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Abstract Joint geostatistical simulation techniques are used to quantify uncertainty
for spatially correlated attributes, including mineral deposits, petroleum reservoirs,
hydrogeological horizons, environmental contaminants. Existing joint simulation
methods consider only second-order spatial statistics and Gaussian processes. Moti-
vated by the presence of relatively large datasets for multiple correlated variables that
typically are available from mineral deposits and the effects of complex spatial con-
nectivity between grades on the subsequent use of simulated realizations, this paper
presents a new approach for the joint high-order simulation of spatially correlated ran-
dom fields. First, a vector random function is orthogonalized with a new decorrelation
algorithm into independent factors using the so-termed diagonal domination condition
of high-order cumulants. Each of the factors is then simulated independently using a
high-order univariate simulation method on the basis of high-order spatial cumulants
and Legendre polynomials. Finally, attributes of interest are reconstructed through the
back-transformation of the simulated factors. In contrast to state-of-the-art methods,
the decorrelation step of the proposed approach not only considers the covariance
matrix, but also high-order statistics to obtain independent non-Gaussian factors. The
intricacies of the application of the proposed method are shown with a dataset from a
multi-element iron ore deposit. The application shows the reproduction of high-order
spatial statistics of available data by the jointly simulated attributes.
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1 Introduction

Onemajor sources of uncertainty that affectsmine planning and production scheduling
optimization is the geological characteristics of the mineral deposit, which comprises
grades, metals, material types, and other rock properties of interest. Typically, these
attributes are interpolated from a relatively limited number of data (Dimitrakopoulos
2011). To describe orebodies, spatially correlated random fields are commonly used
and the geological uncertainty is quantified and assessed via a set of simulations. Over
the past twodecades, new spatial stochastic simulation techniques have beendeveloped
for simulating univariate random fields. However, for deposits with multiple elements,
existing methods for joint modeling of non-Gaussian spatially correlated multivariate
random fields are limited. To address spatial complexity, including the non-linearity of
geological features and connectivity of extreme values, there is a need to consider new,
efficient high-order joint simulation methods, similar to existing methods employed
to simulate univariate spatial attributes.

There are many existing methods used for the joint simulation of multiple spatially
correlated attributes including second-order Gaussian simulations based on sequential
co-simulation (Boogaart et al. 2014; Mueller et al. 2014; Soares 2001; Verly 1993),
and decorrelation approaches, such as principal component analysis (David 1988;
Wackernagel 1998), the multivariate normal score transform (Bandarian et al. 2010;
Boogaart et al. 2016; Leuangthong and Deutsch 2003), projection pursuit multivari-
ate transform (Barnett et al. 2014), U-WEDGE transformation (Mueller and Ferreira
2012) and minimum–maximum autocorrelation factors (Boucher and Dimitrakopou-
los 2008, 2012; Dimitrakopoulos and Fonseca 2003; Mueller et al. 2014; Rondon
2012; Switzer and Green 1984), among others (Chilès and Delfiner 2012; Journel and
Huijbregts 1978; Maleki and Emery 2015). Most of the co-simulation techniques that
are not based on decorrelation are both cumbersome to implement and inefficient for
deposits with more than two attributes of interest, thus providing a reason to search
for simplified models of co-regionalization (Almeida and Journel 1994). In the decor-
relation framework, variables are transformed into uncorrelated (orthogonal) factors
such that each factor can be independently simulated and then back-transformed into
the simulated original variables.

Principal component analysis (PCA) and the multivariate normal score transform
mentioned above decorrelate variables only at lag-zero; whereas minimum–maximum
autocorrelation factors (MAF) and the U-WEDGE transformation provide uncorre-
lated factors at all lags. The decorrelation techniques above assumeGaussianity and/or
take into account only second-order spatial statistics, thus carry the same limitations
as all second-order joint simulation methods. The benefit of using complex high-order
or multiple-point univariate simulation methods for the independent factors would
be lost in the back-transformation step. This paper therefore aims to address these
related limitations by developing a high-order joint simulation framework, built upon
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past developments in high-order simulation methods (Dimitrakopoulos et al. 2010;
Mustapha and Dimitrakopoulos 2010).

