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Abstract ABayesian linear inversion methodology based on Gaussian mixture mod-
els and its application to geophysical inverse problems are presented in this paper. The
proposed inverse method is based on a Bayesian approach under the assumptions of
a Gaussian mixture random field for the prior model and a Gaussian linear likelihood
function. The model for the latent discrete variable is defined to be a stationary first-
orderMarkov chain. In this approach, a recursive exact solution to an approximation of
the posterior distribution of the inverse problem is proposed. A Markov chain Monte
Carlo algorithm can be used to efficiently simulate realizations from the correct pos-
terior model. Two inversion studies based on real well log data are presented, and the
main results are the posterior distributions of the reservoir properties of interest, the
corresponding predictions and prediction intervals, and a set of conditional realiza-
tions. The first application is a seismic inversion study for the prediction of lithological
facies, P- and S-impedance, where an improvement of 30% in the root-mean-square
error of the predictions compared to the traditional Gaussian inversion is obtained. The
second application is a rock physics inversion study for the prediction of lithological
facies, porosity, and clay volume, where predictions slightly improve compared to the
Gaussian inversion approach.
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1 Introduction

The main objective of reservoir geophysics is to predict reservoir properties from
geophysical data to build an initialmodel for fluid flow simulations and production pre-
dictions. Generally, there are two main mathematical problems of interest in reservoir
geophysics: the prediction of elastic properties from seismic data (seismic inversion)
and the prediction of rock and fluid properties from elastic attributes (petrophysical or
rock physics inversion). Both mathematical problems can be seen as inverse problems,
because the objective is the assessment of the model variables from the data, assuming
that the physical relations between the variables to be predicted and the measured data
can be modeled. Indeed, the physics that links rock and fluid properties to geophysical
measurements is generally known for conventional reservoirs (Aki and Richards 1980;
Sheriff and Geldart 1995; Avseth et al. 2005; Mavko et al. 2009; Dvorkin et al. 2014).
A common method in seismic inversion is amplitude versus offset (AVO) inversion, a
pre-stack seismic inversion technique for the prediction of elastic properties, such as
velocities and density, in the reservoir. In AVO inversion, the forward model is based
on the assumption that the reflections at the subsurface interfaces in the reservoir
depend on the elastic properties of the porous rocks in the reservoir layers. Petrophys-
ical inversion aims to predict rock and fluid properties, such as porosity and saturation,
from the set of elastic attributes obtained from seismic inversion. The forward model
is based on rock physics relations calibrated using well log data or core measurements.

The solution of these inverse problems is still challenging due to the uncertainty in
the measurements and the non-uniqueness of the solution. Several methods have been
proposed in geophysics. These methodologies can be deterministic methods such as
optimization-based methods (Aster et al. 2011; Sen and Stoffa 2013), or probabilistic
approaches such as Bayesian inversion (Tarantola 2005). Most of these approaches
have been first applied to the seismic inversion problem and then extended to the
petrophysical inversion (Doyen 2007). Because of the non-uniqueness of the solution
and the uncertainty in the data, the solution of the inverse problem should not be
limited to a single set of predicted values, but it should be represented by a probability
density function (pdf) to quantify the model uncertainty. Therefore, a probabilistic
setting appears to be the most suitable approach for the above-mentioned geophysical
inverse problems.

Bayesian inversion methods are commonly used in geophysics for solving inverse
problems and predicting unknown model variables from measured data in the subsur-
face (Scales and Tenorio 2001; Ulrych et al. 2001; Tarantola 2005). The traditional
Bayesian framework for the prediction and uncertainty quantification of elastic proper-
ties from seismic data was introduced in Buland andOmre (2003) and later adopted for
litho-fluid prediction from seismic data. Buland andOmre (2003) proposed a Bayesian
approach to AVO seismic inversion for the prediction of seismic velocity and density,
using a linearized model based on the convolution of the seismic wavelet and the AVO
linearized approximation. Larsen et al. (2006), Gunning and Glinsky (2007), Ulv-
moen and Omre (2010), Grana and Della Rossa (2010), Rimstad and Omre (2010),
and Buland et al. (2012) introduced rock physics models in a Bayesian inversion
setting to predict the rock and fluid properties in the reservoir conditioned by the
geophysical measurements and to assess the uncertainty associated with the predic-
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tions. Furthermore, Buland and Kolbjørnsen (2012) extended the Bayesian approach
to the inversion of electromagnetic data for resistivity prediction. Bayesian inverse
methods have also been combined with geostatistical algorithms for generating mul-
tiple realizations from the posterior distributions: Asli et al. (2000) and Gloaguen
et al. (2005) proposed inversion methods based on co-Kriging and cosimulations for
gravity and borehole radar velocity; Gloaguen et al. (2004) proposed a Bayesian tomo-
graphic inversion using geostatistical simulations; and Hansen et al. (2006) proposed
an inverse method that combines sequential simulations and linear Gaussian inversion
for seismic applications.

