different time steps. The target
is to transform these data variables to new variables that are closer to Gaussian. The
simulated data are reported every 10 days and the total simulation time is 3000 days,
which results in (dfull)i ∈ R

300×1 (i = 1, 2, . . . , Nr). Because all data vectors (dfull)i
are generated independently (prior to conditioning to observations), they are viewed
as prior samples of the data vector dfull. The Gaussianity of dfull can thus be examined
through the ensemble of simulated data vectors.

Figure 3c shows the histogram of water cut at 1000 days. This histogram is clearly
non-Gaussian, as it displays an L-shape and peaks at a water cut value of zero. This
non-Gaussian behavior also holds for water cut at other time steps (particularly before
1000 days). Figure 3e shows the cross-correlation between water cut at different time
steps. The large number of zero water cut values at 1000 days renders this plot highly
nonlinear overall. The behaviors observed in Fig. 3c, e indicate that a multi-Gaussian
assumption for the prior distribution of the data variables is clearly inappropriate in
this case.

It is evident, however, that the non-Gaussian character of the water cut data is
largely due to the different water breakthrough times (breakthrough denotes the point
at which water appears at the production well, which is when water cut becomes
nonzero). Data behavior is actually quite similar for different realizations within the
same stage, i.e., before breakthrough the water cut is zero, and after breakthrough the
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Fig. 3 Example illustrating impact of applying mapping operation: a simulated water cut from prior
models, bwater cut after mapping operation (tb denotes the vector containing the water breakthrough times
corresponding to all prior models, and ‘tb+’ means that tb is also included in the mapped data), c histogram
of water cut at 1000 days, d histogram of mapped water cut at 1200 ‘days,’ e cross-correlation between
water cut at 1000 and 1500 days, f cross-correlation between mapped water cut at 1500 and 2000 ‘days’

water cut curves increase with a consistent concavity. These observations motivate a
mapping of the column data vectors (dfull)i such that, in themapped data vectors d̂i , all
data in a given row correspond to the same stage. This mapping operation consists of
time shifting and compressing/stretching operations (see the Appendix for the detailed
mathematical formulation).
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We plot the mapped data vectors, in which the breakthrough ‘times’ are now iden-
tical for each realization, in Fig. 3b (quotes are used to indicate the time variable
after mapping). In this figure, tb denotes a vector containing the actual breakthrough
times for water cut shown in Fig. 3a. The mapped water cut data variables d̂ are then
expressed as

d̂ = [ tb, d̂(τ = τ1), . . . , d̂(τ = τk), . . . , d̂(τ = τN̂t
)]T, (13)

where tb denotes breakthrough time, τ is the ‘time’ variable for the mapped data (x-
axis in Fig. 3b), N̂t is the total number of ‘time’ steps, and d̂(τ = τk) represents the
data variable at ‘time’ τk . Note that tb must be included in d̂. Otherwise, d̂ could not
be mapped back to the original data space. In this work, the ‘time’ steps τ1 to τN̂t
are set to be uniformly distributed from the start to the end of the simulation period
(interpolation is applied when necessary), and the number of ‘time’ steps N̂t is set
equal to Nt.

Figure 3d shows the histogram of mapped data at 1200 ‘days,’ and we see that it is
close to Gaussian. The histograms of mapped data at other post-breakthrough ‘times’
(though not shown) were also found to be close to Gaussian. Furthermore, the cross-
correlation between mapped water cut at 1500 and 2000 ‘days,’ presented in Fig. 3f,
is now nearly linear. This level of linearity is also observed in the cross-correlations
between mapped water cut at other ‘times.’ Though it is not straightforward to deter-
mine just how close the mapped variables d̂ are to multivariate Gaussian, such an
assessment does not appear to be necessary, as it will be shown in Sect. 4.2 that the
performance of DSI is much improved through use of these d̂.

3.2 Data-Space Formulation with Reparameterization

In this section, we describe the extended DSI formulation with reparameterization of
the original non-Gaussian data vector dfull. We let η denote the reparameterized data
vector, which is multivariate Gaussian a priori. The relationship between dfull and η

is then expressed as
dfull = f(η). (14)

In the previous section, mapping operations were introduced to transform dfull to the
mapped data vector d̂. Thus, we can set η = d̂ if the prior distribution of d̂ is nearly
Gaussian.

In Sect. 2, we derived the conditional PDF of dfull given observed data dobs within
a Bayesian framework. Similarly, the conditional PDF of η can be written as

p(η|dobs) ∝ p(dobs|η)p(η)

∝ exp

(
−1

2
(H f(η) − dobs)TC

−1
D (H f(η) − dobs)

−1

2
(η − ηprior)

TC−1
η (η − ηprior)

)
, (15)
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where ηprior and Cη are the prior mean and prior covariance matrix of random vector
η. Equation (15) gives the PDF to be sampled to generate conditional realizations of
η, from which the corresponding data vector dfull can be predicted through Eq. (14).

We emphasize that the function in Eq. (14) must be nonlinear given the condition
that dfull is non-Gaussian, but η is Gaussian. This can be proven through contradiction:
Assuming f(·) is linear, we can thenwrite dfull = Aη+b, where η ∈ R

Nl , A ∈ R
Nd×Nl

and b ∈ R
Nd . If η is Gaussian, dfull is then also Gaussian, which contradicts the

condition that dfull is non-Gaussian. Thus f(η) is a nonlinear function. In this case, the
misfit function in the exponent in Eq. (15) is no longer quadratic. Thus, the posterior
distributionofη cannot be expressed as a simpleGaussiandistribution that canbe easily
sampled. In Sect. 3.4, we will describe the application of the randomized maximum
likelihood (RML) method to sample this posterior PDF.