Approaches for the decorrelation of non-Gaussian variables may be based on prin-
cipal component cumulant analysis (Morton 2010; Morton and Lim 2010; Savas and
Lim 2009) and independent component analysis or ICA (Comon 1994). The first
method relies on finding principal cumulant components that account for most of the
variation in all high-order cumulants, just as PCA obtains maximum variance com-
ponents. In ICA approaches, transformation into independent factors is performed by
maximization of different independence measures (Hyvärinen 1999), such as like-
lihood and network entropy, mutual information and Kullback–Leibler divergence,
non-linear cross-correlations, non-linear PCA criteria, high-order cumulant tensors,
weighted covariance matrices, negative entropy, and general contrast functions.

In this paper, a newmeasure of independence for ICA is first proposed. Themeasure
is based on the diagonal domination condition of high-order cumulants of factors: the
absolute values of diagonal elements that are substantially greater than non-diagonal
ones. This is similar to minimum–maximum autocorrelation framework (Desbarats
and Dimitrakopoulos 2000; Switzer and Green 1984), where non-diagonal terms of
covariance-variance matrix are minimized and diagonal terms are maximized. It is
not hard to see that the diagonal domination condition will maximize independence
between factors because, for independent variables, the high-order cumulants are
diagonal. However, unlike Gaussian variables, there can be no transformation into
completely independent factors (Morton and Lim 2010). From this perspective, using
the diagonal domination condition seems natural, because, in contrast to any strong
diagonalization condition, it is possible to obtain maximally diagonal cumulants for
all orders simultaneously. The advantage of the proposed technique is that it uses the
high-order statistics of a multivariate dataset directly.

After performing a high-order orthogonalization, the resultant decorrelated factors
can be simulated using any method which takes into account high-order spatial rela-
tions. Specifically, multiple-point simulation (MPS) algorithms (Journel 2005, 2007;
Strebelle and Cavelius 2013; Zhang 2015), filtersim (Zhang et al. 2006), and sim-
pat (Arpat and Caers 2007), cdfsim (Mustapha et al. 2013), ccsim (Tahmasebi et al.
2012), direct sampling (Mariethoz et al. 2010; Mariethoz and Renard 2010; Rezaee
et al. 2013), and others (Chugunova and Hu 2008; De Vries et al. 2008; Honarkhah
2011; Li et al. 2013; Lochbühler et al. 2013; Straubhaar et al. 2011); multi-point
approaches based on Markov random fields (Toftaker and Tjelmeland 2013); and
finally, multi-scale MPS simulations based on discrete wavelet decomposition (Chat-
terjee et al. 2012). MPS techniques use pattern-based algorithms and depend on a
so-termed training image (TI) and its spatial statistics rather than hard data. As a
result, simulated realizations may not reproduce the spatial statistics of the data, and
thus are called TI-driven methods. These issues become apparent in mining appli-
cations where there is a reasonable amount of data, unlike other major applications
of the aforementioned methods used in the characterization of petroleum reservoirs
(Goodfellow et al. 2012; Osterholt and Dimitrakopoulos 2007).

To address this issue, the high-order geostatistical simulation framework based
on high-order spatial statistics is used (Dimitrakopoulos et al. 2010; Mustapha and
Dimitrakopoulos 2010; Mustapha et al. 2011). The high-order simulation framework
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provides an alternative data-driven algorithm, which infers high-order spatial relation-
ships from data rather while a TI complements the simulation process and does not
require anydistribution-related assumptions. The algorithmestimates local conditional
density functions based on a non-parametric Legendre polynomial series approxima-
tion (Lebedev 1965) and the high-order spatial statistics of available data, which may
be complemented by relations derived from a training image.

In the following sections, first the basic definitions for high-order spatial statistics
are briefly reviewed and are followed by the proposed joint high-order simulation
approach using simultaneous decorrelation of high-order cumulants. Subsequently, a
multi-element dataset from an iron ore deposit is used to test and assess the proposed
joint high-order simulation approach. Conclusions follow.

2 The Proposed Method

2.1 High-Order Spatial Statistics: A Recall

Let (�,�, P) be a probability space and Z(x) be a real stationary and ergodic random
field inRn defined at xi ∈ D ⊆ R

n(n = 1, 2, 3) for i = 1 . . . N ,where N is the number
of points in a discrete grid D ⊆ R

n . Assuming Z(x) is a “zero-mean” E[Z(x)] ≡ 0
random variable, then the cumulants of Z(x) are defined by the MacLaurin expansion
of the cumulant generating function (Rosenblatt 1985)

K (ω) = ln
(
E

[
eωZ

])
=

∞∑
r=1

Cum[Z(x), Z(x), . . . , Z(x)︸ ︷︷ ︸
r

]ω
r

r !