Two common assumptions in Bayesian inversion are the Gaussian prior distribution
of the model, and the linearity of the physical relation that links the model to the data
(i.e., the likelihood function). These two assumptions are not necessary for the solu-
tion of the inverse problem, but allows the analytical evaluation of the solution of the
Bayesian inverse problem. Otherwise, Markov chain Monte Carlo (McMC) methods
can be used to sample from the prior and accept or reject the proposedmodel according
to the likelihood of observing the measured data from the proposed model (Mosegaard
and Tarantola 1995; Sen and Stoffa 1996). Stochastic approaches have also been pre-
sented in Doyen (1988) for porosity estimation and Doyen and Den Boer (1996)
for elastic property estimation. Recently, Connolly and Hughes (2016) presented a
stochastic inversion based on pseudo-wells. However, straightforward stochastic sim-
ulations of inverse problem solutions involving seismic data have high computational
costs as a result of the dimensionality of the problem and the spatial coupling in the
likelihood.

Several physical models used in geophysics, such as seismic convolution or rock
physics relations, are linear or can be linearized (Aki and Richards 1980; Mavko
et al. 2009). However, many properties in the subsurface, such as elastic attributes,
porosity, or permeability, are generally non-Gaussian, but show amultimodal behavior
due to the different rock and fluid properties of the different facies (Grana and Della
Rossa 2010; Dubreuil-Boisclair et al. 2012; Sauvageau et al. 2014; Amaliksen 2014).
For example, porosity in a mixture of sand and shale is generally bimodal. Gaussian
mixture models are linear combinations of Gaussian components that can be used to
describe the multimodal behavior of the model and the data (Hasselblad 1966). Sung
(2004) introduces Gaussian mixture distributions in multivariate nonlinear regression
modeling, while Hastie and Tibshirani (1996) propose a mixture discriminant analysis
as an extension of linear discriminant analysis by using Gaussian mixtures and the
expectation–maximization algorithm. The multimodal behavior of elastic and petro-
physical properties is due to the presence of different rock types and fluids in the
subsurface that can be mathematically represented by a latent categorical variable.

In this work, a Bayesian inversion method for geophysical inverse problems is
proposed, under the assumptions that the prior distribution is a spatial Gaussian mix-
ture model and the likelihood model is linear with additive Gaussian errors (i.e.,
Gaussian linear likelihood). The main advantage of the inversion method is the abil-
ity to solve mixed discrete–continuous problems. In particular, the aim of this work
is to jointly predict elastic or petrophysical properties (continuous properties) and
the litho-fluid classification (discrete property), by combining Gaussian mixture ran-
dom fields and hidden Markov models. Markov models have been previously used
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to model geological layering (Krumbein and Dacey 1969; Elfeki and Dekking 2001).
Eidsvik et al. (2004) propose the use ofHMMs (Cappe et al. 2005; Frühwirth-Schnatter
2006; Dymarski 2011) for well log inversion into geological attributes. Lindberg and
Grana (2015) propose to estimate the hidden Markov model parameters using the
expectation–maximization algorithm (Baum et al. 1970; Dempster et al. 1977). In this
work, the prior distribution of the latent categorical variable is assumed to follow a
first-order hiddenMarkovmodel, whereas the prior distribution of the continuous vari-
able is a Gaussian mixture model. The result of the Bayesian inversion is the posterior
probability distribution of the continuous properties that can be analytically computed
according to the proposed formulation. Furthermore, the posterior probability distri-
bution of the discrete variable is also assessed through stochastic simulations. Two
case studies are presented: the first case is a seismic model where the operator is a
convolutional model that links velocities to seismic amplitudes, and the second case
is a rock physics model where the operator is a linear relation that links porosity and
clay content to seismic attributes.

2 Methods

2.1 Geophysical Inverse Problem

This work focuses on the inversion of seismic data for the prediction of elastic proper-
ties, such as velocities or impedances, or petrophysical properties, such as porosity and
saturation, along a discretized vertical subsurface profile. The prediction of reservoir
properties (elastic or petrophysical) represented in the nr -vector r from seismic data
(seismic amplitudes) represented in the nd -vector d is a mathematical inverse problem
in the form

d = f (r) + ed , (1)

where f is the geophysical forward model and ed is the nd -vector containing the
centered error associated with the data. Generally, many geophysical models can be
linearized and the inverse problem in Eq. (1) can be rewritten as a linear inverse
problem

d = Hr + ed , (2)

where H is the (nd × nr )-matrix associated with the linear operator obtained by
linearizing the operator f .

Two main geophysical inverse problems in reservoir characterization are: (i) seis-
mic inversion where the objective is to predict elastic properties from seismic data and
(ii) petrophysical inversion where the aim is to predict rock and fluid properties from
the model of elastic attributes obtained from seismic inversion. If a linearization of
the forward physical model is available, then both seismic and petrophysical inversion
can be written in the form of Eq. (2). In seismic inversion, the property of interest
r is the set of elastic properties (for example, P-impedance), the data d are the set
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of seismograms, and the seismic forward model can be linearized through a convo-
lutional model. Linearized seismic forward modeling generally provides satisfactory
approximations for small angles (lower than the critical angle). If a linearized model is
not applicable, full waveform inversion algorithms (Pratt 1999; Herrmann et al. 2009;
Virieux and Operto 2009; Zhu et al. 2016) should be used. In petrophysical inversion,
the property of interest r is the set of rock and fluid properties (for example, porosity),
the data d are the set of elastic properties obtained from seismic inversion, and the
forward model is a linearization of the rock physics model. Rock physics models are
in general nonlinear, but can be locally linearized using Taylor’s series approxima-
tions (Grana 2016); however, the fluid effect in homogeneous fluid mixtures and the
porosity effect in unconsolidated rocks can introduce nonlinear effects in the model
and linearized approximations might be inaccurate.