We see from Eq. (15) that the posterior PDF p(η|dobs) requires the inverse of
the prior covariance matrix Cη. It was found, however, that Cη can be poorly con-
ditioned (and not invertible) when we set η = d̂, as in the development above. This
ill-conditioning occurs when the number of mapped data vectors Nr used to construct
Cη is less than the dimension of the mapped data vector N̂d. In addition, the strong
correlations between mapped variables in d̂ (this correlation is evident in Fig. 3f) may
render Cη low rank. To address this issue, principal component analysis (PCA) will
be applied to reparameterize d̂, which allows us to avoid computing C−1

η . PCA also
acts to reduce the number of variables to be estimated, and this makes the generation
of posterior predictions even more efficient.

3.3 Reparameterization of Mapped Data Variables Using PCA

In this section principle component analysis (PCA) is introduced in order to effectively
treatC−1

η . PCA is a widely applied statistical procedure that enables the representation
of a set of correlated variables using a set of linearly uncorrelated variables. Because
the leading principal components are associated with the largest variance, PCA is
highly effective for dimension reduction. See Shlens (2005) for a tutorial on PCA and
Liang et al. (2002) for theory and proofs. The application of PCA to reparameterize
reservoir model parameters has been discussed by many authors; see, e.g., Oliver
(1996), Reynolds et al. (1996), Sarma et al. (2006) and Vo and Durlofsky (2014).

Here PCA is used to reparameterize the mapped data variables in d̂. We define
X ∈ R

N̂d×Nr as the following centered matrix

X = [ d̂1 − d̂prior d̂2 − d̂prior . . . d̂Nr − d̂prior], (16)

where d̂prior = (1/Nr)
∑Nr

i=1 d̂i is the mean of the mapped data from all prior models.
Singular value decomposition of the matrix X/

√
Nr − 1 is then performed, which

gives
X = √

Nr − 1UΣV T = √
Nr − 1ΦV T, (17)

where U is an N̂d × N̂d unitary matrix, Σ is an N̂d × Nr diagonal matrix containing
the nonnegative singular values of X/

√
Nr − 1, V is an Nr × Nr unitary matrix, and
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Φ = UΣ is the basis matrix. The components ofΦ are ordered by their corresponding
singular values. There exist a maximum of [min(Nr, N̂d)−1] nonzero singular values.
Only Nl columns inΦ are retained,where Nl ≤ [min(Nr, N̂d)−1]. Thus,Φ ∈ R

N̂d×Nl .
The value of Nl is often determined by applying an ‘energy’ criterion (Cardoso et al.
2009). The relative energy in the largest Nl eigenvalues is given by

ENl =
∑Nl

i=1 λi∑min(Nr,N̂d)−1
i=1 λi

, (18)

where λi is the square of diagonal element i in matrix Σ . The value of Nl can be
determined by specifying a value for ENl (e.g., 0.995). The cumulative ‘energy loss’
from retaining only the Nl largest eigenvalues is given by 1 − ENl . In practice, Nl is
often much smaller than N̂d, as will be seen in an example in Sect. 4.

The mapped variables in d̂ can then be represented in terms of ξ through use of

d̂ ≈ Φξ + d̂prior, (19)

where ξ ∈ R
Nl×1 is the reduced-space variable. Equation (19) will be an equality if

Nl is determined by setting ENl = 1. The relationship between d̂ and dfull will be
denoted as

d̂ = F (dfull), dfull = F−1(̂d), (20)

where F (·) represents the forward mapping operation and F−1(·) the backward
mapping operation. The relationship between ξ and dfull can then be expressed as

dfull = f(ξ) = F−1(̂d) = F−1(Φξ + d̂prior). (21)

In this paper, we choose ξ to be the reparameterized vector representing the data
variables d̂ in Eq. (14), that is, η = ξ . From a property of PCA, the distribution of
random vectors ξ will be approximately multivariate standard normal if the d̂ vectors
are nearly Gaussian. Thus, from Eq. (15), we have

p(ξ |dobs) ∝ exp

(
−1

2
(H f(ξ) − dobs)TC

−1
D (H f(ξ) − dobs) − 1

2
ξTξ

)
, (22)

where f(ξ) is defined byEq. (21). Equation (22) characterizes the posterior distribution
of ξ given dobs. This equation is in a reduced space relative to Eq. (15). Note that, in
this subspace, the (η − ηprior)

TC−1
η (η − ηprior) term in Eq. (15) now appears as ξTξ ,

i.e., C−1
η no longer appears directly.

The steps required to arrive at Eq. (22) will now be summarized. We first transform
the prior data (generated by performing flow simulations for an ensemble of prior
models) to mapped data that are more nearly multi-Gaussian. PCA is then applied to
the mapped data to enable the representation of data variables dfull by new variables ξ .
Under a Bayesian framework, the posterior distribution of ξ is then given by Eq. (22).
In the following section, we will introduce the RML method to sample this posterior
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distribution. The resulting posterior samples of ξ will then be used to obtain the
production forecasts.

3.4 Randomized Maximum Likelihood Method in Data Space

The RML method (Kitanidis 1986; Oliver et al. 1996) is a procedure for sampling
a posterior PDF. It has been shown that RML can sample this PDF correctly if the
response is linearly related to model parameters. Gao et al. (2006) applied RML
for quantifying uncertainty for the PUNQ-S3 reservoir model (Floris et al. 2001).
They concluded that RMLwas able to give reasonable uncertainty quantification even
though the responses (predicted production data) were nonlinearly related to themodel
parameters. Vo and Durlofsky (2015) described a subspace RML method applicable
with a parameterized (PCA-type) permeability representation. In this section, RML
will be implemented within the context of DSI. We begin by introducing RML within
the traditional model-inversion context.

When the model variablesm are Gaussian, and the observations dobs are related to
model variables through dobs = g(m)+ε, themodel-space RMLmethod, as described
by Oliver et al. (2008), proceeds as follows:

1. Sample m∗ from the prior Gaussian distribution N [μm,Cm], where μm and Cm
are the mean and covariance of the model parameters.