Cum[Z(x), Z(x), , Z(x)︸ ︷︷ ︸
r

] = dr

dωr

[
ln

(
E

[
eωZ

])]
, (1)

where Cum[Z(x), Z(x), . . . , Z(x)︸ ︷︷ ︸
r

] is the rth-order cumulant of the random variable

Z(x). Similarly, the spatial cumulant of the random field Z(x) of order r is

czr (h1, . . . , hr−1) = Cum
[
Z(x0), Z(x1), . . . , Z(xr−1)

]
. (2)

According to Eq. (1), the high-order spatial cumulants are expressed as functions of
moments. For example, the cumulant of order one is a mean of random field Z(x)

cz1 = E [Z(x)] = 0. (3)

The second-order cumulant of the random field Z(x) is the covariance

cz2(h) = E [Z(x0)Z(x1)] − E [Z(x0)] E [Z(x1)] = E [Z(x0)Z(x1)] . (4)
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Its third-order cumulant is

cz3(h1, h2) = E [Z(x0)Z(x1)Z(x2)] − E [Z(x0)] E [Z(x1)Z(x2)]

− E [Z(x1)] E [Z(x0)Z(x2)] − E [Z(x2)] E [Z(x0)Z(x1)]

− E [Z(x0)] E [Z(x1)] E [Z(x2)] = E [Z(x0)Z(x1)Z(x2)] , (5)

and so on. The spatial cumulants are experimentally obtained by scanning the available
data with a given template T e1,e2,...er−1

r (h1, h2, . . . hr−1), which represents a particular
geometry of points in space

T e1,e2,...er−1
r (h1, h2, . . . hr−1)

= {(x, x + hi ei , i = 1 . . . r − 1)|{x, x + hi ei , i = 1 . . . r − 1} ⊂ available data,

(6)

where ei and hi are unit directional vectors and distances from x0 to xi , respectively.
For example, in Eq. (5), the third-order cumulant with a given template T e1,e2

2 (h1, h2)
is calculated as

cz3(h1, h2) = 1

Nh1,h2

Nh1,h2∑
k=1

Z(xk)Z(xk + h1e1)Z(xk + h2e2),

{xk, xk + hi ei , i = 1 . . . r − 1} ⊂ T e1,e2
2 (h1, h2)}, (7)

where Nh1,h2 is the number of elements of T e1,e2
2 (h1, h2).

For further definitions and details pertaining to the calculation of high-order cumu-
lants, the reader is referred to Dimitrakopoulos et al. (2010).

Let us summarize pertinent properties of cumulants:

1. Cumulants are multi-linear

Cum(Aαi Z(xi ), Aβ j Z(x j ), Aγ k Z(xk))= Aαi Aβ j Aγ kCum(Z(xi ), Z(x j ), Z(xk)),
(8)

where A is an arbitrary matrix.
2. Cumulants of independent variables are diagonal.
3. Cumulants of Gaussian variables with an order greater than two are equal to zero.

2.2 Joint High-Order Simulation

2.2.1 Algorithm Overview

The joint simulation algorithm is based on transformation of correlated variables into
a factor space, where factors are simulated independently using high-order simulation
(Mustapha and Dimitrakopoulos 2010) and are subsequently back-transformed into
the original data space. The joint simulation algorithm is as follows.
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Algorithm A.1

1. Find the transformation matrix A of initial correlated data Z(x) = {Z1(x), Z2(x),
. . . , Zk(x)} into orthogonal factors Y(x) = {Y1(x),Y2(x), . . . ,Yk(x)} using the
herein proposed decorrelation technique.

2. Simulate each of the factors independently using the high-order univariate simu-
lation algorithm.

3. Back-transform simulated factors Y(x) into data space using the matrix A−1.

The decorrelation technique and high-order univariate simulation are explained next.