The distribution of the subsurface variables to be predicted is generally multimodal
due to the presence of different rock types in the subsurface, the so-called lithological
facies. Therefore, the variable r in Eq. (2) depends on a latent categorical variable, the
facies, represented in the nr -vector κ . The seismic operator is invariant with respect to
the facies, whereas the rock physics operator might be facies dependent. For example,
one could use inclusion models in carbonate and granular media models in sandstone.
The following two sections describe the forward physical model for the two inverse
problems.

2.1.1 Seismic Inversion

Due to the dispersion of the seismic waves, the seismic signal recorded at the time t
corresponding to a given depth location x can be computed as a convolution of the
reflection coefficients c(t, θ) and a wavelet w(t, θ), where θ is the incident angle. The
reflection coefficients c(t, θ) depend on the relative contrast of the elastic impedances
i(t). The exact expression for the reflection coefficients is given by nonlinear Zoep-
pritz equations (Sheriff and Geldart 1995), but several linear approximations in terms
of impedance are available (Aki and Richards 1980). Because of the presence of
observation errors, the geophysical data s(t, θ) at a time t are then given by

s(t, θ) =
∫

w(u, θ)c(t − u, θ)du + es(t), (3)

where es(t) is the observation error at time t .
In the following, for simplicity, only one incident angle θ = 0 is considered. The

forward model is in time domain T , and the property of interest is acoustic impedance
i(t). Therefore, the parameter to be predicted is v(t) = log i(t). By discretizing the
variables s(t) and v(t), for example, every 1ms, the ns-vector s and the nv-vector v

are obtained.
The prediction of acoustic impedance from seismic data is then an inverse problem,

commonly known as acoustic inversion. In this work, a linearized approximation of
the Zoeppritz equations based on Aki–Richards formulation valid for vertical weak
contrasts is used (Aki and Richards 1980). If s represents the seismic data and v

represents the logarithm of acoustic impedance, then the inverse problem in Eq. (2)
can be written as
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s = F v + es . (4)

where F is the (ns × nv)-matrix associated with the linear operator including the
convolution and the Aki–Richards linearized approximation and es is the ns-vector
containing a random centered observation error. The matrix F can be written as the
product of three matrices F = WAD, where W is the convolution matrix, A is the
matrix containing Aki–Richards reflection coefficients, and D is a first-order differen-
tial matrix (Buland and Omre 2003; Rimstad and Omre 2013). Therefore, the seismic
inverse problem can be written as

s = WAD v + es . (5)

In the seismic inversion problem [Eq. (5)], generally, ns < nv .

2.1.2 Petrophysical Inversion

Rock and fluid properties affect the velocity of the seismic waves propagating through
a porous rock, and consequently its seismic response. If the variable of interest m(t)
is a set of rock and fluid properties along a vertical profile in the subsurface, then the
elastic response v(t) = g(m(t)) is a function of m(t). Generally, the function g is
referred to as the rock physics model. Examples of rock physics models are Raymer’s
equation, Dvorkin’s cemented sand model, Dvorkin’s soft sand model, Kuster–Toksoz
model, etc. (Mavko et al. 2009). These models allow computing the compressional
and shear velocity (or impedance) of the seismic waves when the porosity, lithology,
and fluid content of the porous rock are known. In the following, the property of
interest is porosity m(t) = φ(t) and the data are acoustic impedance v(t) = i(t). In
general, acoustic impedance is not measured directly, but estimated from seismic data
through seismic inversion (Sect. 2.1.1). By discretizing the variables v(t) and m(t),
the nv-vector v and the nm-vector m are obtained.

The prediction of porosity fromacoustic impedance is an inverse problem, generally
called rock physics inversion or petrophysical inversion. If v represents the acoustic
impedance and m represents the porosity, then

v = Gm + ev, (6)

where G is the matrix associated with the linearized rock physics model and ev is
the nv-vector containing the centered error associated with the data. In general, in the
rock physics model [Eq. (6)], nv = nm .

If a linearization of the forward model (seismic or rock physics) is applicable, the
two inverse problems inEqs. (5) and (6) can be seen as different examples of the general
inverse problem in Eq. (2). The variables v and m are assumed to depend on the latent
categorical variable κ , and the linear operators F and G are invariant with respect to κ .
Graphical representations of the seismic and petrophysical inversionmodels are shown
in Fig. 1a, b, respectively. The next section describes the mathematical formulation of
the solution of this inverse problem in a Bayesian setting.
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Fig. 1 Schematic graphical representation of the geophysical inverse problems under study: a seismic
inversion assuming a convolutional model; b petrophysical inversion assuming a pointwise linear rock
physics model

2.2 Bayesian Gaussian Mixture Inversion

In the following, the focus is on the generic inverse problem in d = Hr + ed [Eq.
(2)], where r is the variable to be assessed, d is the data, and H is the linear operator.