2. Sample perturbed observations d∗
obs from the Gaussian distribution N [dobs,CD].

3. Compute maximum likelihood model variables mrml through use of

mrml = arg min
m

[
(g(m) − d∗

obs)
TC−1

D (g(m) − d∗
obs)

+(m − m∗)TC−1
m (m − m∗)

]
. (23)

4. Repeat steps 1–3 to generate additional posterior samples of m.

In the context of this DSI formulation, the observed data dobs are now related to
‘model’ parameters ξ through Eq. (21). Through use of PCA, the prior distribution
of ξ is essentially multivariate standard normal. The RML method in data space then
proceeds as follows:

1. Sample ξ∗ from the standard normal distribution N [0, I ].
2. Sample perturbed observations d∗

obs from the Gaussian distribution N [dobs,CD].
3. Compute maximum likelihood ‘model’ parameters ξ rml through use of

ξ rml = arg min
ξ

[
(H f(ξ) − d∗

obs)
TC−1

D (H f(ξ) − d∗
obs)

+(ξ − ξ∗)T(ξ − ξ∗)
]
. (24)

4. Repeat steps 1–3 to continue sampling the posterior distribution of ξ . Compute
corresponding reservoir forecasts through Eq. (21).
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In this work, the minimization of the objective function in Eq. (24) is accomplished
using the quasi-Newton line search algorithm within Matlab. Because objective func-
tion evaluations are very fast, this minimization can usually be accomplished within
a few seconds. Thus the total computation time to generate multiple forecasts with
this data-space RML procedure is on the order of minutes. The time-consuming step
is the simulation of the prior models, though these computations can all be done in
parallel. We emphasize that if new observed data are incorporated, or the covariance
matrix CD is varied, new forecasts can be efficiently generated without resimulating
the prior models.

Finally, we note that Tarantola (2005) showed that if g(m) is linear (i.e., g(m) =
Gm, where G is the sensitivity matrix), then the minimum of the objective function
in Eq. (23) has a Chi-squared distribution with expectation equal to Nobs, the number
of observed data, and variance equal to 2Nobs. This conclusion also applies to the
minimization problem inEq. (24). For the cases considered in this paper, the acceptable
offset is restricted to be five standard deviations (as was done in Gao and Reynolds
(2006)), i.e., we require

Nobs − 5
√
2Nobs ≤ Sξ (ξ rml) ≤ Nobs + 5

√
2Nobs, (25)

where Sξ (·) is the objective function (right-hand side) in Eq. (24). If Eq. (25) is not
satisfied, the generated estimate is simply discarded. For all cases presented in this
paper, more than 90% of the generated estimates satisfied Eq. (25) and were thus
accepted.

3.5 Pre-selection of the Prior Models

In practice, it is possible that the simulated data from many of the prior models are far
from the observed data (e.g., predicted water breakthrough time is significantly later
than that observed in the production data, or target rate controls are not met). For such
cases, we have experimented with a pre-selection procedure in which the prior-model
simulation data that are ‘far’ from the observed data are eliminated when constructing
the basis matrix Φ in Eq. (17). This results in a PCA reparameterization that provides
a better representation of the region of interest in data space. The mismatch function

Sd(di ) = (g(mi ) − dobs)T C
−1
D (g(mi ) − dobs) , i = 1, 2, . . . , Nr, (26)

where g(mi ) denotes the simulation results during the historical period for model
mi , is used to determine which prior-model data are retained and which are elimi-
nated. Specifically, only the Nu models (Nu < Nr) corresponding to the smallest data
mismatches are retained.

This pre-selection procedure, with Nu/Nr ≈ 0.2, was found to provide slightly
improved forecasting results relative to results in which all prior-model simulation
data are used. This observation is based on comparisons of DSI results to reference
results obtained using full rejection sampling (described below). In a typical case, how-
ever, rejection sampling results will not be available, and in their absence, a method
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for determining Nu/Nr (or a cutoff value for Sd in Eq. (26)) has yet to be devised.
Therefore, in the DSI results presented below, the pre-selection procedure will not be
applied. A systematic assessment of this technique and the determination of appropri-
ate (case-specific) criteria for its use are subjects for future study.

3.6 Summary of the Extended DSI Procedure

In this section, the extended DSI formulation was presented for cases when data
variables are non-Gaussian a priori. The overall procedure can be summarized as
follows:

1. Generate an ensemble of Nr prior model realizations that are conditioned to all
prior information including hard data (i.e., property values at well locations).

2. Perform flow simulation on all prior models to obtain an ensemble of simulated
data vectors (dfull)i (i = 1, 2, . . . , Nr). As an optional step, apply pre-selection to
eliminate some (dfull)i (pre-selection is not applied for the results in this paper).

3. Transform the simulated data vectors to mapped data vectors d̂i that are closer to
multi-Gaussian. The detailed mappings are presented in the Appendix.

4. Apply PCA on the mapped data vectors d̂i to obtain the basis matrixΦ. Represent
the data variables dfull using new (reduced) variables ξ (Eq. (21)).

5. Sample the conditional distribution of ξ given dobs using the RML method
(Eq. (24)). Then, generate the corresponding predictions of dfull using Eq. (21).

The most time-consuming component of the DSI procedure is the generation and
simulation of a relatively large set of prior models. For the examples considered in
this paper, limited numerical experimentation indicated that flow results from around
200–1000 prior models provided acceptable DSI accuracy. Because these simulations
can all be performed in parallel, the elapsed computational time will be on the order of
only 1–10 simulations if a reasonable number (O(100–1000)) of computational cores
are available. Once the prior-model simulations are performed, generating forecasts
is very efficient as the data-space function evaluations are very fast.

In the examples presented here, all priormodels represent realizations sampled from
a particular geostatistical ensemble, i.e., all models are based on the same training
image or variogram and are conditioned to the same set of well data. This is not a
requirement of the DSI procedure, however, and it is possible to treat data variables
originating from a range of prior models. Thus, one could incorporate, for example,
uncertainty in geological style (training image) or relative permeability functions into
the DSI treatment.

4 Numerical Example: Case 1

In this section, the DSI procedure described in the previous section is applied to a
two-dimensional channelized system. DSI results for uncertainty quantification will
be compared to those obtained from a rejection sampling (RS) procedure. Additional
DSI results are presented in Sun (2014).
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4.1 Model Setup and Predictions from Prior Models

Four prior models for the two-dimensional channelized system considered here are
shown in Fig. 4. The model is represented on a 60 × 60 grid, with each grid block of
size 25m× 25m× 10m. The permeability fields are generated using a ‘cookie-cutter’
approach (Castro 2007). The binary facies (sand andmud)model is generated using the
‘snesim’ geostatistical algorithm within SGeMS (Strebelle 2002). The heterogeneity
structure within a particular facies is modeled as Gaussian. The Gaussian realizations
(ln k) with different means (1 for mud and 5 for sand) and standard deviation (0.5
for mud and 1.5 for sand) are simulated independently using the sequential Gaussian
simulation algorithm within SGeMS. All prior models are conditioned to hard data
at five well locations. The porosity is assumed to be constant at 0.2. A total of three
producers and two injectors are drilled in sand, as shown in Fig. 4.

An oil–water system is considered. Fluid properties are the same as in the test case
described in Sect. 2.2. Injectors operate at fixed BHPs of 550 bar (I1) and 600 bar (I2),
and all producers operate at fixed BHPs of 200 bar. Initial reservoir pressure is 325 bar.
The flow simulation period is 3000 days, with production data reported every 30 days.
Simulated data include water injection rate (WIR) for injectors and water production
rate (WPR) and oil production rate (OPR) for producers. For the DSI method, a total

Fig. 4 Log-permeability (in md) maps for four prior channelized models. Red circles denote production
wells, and black circles indicate injection wells
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Fig. 5 Production forecasts from prior models (Case 1). aWater rate (I1), b water rate (I2), c oil rate (P1),
d water rate (P1), e oil rate (P2), f water rate (P2), g oil rate (P3), h water rate (P3)
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of Nr = 500 prior models are generated. Figure 5 shows the simulation results for 100
prior models generated using the AD-GPRS simulator (Zhou 2012). The predictions
from these prior models display considerable uncertainty, especially for WIR and
WPR, even though all models are conditioned to hard data.

In this case, we have multiple types of data at multiple wells. Data variables are
assembled as

dfull = [dTI1,dTI2,dTOPR, P1,dTWPR, P1,d
T
OPR, P2,d

T
WPR, P2,d

T
OPR, P3,d

T
WPR, P3]T, (27)

where dI1 and dI2 denote column vectors containing injection rate data at all time steps
for wells I1 and I2, dOPR, P1 contains oil production rate data at all time steps for well
P1, etc. Because the total simulation period is 3000 days, and uniform time steps of
size 30 days are used, each component on the right hand of Eq. (27) is of dimension
100, and dfull ∈ R

800×1.
The mapping operations (described in Sect. 3.1 and in the Appendix) are applied

for each data type on a well-by-well basis. The mapped set of data variables is thus
expressed as

d̂ = [̂dTI1, d̂TI2, d̂TOPR, P1, d̂TWPR, P1, d̂
T
OPR, P2, d̂

T
WPR, P2, d̂

T
OPR, P3, d̂

T
WPR, P3]T. (28)

No mapping is applied for WIR (for I1 and I2), so d̂I1 = dI1 and d̂I2 = dI2. The
mapping operation for WPR was described in Sect. 3.1. Because OPR declines at
a particular well when water breaks through at that well, the transition time for well
OPR (explained in theAppendix) coincideswithwater breakthrough time.Themapped
data for P1 are shown in Fig. 6, and we can see that the mappings act to align the pre-
and post-breakthrough stages. We reiterate that, with these mapping operations, the
breakthrough times are treated as new variables in d̂ and need to be predicted explicitly.
Mapping operations for P2 and P3 are analogous to those for P1.

Figure 7 shows the cumulative energy loss versus the number of principal com-
ponents retained in Φ (Eq. (17)). This plot corresponds to the mapped data variables
defined by Eq. (28). It is evident that most of the energy is carried by the first few

Fig. 6 Production forecasts at P1 after mapping operations. Note that the mapping for oil rate also involves
water breakthrough times tb. aMapped oil rate (P1), b mapped water rate (P1)
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components. We seek to form a basis such that the fraction of energy ignored is less
than 0.005, which requires us to retain the first Nl = 9 principal components (in this
paper, unless otherwise indicated, cumulative energy loss is always set to be 0.005).

4.2 Production Forecasts with Data-Space Inversion

The impact of the mapping operations on DSI results will now be demonstrated. The
historical period is taken to be the first 480 days. A ‘true’ model that is consistent with
the training image and geostatistics is generated and used to provide the true data (this
model is not included in the set of prior models used within DSI). The observed data
are generated from the true data by adding measurement error, which is assumed to
followamultivariate independentGaussian distributionwith zeromean and covariance
matrix CD (Gao et al. 2006). In the first set of results (shown in Fig. 8), the standard
deviation of measurement error is set to be equal to 10% of the corresponding true
data. Observed data at all wells are used, which results in a total of 16 × 8 = 128
observations.

Figure 8 shows the ensemble of predictions (blue curves) from the DSI procedure
with and without the mapping operations. Observed data for WPR at P1 and P3 are
shown as red circles, and the true data are indicated by red dashed lines. A total of
50 predictions are generated for each case. In Fig. 8a, the true data fall outside of the
predictions if mapping operations are not applied. In Fig. 8c, unphysical (negative)
water rates are observed in the forecasts when mapping is not applied. In addition,
water breakthrough time, which is often an important quantity in practice, cannot be
obtained directly from the forecasts.