The problem is solved in a probabilistic setting. The probability density function
(pdf) of a continuous random n-vector y is p( y), and the same notation is used for the
probability mass function (pmf) for categorical variables. The objective is to assess
the probability of the model r given the data d. The assessment of p(r|d) is done in
a Bayesian framework

p(r|d) = p(d|r)p(r)
p(d)

= p(d|r)p(r)∫
p(d|r)p(r)d r = const × p(d|r)p(r), (7)

where p(r) is the prior distribution, p(d|r) is the likelihood function, and p(d) is a
normalizing constant to ensure that the posterior distribution p(r|d) is a valid proba-
bility density function.

2.2.1 Likelihood Model

In this work, the focus is on linear operators and additive Gaussian errors, that is Gaus-
sian linear likelihoods. The probability density function of a n-dimensional Gaussian
variable y is denoted as φn( y;μ,�)withmeanμ and covariancematrix�. Therefore,
the likelihood model is

p(d|r) = φnd (d; Hr,�e), (8)

where �e is the covariance matrix of the centered Gaussian error ed . Seismic convo-
lution and linearized rock physics models belong to this category.
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2.2.2 Prior Model

The focus of this work is on Gaussian mixture prior models. A Gaussian mixture
distribution can be written as

p(r) =
∑

κ∈�
nr
κ

p(r|κ)p(κ), (9)

with

p(r|κ) = φnr

(
r;μr |κ ,�r |κ

)
, (10)

whereμr |κ and�r |κ are the conditional mean nr -vector and the conditional covariance
(nr × nr )-matrix , respectively, and the discrete latent nr -vector κ contains the facies
labels κt ∈ �κ = {1, . . . , K } along the discretized vertical profile.

The prior vector μr |κ has means dependent on the facies κ . The prior covariance
(nr × nr )-matrix is decomposed as

�r |κ = �
σ1/2
r |κ �o

r�
σ1/2
r |κ , (11)

where the diagonal (nr × nr ) matrix �σ
r |κ contains the facies-dependent variances

on the diagonal, whereas the spatial correlation (nr × nr ) matrix �o
r has elements

[�o
r ]t,t+� = ρr (�), where ρr (�) is a spatial correlation function. This prior model

defines a discretized mixture Gaussian random field with spatial correlation function
ρr (·) and facies-dependent means and variances.

The model for the facies label κ is assumed to be a stationary first-order Markov
chain

p(κ) = p(κ1)
nr∏
t=2

p(κt |κt−1), (12)

with stationary transition (K × K ) matrix Pκ = Pκt = [p(κt |κt−1)]κt ,κt−1∈�2
κ
and

p(κ1) = ps(κ1) being the stationary distribution of Pκ defined by ps = P
T
κ ps . There-

fore, by combining the definitions above, the stationary prior model for r is

p(r) =
∑

κ∈�
nr
κ

φnr

(
r;μr |κ ,�

σ1/2
r |κ �o

r�
σ1/2
r |κ

)
× ps(κ1)

nr∏
t=2

p(κt |κt−1). (13)

The mixture prior model in Eq. (13) is multimodal with Knr modes.

2.2.3 Posterior Distribution

For a mixture prior model [Eq. (9)], the posterior model is
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p(r|d) = p(d|r)p(r) [p(d)]−1

=
∑

κ∈�
nr
κ

p(d|r)p(r|κ)p(κ) [p(d)]−1

=
∑

κ∈�
nr
κ

p(d|r, κ)p(r|κ)p(κ) [p(d, κ)]−1 p(d, κ) [p(d)]−1

=
∑

κ∈�
nr
κ

p(r|d, κ)p(κ |d), (14)

where the last expression is a mixture of conditional distributions p(r|d, κ) and con-
ditional weights p(κ |d). This result can be extended to general mixture models: If
the prior is a mixture distribution of some basis pdfs, then the posterior distribution
is a mixture distribution of the posterior pdfs. In this work, the focus is on Gaussian
mixture priors [Eq. (13)] and Gaussian linear likelihood functions [Eq. (8)]; hence,
the posterior is also a Gaussian mixture model since the conditional basis pdfs are
Gaussian.