When mapping operations are applied, however, the DSI procedure provides
improved predictions that capture the true data for WPR at both P1 and P3 (Fig. 8b,
d). Similar improvements over the results without mapping are also observed at other
wells. Note finally that the reduction in uncertainty, relative to predictions from the
prior models, is very significant (compare Fig. 5d, h to Fig. 8b, d), even though the
measurement errors are set to be relatively large in this case.
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Fig. 8 Production forecasts from DSI without (left plots) and with (right plots) mapping operations. a
Water rate (P1), b water rate (P1), c water rate (P3), d water rate (P3)

4.3 Rejection Sampling

The results presented above show that prediction uncertainty is reduced substantially
through application of DSI. However, unless these DSI results are compared to some
benchmark, there is no way of knowing whether the resulting uncertainty assessment
is accurate. The rejection sampling (RS) approach provides a reference estimate for
production forecast uncertainty, as RS performs a proper sampling of the posterior
distribution. RS is very computationally intensive, but it is able (in concept) to generate
samples from complex distributions. The basic idea in RS is to first generate a prior
sample and to then decide whether to accept or reject this sample based on a test. This
test is designed to be independent of previously generated samples, which guarantees
that all accepted samples are independent from each other (Oliver et al. 2008).

The RS approach in this paper proceeds as follows:

1. Sample m from its prior distribution N [μm,Cm].
2. Sample a variable p from a uniform distribution over [0, 1].
3. Accept m as a posterior sample if p ≤ L(m)/SL , where L(m) is the likelihood

function and SL is taken to be the maximum likelihood value corresponding to all
models considered for RS.
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The likelihood function L(m) is defined as

L(m) = c exp

(
−1

2
(g(m) − dobs)TC

−1
D (g(m) − dobs)

)
, (29)

where c is a normalization constant. In this paper, SL is chosen to be the maximum of
the likelihood function values over all prior models considered in RS.

The rejection sampling approach requires a very large number of prior simulations
as the amount of observed data increases. Therefore, in examples involving RS, only
a small amount of observed data will be considered, and a larger standard deviation
for measurement error will be specified. With these treatments, a reasonable fraction
of the models considered will be accepted by the RS algorithm, which enables it to
provide reference uncertainty quantification results.

4.4 Comparison of DSI and Rejection Sampling Results

Observed data in this case are obtained fromwells I2, P1 andP3 at times of 180, 360 and
540 days. The total number of observed data is thus 15. In this example, the standard
deviation of measurement error is set to be equal to 15% of the corresponding data. In
the RS procedure, 106 equally probable prior models are generated and simulated. A
total of 242 models are accepted. Thus, with RS, O(5 × 105) simulations are needed
in order to generate around 100 posterior models.

Figures 9 and 10 show the forecasting results from the prior models, RS and DSI,
for wells I2, P1 and P3 (note that P1 experiences early water breakthrough and P3
late breakthrough). For DSI, a total of 100 forecasts are generated. In these plots, the
gray regions indicate the P10–P90 interval for the prior models, the solid black curves
denote the P10, P50 and P90 DSI results, the dashed blue curves are the analogous RS
results, the dashed red curves represent the true model response, and the red points are
the observed data. Immediately evident is the large amount of uncertainty reduction
accomplished, even though the amount of assimilated data in this case is limited. Of
most interest here, however, is the generally close agreement between DSI results
and those from the much more expensive RS procedure (though some discrepancies
are evident, such as in P3 WPR in Fig. 10c). The CDFs in the plots in the right
columns quantify both the level of agreement between DSI and RS, and the amount
of uncertainty reduction in the various well quantities.

In Fig. 10a, the true P3 OPR data are seen to be outside of the P10–P90 range
of predictions from the prior models at around 1000 days. The DSI procedure is
nonetheless able to provide accurate uncertainty quantification results, with the true
data falling very near the P90 curve. Also of interest are the results for P3 WPR
(Fig. 10c). Here, although water breakthrough is not observed during the history-
matching period, prediction uncertainty is still reduced significantly. In addition, the
CDFs at 1500 days (Fig. 10d) display a close match. Though not shown here, for
P3 WPR we achieved DSI results that matched the RS results very closely when the
pre-selection step, described in Sect. 3.5, was applied with Nu = 100. Taken in total,
the general agreement between the DSI and RS results, in terms of P10, P50 and P90
predictions and posterior CDFs, is quite acceptable.
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Fig. 9 Statistics of production forecasts, for I2 and P1, from prior models, RS and DSI. Left plots compare
the P10, P50 andP90 results obtained fromDSI (black curves) andRS (dashed blue curves). The gray shaded
areas represent the P10–P90 range of predictions from prior models. Right plots compare the cumulative
distribution function (CDF) of production forecasts at 1500 days from prior models, RS and DSI. a Water
rate (I2), b water rate CDF (I2), c oil rate (P1), d oil rate CDF (P1), e water rate (P1), f water rate CDF (P1)

4.5 DSI Uncertainty Quantification with Different ‘True’ Models

In the previous section, we compared forecasts obtained from RS and DSI for a single
selected ‘true’ model, from which the observed data were generated. Satija and Caers
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Fig. 10 Statistics of production forecasts for P3 from prior models, RS and DSI. Curves and colors in this
figure have the same meaning as in Fig. 9. a Oil rate (P3), b oil rate CDF (P3), c water rate (P3), d water
rate CDF (P3)

(2015) showed that their data-space approach was not applicable when the syntheti-
cally generated observed data were at the edge of the simulated data from the prior
models. This observation indicates that the forecasting results depend on how the refer-
ence true data are distributed in the prior data space. In order to assess this issue within
the context of DSI, the procedure will now be applied for ten different ‘true’ models.

RS is again applied to provide the reference forecasting results. We use the same
set of 106 prior models as were used in the previous section when applying RS for
the different ‘true’ models. Note that the ten ‘true’ models are not contained in the
set of prior models used by either RS or DSI. In these examples, we include fewer
observations to assure that a sufficient number of models (100 or more) are accepted
in all cases. The observations are again at 180, 360 and 540 days, but now only include
data from wells I1 and P3, which results in a total of nine observations. The standard
deviation of the measurement error is again set to 15% of the corresponding data.
Using the 15 observations considered in Sect. 4.4 resulted in RS acceptance of as few
as ten models (out of 106) for some ‘true’ cases. A total of 100 predictions are again
generated with DSI for each of the different ‘true’ models.