The posterior distribution p(r|d) is then

p(r|d) =
∑

κ∈�
nr
κ

φnr

(
r;μr |d,κ ,�r |d,κ

)
p(κ |d). (15)

with conditional mean and conditional covariance matrix

μr |d,κ = μr |κ + �r |κ HT [H�r |κ HT + �e]−1(d − Hμr |κ), (16)

�r |d,κ = �r |κ − �r |κ HT [H�r |κ HT + �e]−1H�r |κ , (17)

respectively.
The posterior distribution for the facies profile is

p(κ |d) = const × p(d|κ)p(κ), (18)

where the normalizing constant is prohibitive to compute since κ ∈ �
nr
κ , which is very

large. However, a reliable approximation of the posterior distribution parameterized
by an integer k is available

p∗
k (κ |d) = const × p∗

k (d|κ)pk(κ), (19)

with

p∗
k (d|κ) =

nr∏
t=k

[
p∗
k (d|κk

t )
]1/k + c (20)

pk(κ) = p(κk
1)

nr∏
t=k+1

p(κk
t |κk

t−1), (21)
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where κk
t = (κt−k+1, . . . , κt ) for t = k, . . . , nr and c represents the edge correction

term.
The p∗

k (d|κ) term is expressed as a k-order factorial form based on the approximate
projection likelihoods p∗

k (d|κk
t ) for t = k, . . . , nr , plus some fully defined edge

correction terms (Fjeldstad 2015). The interpretation of this projection approximation
is the effect of the facies sequence κk

t on the observation vector d, and the exponent
1/k is caused by each datum dt being used k times. The pk(κ) term contains the
reformulation of the first-order Markov chain prior model p(κ) as a k-order Markov
chain, which can be exactly made. Since the likelihood is on a k-order factorial form
and the prior is a k-order Markov chain, the resulting posterior distribution p∗

k (κ |d)

is a non-stationary k-order Markov chain (Fjeldstad 2015). The initial probability and
the (nr − k+1) transition matrices that fully define p∗

k (κ |d) can be exactly calculated
by the very efficient recursive forward–backward algorithm (Baum et al. 1970). Once
p∗
k (κ |d) is calculated, realizations from the approximate posterior can be extremely

efficiently generated.
Thequality of the approximation p∗

k (κ |d) for p(κ |d) tends to improve for increasing
k, while the computer demand of the recursive algorithm increases as (nr −k+1)Kk+1

with k. Previous studies (Fjeldstad 2015) show that k = 3 usually provides a good
trade-off between approximation quality and computer demand. In order to generate
realizations from the correct posterior distribution p(κ |d), the approximate posterior
p∗
k (κ |d) may be used as proposal distribution in an independent-proposal Markov

chain Monte Carlo Metropolis Hastings (McMC-MH) algorithm. Previous studies
(Fjeldstad 2015) show that reasonable acceptance rates can be obtained. In the current
work, two case studies are presented, one with k = 3 and acceptance rate 0.16, and
the other with k = 3 and acceptance rate 0.05. These cases are typically based on 106

proposals and 105 accepted realizations from the correct posterior distribution p(κ |d),
which then entails 105 realizations from p(r|d).

3 Application

The application of the inversion methodology is demonstrated on two different case
studies. The first dataset is from an onshore field in Texas. The reservoir interval is
characterized by thin tight-sandstone layers filled by gas. In this example, an elastic
inversion of the real seismic trace collocated at the well location is presented. The
results of the inversion are the posterior distributions of elastic properties, P- and
S-impedance, and facies. The predicted properties are compared to the actual sonic
and density logs to validate the results. The second dataset is from an offshore oil
reservoir in the North Sea. The geological environment is a clastic reservoir with a
sequence of hydrocarbon sand, shale, and silt layers. In this example, a rock physics
inversion based on a multilinear rock physics model is presented. The results of the
application are the posterior distributions of petrophysical properties, porosity and
clay volume, and facies. For both datasets, a set of measured geophysical logs and
computed properties, including sonic and petrophysical data, is available at the well
location.
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3.1 Seismic Inversion

The first case study is a deep clastic gas reservoir in Texas. A set of three facies has
been identified in the reservoir, namely sand, tight sand, and shale. In this case, the
proposed methodology is applied to real seismograms collocated at the well location.
The objective of this study is to predict P- and S-impedance and the facies, given a set
of two seismograms (near and far angles). The depth of the well log has been converted
into time, and the inversion has been performed in the time domain.

The vertical profile with the reference lithology facies classification (LFC) is shown
in Fig. 2 together with P- and S-impedance logs, and the set of seismic observations
(signal-to-noise ratio 2.5). The time interval under consideration is approximately
52ms which entails nr = 61. The main reservoir layer has a thickness corresponding
to a time interval of approximately 10ms. The reservoir layer has an average porosity
of 0.18 and a low percentage of gas. Another potential reservoir layer with low clay
content can be identified in the bottom part of the interval of study; however, at
the well location this layer consists of a tight sandstone with low porosity and the
well measurements do not show hydrocarbon presence. The histograms of the well
observations of the elastic properties, P- and S-impedance, are shown in Fig. 3. The
reservoir facies has intermediate properties compared to shale and tight-sand layers.

The prior transitionmatrixPκ for the latent categorical variable (i.e., the lithological
facies) is estimated from the well logs by counting the transitions, where the diagonal
elements of Pκ are related to the expected thickness of each layer (Table 1). The
conditional densities p (rt |κt ) are also estimated from the well logs (Table 1). An
exponential correlation function is estimated from the measured elastic logs (Table 1).

In Fig. 4, the inversion results for the discrete facies are shown: the reference
classification, realizations from the posterior model, the marginal probabilities, and

Fig. 2 Well logs data and computed properties. From left to right: reference facies classification (shale
in black, tight sand in light brown, and sand in brown), P-impedance, S-impedance, and two seismograms
(near and far angles)
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Fig. 3 Histograms of the elastic properties at the well location sorted by facies: P-impedance (top) and
S-impedance (bottom). The solid gray lines represent the smoothed gross histograms

Table 1 Model parameters (logarithm of P- and S-impedance) for the seismic inversion case study

Gaussian mixture Gaussian

Model parameter κ P =
⎛
⎝0.90 0.09 0.01
0.19 0.80 0.01
0 0.05 0.95

⎞
⎠

Model parameter r μr |κ =

⎧⎪⎨
⎪⎩

(9.2151, 8.5226) if shale

(9.2674, 8.5542) if tight sand

(9.2023, 8.5240) if sand

μr = (9.1855, 8.5839)

σr |κ =

⎧⎪⎨
⎪⎩

(0.0444, 0.0831) if shale

(0.0466, 0.0314) if tight sand

(0.0135, 0.0460) if sand

σr = (0.0935, 0.1336)

Corr(i p, is ) = 0.65 Corr(i p, is ) = 0.65

ρr (�) = exp

{
−

(
�
3

)1.3}
ρr (�) = exp

{
−

(
�
3

)1.3}

Model parameter d �d|r =
(
0.012 × I 0

0 0.012 × I

)
�d|r =

(
0.012 × I 0

0 0.012 × I

)

the marginal maximum a posteriori (MMAP) predictor for the posterior model. The
main reservoir layer is reliably identified by the inversion results, although some
misclassifications occur in the tight-sandstone layer. Note that the set of realizations
reflects the uncertainty of the prediction.
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Fig. 4 Inversion results for the lithology facies. From left to right: reference facies classification (shale in
black, tight sand in light brown, and sand in brown), subset of conditional realizations,marginal probabilities,
and MMAP predictor for the posterior model

In Fig. 5, the inversion results for the elastic properties are shown. From left to right,
the plots show: the actual P-impedance log (solid black line) with a set of conditional
realizations (gray lines); the MMAP predictor for P-impedance (dashed black line)
with the 80% prediction interval and actual P-impedance log (solid black line); the
actual S-impedance log (solid black line) with a set of conditional realizations (gray
lines); and the MMAP predictor for S-impedance (dashed black line) with the 80%
prediction interval and actual S-impedance log (solid black line). The bottom plots
show themarginal smoothed histograms of P- and S-impedance. Overall, the proposed
approach reliably predicts the elastic properties and captures the variability in the logs.
The conditional realizations do reproduce the abrupt changes in the variables due to the
multimodal prior pdf. The marginal densities appear highly skewed and multimodal.
The predictions closely reproduce the variables with realistic prediction intervals. The
results are summarized in Table 2, and the coverage ratios are close to 0.90. The
uncertainty at the borders of the interval is probably due to the limited bandwidth and
coverage of seismic data.

The results of the proposed inversion methodology are compared to the traditional
Bayesian Gaussian approach defined in Buland and Omre (2003) (Fig. 6). The plots
in Fig. 6 show the conditional realizations, the marginal smoothed histograms, and
the posterior distributions (MMAP predictions and 80% prediction intervals) of P-
and S-impedance. The layout of the plots for the Gaussian case (Fig. 6) is similar to
the Gaussian mixture case (Fig. 5). In the Gaussian case, the conditional realizations
are smoothed toward the global mean values of P- and S-impedance, resulting in
unimodal marginal histograms. Furthermore, the Gaussian case shows predictions
that are generally regressed toward the global mean values. The comparison of the
root-mean-square error (RMSE) of the predictions and coverage ratio of the 0.80
prediction interval is summarized in Table 2. The proposed method provides superior
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Fig. 5 Inversion results for the continuous properties (P- and S-impedance) for the Gaussian mixture prior
pdf. Refer to the text for further details

Table 2 Results for the seismic inversion case study

Gaussian mixture Gaussian

RMSE prediction P-impedance: 397.58 P-impedance: 454.42

S-impedance: 270.20 S-impedance: 370.92

Coverage ratio—0.80 prediction interval P-impedance: 0.92 P-impedance: 0.74

S-impedance: 0.87 S-impedance: 0.72

Total coverage: 0.89 Total coverage 0.73

predictions and prediction intervals compared to the traditional Gaussian approach
with 30% reduction in the RMSE.

The computational demand for the proposed approach is larger than for the tradi-
tional one, since the former is based on McMC simulations, whereas the latter has a
closed-form analytical solution. However, the computational demand is reasonable on
a standard laptop computer for the presented case study.