Figures 11, 12 and 13 present results, in the form of box plots, for cumulative water
injection at I1, cumulative water production at P3 and cumulative oil production at P3,
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Fig. 11 Box plots of cumulative water injection at I2 obtained from DSI, RS and prior models, for ten
different ‘true’ models. The red line within each box indicates the median, the bottom and top of each box
denote the P25 and P75 results, and the ends of the lines extending out from the boxes correspond to the P5
and P95 results

Fig. 12 Box plot of cumulative water production at P3. The lines and colors in this figure have the same
meaning as in Fig. 11

Fig. 13 Box plot of cumulative oil production at P3. The lines and colors in this figure have the same
meaning as in Fig. 11
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all after 3000 days (which is the simulation time frame). Box plots corresponding to
predictions from the prior models are also shown. In the box plots, the red line within
each box designates the median, the bottom and top of each box correspond to the P25
and P75 results, and the ends of the lines extending out from the boxes indicate the
P5 and P95 results. The relatively close agreement between the RS and DSI results
for all three quantities in all ten models is evident, as is the reduction in uncertainty
relative to that for the prior models.

From the figures, it is apparent that the posterior distributions corresponding to
some of the ‘true’ models (e.g., ‘true’ models 7 and 8 in Fig. 12) are at the edges
of the prior distribution. However, DSI still provides posterior distributions that are
reasonably close to those from the reference RS procedure. This observation indicates
that DSI is able to, at least in these cases, provide reasonable posterior distributions
even when the true data are far from most of the prior-model predictions.

4.6 DSI Uncertainty Quantification with More Observed Data

As a final test for this problem, DSI predictions are now generated for a case in which
more observed data are available. RS results will not be shown for this example as it
is computationally infeasible to accept enough models with the amount of data used
here. The model setup is the same as described in Sect. 4.1. The observed data are
measured every 60 days, from 60 to 600 days, for every well. Simulation data are
reported every 30 days until 3000 days. Thus, we have dobs ∈ R

80×1 (80 data points)
and dfull ∈ R

800×1. The standard deviation of the measurement error is 10% of the
corresponding data.

The same 500 prior models are used with DSI. Figure 14 shows the P10, P50 and
P90 DSI results (black curves) along with the prior P10–P90 interval (gray shaded
area). Uncertainty reduction after conditioning to observed data is significant for all
quantities, especially for water injection and production rates. Note that the true data
for somewells (Fig. 14a, f, g) are outside of the P10 to P90 range of predictions from the
prior models, which means that the true data are not well captured by the prior models.
However, the DSI approach is still able to provide posterior forecasts in which the true
data largely fall within the P10–P90 interval, except at a few times in Fig. 14e, g.

5 Numerical Example: Case 2

In this section, theDSI procedurewill be applied for amore realistic case. The system is
now three-dimensional and contains oil, water and gas, and the field proceeds through
primary recovery followed by waterflood, with well settings changing during these
different stages of production. DSI results for this case will again be compared to those
from RS.

5.1 Model Setup and Predictions from Prior Models

The reservoir now has an anticlinal (folded) structure, with the depth of the top layer
ranging from 2400 m near the center to 2450 m at the flank. The geocellular model is
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Fig. 14 DSI production forecasts based on more data. Curves in this figure have the same meaning as in
Fig. 9. aWater rate (I1), b water rate (I2), c oil rate (P1), d water rate (P1), e oil rate (P2), f water rate (P2),
g oil rate (P3), h water rate (P3)
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Fig. 15 Log-permeability (k, in md) maps for four prior models. Well locations are also shown (‘INJ’ and
‘PRO’ denote injector and producer; these are referred to as ‘I’ and ‘P’ in the text)

constructed on a 31× 11× 40 grid with each grid block of size 50 m × 50 m × 2 m.
The permeability field is Gaussian, and the parameter k in each grid block is generated
using SGeMS (Remy et al. 2009) with an exponential variogram function.

Four randomly generated realizations, all conditioned to honor the permeability (k)
at well blocks, are shown in Fig. 15. The histogram of ln k is Gaussian with amean of 3
and standard derivation of 1.5. The directional permeability for each block is specified
as kx = ky = k and kz = 0.3k. The porosity is again constant (0.2) for all grid blocks.
A total of four producers and three injectors, all fully penetrating, are introduced into
the model.

The initial saturations of oil and water above the water–oil contact, at a depth of
2510 m, are 0.8 and 0.2, respectively. Only the water phase exists below the oil–water
contact. All gas is initially dissolved in the oil phase. Fluid properties are the same as
those used in the PUNQ-S3 simulation model (Barker et al. 2001; Floris et al. 2001).
Capillary pressure effects are ignored. The initial reservoir pressure is 234 bar.

In this example, the simulations are performed using the commercial simulator
ECLIPSE (Schlumberger 2013). The simulation period is 3000 days, with production
data reported every 30 days. The first 900 days correspond to primary production,
duringwhich all producers operate at a fixedoil rate (200m3/day) subject to aminimum
BHP of 100 bar. There is no water injection during this period. Water injection (from
all three injectors) starts at 900 days, with the injection wells operated at a BHP of
500 bar. During the water injection phase, the producers operate at a fixed oil rate
control of 250 m3/day subject to a minimum BHP of 100 bar.