3.2 Petrophysical Inversion

The second case study is a clastic oil reservoir in the North Sea. The interval under
consideration is approximately 65m thick, which entails nr = 424. A set of three
facies is identified in the reservoir, namely sand, silt, and shale, where silt is the facies

123



Math Geosci (2017) 49:493–515 507

Fig. 6 Inversion results for the continuous properties (P- and S-impedance) for the Gaussian prior pdf.
Refer to the text for further details

with intermediate petrophysical properties. The objective of this case study is to jointly
assess the facies, porosity, and clay volume given P- and S-impedance. In Fig. 7, the
reference lithological facies classification is shown together with the porosity and
clay volume processed logs and the measured P-impedance and S-impedance logs.
The main reservoir layer is located at approximately 2065m, the average porosity is
0.26, and it is saturated with oil with a small amount of irreducible water saturation of
approximately 0.10. The reservoir thickness is approximately 20m, and the interval
is embedded in two shaley layers with effective porosity close to 0. The lower part of
the interval of interest consists of a sequence of thin layers of sand, silt, and shale. The
histograms of the petrophysical properties of interest (i.e., porosity and clay volume)
are shown in Fig. 8. Both porosity and clay volume distributions show a multimodal
behavior; therefore, Gaussian prior models are not suitable to describe the property
distributions.

The transition matrix and the Gaussian densities are estimated from well logs
(Table 3). A modified logit transformation is applied to transform porosity and clay
volume logs, bounded between 0 and 1, to variables with support inR. An exponential
correlation function is estimated to represent the spatial continuity of porosity and
clay volume (Table 3).

In order to build the likelihood function, a rock physics model is first estimated
at the well location. An empirical linear rock physics model is chosen for this study
and fitted to the well logs. The crossplots showing the linear models are given in
Fig. 9. More complex models, such as stiff sand and cemented sand models (Mavko
et al. 2009), could be used, as long as the model can be reliably linearized. In this
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Fig. 7 Well logs data and computed properties. From left to right: reference facies classification (shale in
black, silt in light brown, and sand in dark brown), porosity, clay volume, P-impedance, and S-impedance

Fig. 8 Histograms of the petrophysical properties at the well location sorted by facies: porosity (top) and
clay volume (bottom). The solid gray lines represent the smoothed gross histograms

application, a stationary likelihood model G independent of the facies κ is chosen.
The proposed inversion methodology is applied to the set of elastic well logs, P- and
S-impedance, to assess the posterior distribution of porosity and clay volume.

In Fig. 10, the inversion results for the discrete facies are shown: the reference
facies classification, a subset of conditional realizations from the posterior model, the
marginal probabilities of the facies, and the MMAP predictor for the posterior model.
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Table 3 Model parameters (porosity and clay volume) for the petrophysical inversion case study (after a
modified logit-transformation)

Gaussian mixture Gaussian

Model parameter κ P =
⎛
⎝0.90 0.5 0.05
0.05 0.90 0.05
0.05 0.05 0.90

⎞
⎠

Model parameter r μr |κ =

⎧⎪⎨
⎪⎩

(−1.0721, 0.9353) if shale

(−0.7384,−0.5054) if silt

(−0.2149,−1.0775) if sand

μr = (−0.6509,−0.1468)

σr |κ =

⎧⎪⎨
⎪⎩

(0.2718, 0.8232) if shale

(0.4660, 0.7036) if silt

(0.2891, 0.5526) if sand

σr = (0.4502, 1.0531)

Corr(porosity, clay) = −0.8 Corr(porosity, clay) = −0.8

ρr (�) = exp

{
−

(
�
3

)1.2}
ρr (�) = exp

{
−

(
�
3

)1.2}

Model parameter d �d|r =
(
0.12 × I 0

0 0.06 × I

)
�d|r =

(
0.12 × I 0

0 0.06 × I

)

Fig. 9 Rock physics crossplots: P-impedance versus porosity (left) and S-impedance versus porosity versus
porosity (right). Top plots are color-coded by clay volume; bottom plots are color-coded by facies

The facies misclassifications are probably due to the noise and lower resolution of
sonic logs compared to the petrophysical property logs. The slight under-prediction of
the proportion of silt is expected since it is the facies with intermediate petrophysical
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Fig. 10 Inversion results for the lithology facies. From left to right: reference facies classification (shale in
black, silt in light brown, and sand in dark brown), subset of conditional realizations, marginal probabilities,
and MMAP predictor for the posterior model

properties and it overlaps with the other two facies in the prior histograms (Fig. 8).
The set of realizations reflects the prediction uncertainty.

In Fig. 11, the assessment of the posterior distribution of porosity and clay volume is
shown. From left to right, the plots show: the actual porosity log (solid black line) with
a set of conditional realizations (gray lines); theMMAP predictor for porosity (dashed
black line) with the 80% prediction interval and actual porosity log (solid black line);
the actual clay volume log (solid black line) with a set of conditional realizations (gray
lines); and the MMAP predictor for clay volume (dashed black line) with the 80%
prediction interval and actual clay volume log (solid black line). The bottom plots
show the marginal smoothed histograms of porosity and clay volume. In general, the
results are satisfactory and the MMAP predictors provide an accurate prediction of
the properties of interest. The conditional realizations show abrupt changes, causing
multimodal marginal densities. In thin-layer sequences, the facies prediction may be
slightly time-shifted, which causes large prediction errors. Therefore, the prediction
intervals are relatively wide.

Similarly to the previous case, the inversion results are compared to a traditional
Gaussian approach (Fig. 12). The plots in Fig. 12 show the conditional realizations,
themarginal smoothed histograms, and the posterior distributions (MMAPpredictions
and 80% prediction intervals) of porosity and clay volume. The layout of the plots
for the Gaussian case (Fig. 12) is similar to the Gaussian mixture case (Fig. 11). In
the Gaussian case, a considerable regression toward the global mean values can be
observed, resulting in the loss of the multimodality of the posterior distribution. The
comparison of the RMSE of the predictions and coverage ratio of the 0.80 prediction
interval is summarized in Table 4, and it shows an improvement of the RMSE and
coverage ratios on the Gaussian mixture case for both porosity and clay volume. The
porosity and clay volume predictions in the main reservoir (2065–2085m) obtained
through the Gaussian mixture inversion (Fig. 11) are closer to the actual observations
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Fig. 11 Inversion results for the continuous properties (porosity and clay volume) for the Gaussian mixture
prior pdf. Refer to the text for further details

than the results of the Gaussian case (Fig. 12). Furthermore, the proposed method
provides an additional result, that is the facies classification, which is not available in
the Gaussian case. The computational demand of the Gaussian mixture case is still
limited.

4 Discussion

The main advantage of the proposed method is the use of Gaussian mixture distribu-
tions,which allows jointly predicting categorical and continuous properties. Compared
to previous works based onGaussianmixture models, aMarkovmodel for the categor-
ical variable is introduced to model the spatial continuity of the categorical property.

Compared to the approach described in Buland and Omre (2003) that does not
account for an explicit dependence on the facies, the proposed inversion results are
overall more accurate. Indeed, the Gaussian assumption (Buland and Omre 2003)
provides MMAP predictions that are regressed toward the global mean values and
underrepresents the distinct mode changes. The coverage ratios are close to the correct
prediction interval specifications for the proposed methodology than for the Gaussian
approach. Compared to the petrophysical inversion approach described in Grana and
Della Rossa (2010), the use of a Markov model for the facies classification provides
more realistic spatial transitions of the categorical property. Indeed, in the prior transi-
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Fig. 12 Inversion results for the continuous properties (porosity and clay volume) for the Gaussian prior
pdf. Refer to the text for further details

tion matrix, one can enforce geological constraints, such as high likelihood to observe
shale on top of sand and low likelihood to observe silt on top of sand, or zero probabil-
ity of observing water on top of oil and oil on top of gas in litho-fluid studies (Larsen
et al. 2006).

The proposed method has higher computational demand than the traditional Gaus-
sian approach, but still very acceptable and easy to parallelize. The extension of the
Markov chain approach for facies prediction to two- and three-dimensionalmodels has
been previously introduced in Ulvmoen and Omre (2010), Rimstad and Omre (2010),
and Rimstad et al. (2012). For the proposedGaussianmixture case, the extension in the
spatial domain appears to be achievable with an acceptable computational demand.
Furthermore, the algorithm can be parallelized to improve the computational effi-
ciency. Different from other stochastic optimization methods, in the proposed McMC
approach, realizations are not proposed by sampling from the prior distribution but
are sampled conditioned by seismic data. In stochastic optimization approaches such
as the method proposed by Connolly and Hughes (2016) or the approximate Bayesian
computation (ABC) methods as in Sadegh and Vrugt (2013), the likelihood function
is approximated by statistical sampling. Simulated outcomes from such optimization
methods are often dependent on the prior model and hence tend to underestimate the
posterior uncertainty. The proposedmethod explicitly evaluates the likelihood function
and allows for an accurate assessment of the uncertainty.
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Table 4 Results for the petrophysical inversion case study

Gaussian mixture Gaussian

RMSE prediction Porosity: 0.04 Porosity: 0.05

Clay volume: 0.11 Clay volume: 0.13

Coverage ratio—0.80 prediction interval Porosity: 0.89 Porosity: 0.79

Clay volume: 0.89 Clay volume: 0.78

Total coverage: 0.89 Total coverage 0.79

In the work, the same rock physics model is assumed for all the facies; however,
in many practical applications, the rock physics model should be facies dependent
(Grana and Della Rossa 2010). The assumption that the rock physics model is linear
or almost linear is generally verified in many applications, with the exception of the
fluid effect in homogeneous saturation mixtures and the porosity effect in unconsoli-
dated sandstones (Dvorkin et al. 2014), but the linear relations between petrophysical
properties and elastic properties are not necessarily the same for each facies. The pro-
posed approach can be extended to account for facies-dependent rock physics models.
Nonlinearmodels can be used in the likelihood function in theMcMCapproach, but the
computational cost of the likelihood evaluation increases compared to the linearized
case.

5 Conclusions

In this paper, the formulation of the solution of the Bayesian inverse problem is pre-
sented under the assumptions of a Gaussian linear likelihood function and a mixture
Gaussian Markov random field for the prior model. The proposed inversion approach
allows for the joint assessment of the posterior distribution of the continuous model
variables and the latent categorical variable. This approach allows sampling from the
posterior distribution with relatively limited computational costs. The method was
successfully applied to two case studies of seismic and rock physics inversion. Com-
pared to the inversion under Gaussian assumptions for the prior model, the use of
Gaussian mixture models improves the description of the multimodal behavior of the
model parameters.

Acknowledgements Authors acknowledge the University of Wyoming and the URE-initiative at NTNU
for the support.
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