Figure 16 shows the simulation results, forwells I2 and P2, for 100 priormodels.We
see that the BHP in P2 (Fig. 16b) decreases monotonically during the primary produc-
tion period (first 900 days) before reaching the lower limit (100 bar). Oil production
(OPR) in P2 starts to decline once the minimum BHP is reached (Fig. 16c). After
water injection starts (at 900 days, see Fig. 16a), OPR in P2 increases until reaching
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Fig. 16 Production forecasts from prior models (Case 2). a Water rate (I2), b bottom-hole pressure (P2),
c oil rate (P2), d water rate (P2)

the target rate of 250 m3/day. The BHP in P2 also increases as water is injected, but
it later declines due to water breakthrough, which leads to a decrease in OPR. Water
breakthrough is observed for all prior models (Fig. 16d). Free gas is produced in only
a few of the prior models (most of the gas stays dissolved in oil, where it impacts oil
phase properties).

5.2 Results Comparison

In this case, we generate observed data from 360 to 1800 days (measured every
360 days) at I2 and P2, which provides dobs ∈ R

20×1. The measurement errors are
again assumed to be independent Gaussian with zero mean and standard derivation of
10% of the corresponding true data. Relatively little data are again used to enable RS
to accept a reasonable fraction of models. A total of Nr = 500 models are used for
DSI, and 500,000 models are used for RS (which resulted in 218 accepted models).

Results for production data at I2 and P2 are predicted until 3000 days. Thus, we
have (dfull)i ∈ R

400×1 (i = 1, 2, . . . , 500). With DSI, mapping operations are applied
for the OPR, BHP and WPR data at well P2. No mapping operations are applied for
the WIR (I2) data. Figure 17 shows the mapped data corresponding to the results in
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Fig. 17 Production forecasts after mapping operations. The transition times are included in the mapped
data, but are not shown in the figure. aWater rate (I2), b bottom-hole pressure (P2), c oil rate (P2), d water
rate (P2)

Fig. 16. The mapping for the WPR data is as described in Sect. 3.1. The mapping
operations for the BHP and OPR data (detailed in the Appendix) are slightly more
complicated, but the basic approaches are the same as for the WPR mapping.

Figures 18 and 19 show the posterior distributions obtained fromDSI andRS. Close
agreement in terms of both the P10, P50 and P90 results, and the empirical CDFs, is
again observed. We see a decrease in prediction uncertainty after application of DSI
even though there are relatively few observations and measurement error is relatively
large. The true data essentially fall within the P10–P90 interval (for the I2 water rate,
the interval is very narrow and the data lie right around the P90 result). It is significant
that no unphysical DSI predictions are observed (i.e., no overshoot or undershoot of
target rates or BHPs occurs), which indicates that the mapping operations and other
DSI treatments are applicable to cases involving multiple changes in well controls.

6 Additional Issues

For practical subsurface problems, full model-inversion can be very challenging due to
geological complexities and the nonlinear relationship between model parameters and
the flow response. However, the distribution of flow responses in the data space may
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Fig. 18 Statistics of production forecasts from prior models, RS and DSI. Curves and colors in this figure
have the same meaning as the left plots in Fig. 9. a Water rate (I2), b bottom-hole pressure (P2), c oil rate
(P2), d water rate (P2)

be less complicated, which makes it possible (and appealing) to apply the DSI method
when the forecasts and associated uncertainty are of main interest. The numerical
results in this paper show that the DSI method is able to provide results similar to
those obtained from the exhaustive rejection sampling approach. This suggests that
DSI is indeed applicable for data inversion and uncertainty quantification.

The DSI method is formulated under a Bayesian framework, with the prior dis-
tribution of data variables estimated using the flow responses corresponding to an
ensemble of prior models. The posterior/conditional distribution of data variables
given observations is then directly sampled in the data space, without running addi-
tional flow simulations. Therefore,DSI should not be used to generate forecasts outside
the bounds of forecasts from the prior models. A wider prior (e.g., realizations from
additional geological scenarios) should be used in cases where the observed data are
outside the forecasts from the existing prior models.

In the examples presented in this work, Nr = 500 prior models were used. The
choice of Nr, however, depends on several factors, including available computational
resources, dimension of the data space and variability of the data. It is expected that
more prior models will be required as the dimension of the data space becomes larger,
or when the data display large variability (in other words, when the distances between
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Fig. 19 Statistics of production forecasts from prior models, RS and DSI. Curves and colors in this figure
have the same meaning as the right plots in Fig. 9. aWater rate CDF (I2), b oil rate CDF (P2), c water rate
CDF (P2)

prior samples in the data space are large). In practice, Eq. (25) can be used to determine
whether the number of prior models is sufficient. If a significant portion (e.g., 50%)
of the generated DSI estimates does not satisfy Eq. (25) during the RML procedure,
it might be necessary to consider a larger number of prior models. This will ensure
that there are a sufficient number of samples in the data space that are ‘close’ to the
observed data.

In this work, modeling error associated with the forward simulations was not
considered (this error is commonly neglected in the literature). However, in actual
applications, modeling error can be important and may even dominate measurement
error. In that case, the posterior distribution in Eq. (22) should be modified to account
for the impact of modeling error. Although discussion of specific representations of
modeling error is beyond the scope of this paper, it is important to note that this effect
may be incorporated into CD, which appears in Eq. (22) (Tarantola 2005; Oliver et al.
2008). This means that DSI can be used to efficiently explore the impact of different
modeling error treatments, since the posterior distribution in Eq. (22) can be evaluated
without running any additional flow simulations. This is a clear advantage of DSI rel-
ative to traditional model-inversion approaches, as the latter would require repeatedly
performing time-consuming inversions for each CD considered.
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7 Conclusions

In this paper, a novel data-space inversion (DSI) procedure was developed for reser-
voir performance forecasting given observed production data. In this procedure, only
a set of prior reservoir models and corresponding flow simulation results are required.
The predictions conditioned to observations are generated by appropriately combining
the (mapped) simulation results from prior reservoir models. A randomized maximum
likelihood (RML) algorithm in the data spacewas introduced to sample the conditional
distribution of data variables given observed data. We also developed mapping oper-
ations and applied principal component analysis (PCA) to transform data variables to
new variables that are closer to multivariate Gaussian. The performance of DSI was
shown to improve when these mapping operations were applied.

Detailed results quantifyingposterior productionuncertaintywere presented for two
examples involving bimodal channelized geology and a Gaussian geological descrip-
tion. Rejection sampling (RS) was performed in both cases to provide reference results
for uncertainty quantification. RS, however, requires O(105–106) simulation runs for
the cases considered, and even more simulations would be required with RS as the
amount of observed data increases. DSI, using only 500 prior simulations, was shown
to provide uncertainty quantification results in reasonable agreement with those from
RS. The accuracy of DSI relative to RS was shown to hold over ten different ‘true’
models in the first example and for a complicated production scenario (primary pro-
duction followed by waterflood, with several switches in well control) in the second
example. These results suggest that DSI will be applicable for a range of challenging
problems. A pre-selection procedure was suggested to improve DSI results by elimi-
nating some of the prior simulation data. Although this treatment was not used in the
results presented here, it appears to be useful and should be assessed and formalized
in future work.

The DSI approach does not provide posterior reservoir models, and this would be
a disadvantage in applications where such models are needed. However, for problems
where the predicted reservoir response and the uncertainty in that response are of
primary interest, DSI may be preferable to traditional model-based inversion methods.
For some types of problems, such as those involving discrete fracture models, the grid
is in general different for each geological realization. This poses challenges for many
model-based approaches, which commonly assume that the grid is the same in all
(prior and posterior) models. This is not an issue for DSI, since the method works only
with observed production data and entails no assumptions regarding the grid. Along
these lines, the successful application of DSI to a realistic naturally fractured system
was recently presented by Sun et al. (2016).

Another application in which DSI could be very useful is in the design of monitor-
ing/surveillance systems (Le and Reynolds 2014; He et al. 2015). In such problems,
the goal is to, for example, determine the locations of monitoring wells such that the
expected reduction in uncertainty is maximized. The inner loop in such an optimiza-
tion is a data assimilation, and DSI appears to be well suited for this. In addition,
because DSI can be run very quickly with different levels of measurement noise (or
various treatments for modeling error), the impact of this effect on forecast uncertainty
can be efficiently assessed. Finally, it will be of interest to apply DSI to more realistic
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problems with many wells and large amounts of observed data. For such cases, prior
models could include uncertainty in the training image/geological scenario or relative
permeability functions, in addition to uncertainty in the permeability field.
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Appendix: Detailed Mapping Operations

In this Appendix, the general pattern-based mapping operations applied in this study
are described. For generality and simplicity of notation, we describe the mapping
operations for an ensemble of time-series functions yi (t) (i = 1, 2, . . . , Nr). Note
that the data values in (dfull)i , discussed in Sect. 3.1, are simply the values of these
time-series functions at different time steps.

It is assumed that the functions can all be separated into the same number of
stages, with the same general behavior within each stage. For example, the functions
in Fig. 20a can be separated into four stages: constant, decline, constant and decline.
The times separating the different stages are referred to as transition times. The goal
is then to map these functions to those shown in Fig. 20b, in which the corresponding
transition ‘times’ for all functions are the same.

The overall starting and ending times, ts and te, are assumed to be the same
for all functions. A total of M + 1 stages are then identified (M = 3 for the
cases shown in Fig. 20a), and the corresponding transition times are designated
t ji (i = 1, 2, . . . , Nr; j = 1, 2, . . . , M). Defining t0i = ts and t

M+1
i = te, the mapped

functions are then constructed as

ŷi (τ ) = yi

(
t ji + (t j+1

i − t ji )
τ − τ j

τ j+1 − τ j

)
, τ j ≤ τ ≤ τ j+1, 0 ≤ j ≤ M, (30)

where ŷi (τ ) denotes the mapped function for member i in the ensemble, and τ j is
the transition ‘time’ for all mapped functions (note τ j is the same for all functions).

Fig. 20 Illustration of mapping operations. a Original functions, b functions after mapping
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The values of τ j ( j = 0, 1, . . . , M +1) must be predefined. In this paper, a particular
transition ‘time’ is defined as the mean of the corresponding transition times for all of
the original functions, i.e.,

τ j =
Nr∑
i=1

t ji
Nr

, 0 ≤ j ≤ M + 1. (31)

Figure 20b shows the mapped functions corresponding to the original functions in
Fig. 20a, with transition ‘times’ defined by Eq. (31).

The forward mapping operation for yi (t) is expressed as

F : yi (t) → ŷi (τ ), t1i , t2i , . . . , t Mi . (32)

The transition times t1i to t Mi must also be included since they are needed for the
backward mapping. Note that the values in the mapped data vectors d̂i , introduced in
Sect. 3.1, are simply the values of ŷi (τ ) at different ‘time’ steps, plus the identified
transition times.

Onceweconstruct a predictedmapped function, denotedby ŷp(τ ), and its associated
(predicted) transition times t1p , t2p , . . . , t Mp , the backward mapping is given by

F−1 : ŷp(τ ), t1p , t2p , . . . , t Mp → yp(t), (33)

where

yp(t) = ŷp

(
τ j + (τ j+1 − τ j )

t − t jp

t j+1
p − t jp

)
, t jp ≤ t ≤ t j+1

p , 0 ≤ j ≤ M. (34)

Here τ j are the pre-computed values fromEq. (31), and t0p and t
M+1
p are the known start

and end simulation times. This completes the description of the forward and backward
mapping operations used to ‘align’ the transitions between the various stages.

An alternatemapping approach, based on the use of histogram transformations, was
introduced in Sun et al. (2016). That procedure is applicable when the production data
do not display clear patterns, as is the case when wells are abruptly shut and opened
at different times. Because the histogram transformations are applied independently
for each data variable, the nonlinear correlations between data variables (as shown in
Fig. 3e) might not be as effectively mitigated with this treatment. In future work, it
will be of interest to compare results with the two approaches for systems that display
clearly identifiable stages.
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