2.2.2 Decorrelation with Diagonal Dominant Cumulants

Let Z(x) = {Z1(x), Z2(x), . . . , ZK (x)} be a stationary and ergodic non-Gaussian
vector random function (RF) in R

n , which represents K attributes of a natural phe-
nomenon. Without loss of generality, Z(x) is zero-mean and high-order cumulants
Cum(Z1(x), Z2(x), . . . , Zr (x)) of order r . Furthermore, all K RFs are measured at
each sample location. Consider the linear pointwise transformation ofZ(x) into factors
Y(x) = {Y1(x),Y2(x), . . . ,YK (x)}

Y(x) = AZ(x). (9)

All factors are assumed to be independent. Using the cumulant properties described
above, only diagonal elements of high-order joint-cumulants are not equal to zero

Cum(Yk1(x),Yk2(x), Ykr (x)) �= 0, if only k1 = k2 = · · · = kr . (10)

In general, the joint-cumulants of different orders cannot be diagonalized simultane-
ously. Therefore, in this work, it is not assumed that joint-cumulants of factors Y(x)
are diagonal; however, they have a strong diagonal domination. For a second-order
tensor (i.e., a matrix), a diagonal domination condition is

|Cum(Yi (x),Yi (x))| ≥
∑
j �=i

|Cum(Yi (x),Y j (x))|∀i. (11)

For high-order tensors, the diagonal domination condition is the domination of the
diagonal elements over the sum of non-diagonals

|Cum(Yk(x),Yk(x), . . . Yk(x))|
≥

∑
k1

∑
k2

· · ·
∑
kr

|Cum(Yk1(x),Yk2(x), . . . Ykr (x))|∀k, (12)

where the sums are taken for all indices k1, k2, . . . , kr except for the case where all
indexes are equal to k.

Although factors Y(x) with diagonal dominant cumulants are not totally indepen-
dent, they are likely to have low level of dependence to facilitate their application as
it is shown in a subsequent section. As a result, the factors Y(x) can be simulated
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independently and the back-transformed variables Z(x) are expected to have the same
high-order spatial statistics as the drill-hole data.

2.2.3 Objective Function

To obtain the transformation matrix A using the diagonal dominant condition (12),
the following objective function is minimized

F(A) =
∑
d

αd Fd(A), (13)

where d is the order of the cumulant, αd are constants, and Fd(A) are defined by

Fd(A) =
∑
k0

∑
k1

∑
k2

· · · ∑
kd−1

∥∥Cum(Yk0(x),Yk1(x), . . . ,Ykd−1(x))
∥∥
2

∥∥Cum(Yk0(x),Yk0(x), . . . ,Yk0(x))
∥∥
2

=
∑
k0

1 +

∑
non−diagonal

∥∥Cum(Yk0(x),Yk1(x), . . . ,Ykd−1(x))
∥∥
2

∥∥Cum(Yk0(x),Yk0(x), . . . ,Yk0(x))
∥∥
2

, (14)

where factors Yk0 are functions of the matrix A, because Y(x) = AZ(x). Coefficients
αd are decreasing for high-order cumulants to prioritize the decorrelation for low-order
statistics. In thiswork, the sameweightsαd = O

( 1
d!

)
are used, as suggested byMorton

and Lim (2010) for the principal cumulant component analysis technique. It is not hard
to see that the second term in Eq. (13) is the inverse diagonal domination condition
(11), andminimizing the objective function (14) will result inmaximizing the diagonal
domination of the joint cumulant. Tominimize the objective function (13), the limited-
memory Broyden–Fletcher–Goldfarb–Shanno optimization algorithm is used (Perry
1977). The gradients for objective function are calculated analytically from Eq. (14).

2.2.4 Univariate High-Order Simulation

After transforming the initial correlated data,Z(x) = {Z1(x), Z2(x), . . . , Z p(x)}, into
orthogonal factors,Y(x) = {Y1(x),Y2(x), . . . ,Yp(x)}, each factor Yp(x) is simulated
independently. Let Y (xi ) or Yi be a random field indexed in R

n , xi ∈ � ⊆ R
n(n =

1, 2, 3), where N is the number of points in a discrete grid � ⊆ R
n . The focus

of high-order simulation techniques is to simulate the realization of random field
Y (xi ) for all nodes of a discrete grid � with given set of conditioning data dM =
{Y (xα), α = 1 . . . M}. The high-order simulation method proposed by Mustapha
and Dimitrakopoulos (2010) uses Legendre polynomials and coefficients in terms of
cumulants to approximate the conditional probability density function for each node
on the simulation grid. The algorithm runs sequentially for every node. The simulation
algorithm is outlined as follows.

Algorithm A.2

1. Define random path for visiting all unsampled nodes on the simulation grid.
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2. For each node x0 in the path:
(a) Find the closest sampled grid nodes x1, x2, . . . xn .
(b) Define the template shape T e1,e2,...en

n+1 (h1, h2, . . . , hn), according to Eq. (6), for
unsampled location x0 using its neighbors.

(c) Search for all replicates of the template by scanning the initial data with the
template T e1,e2,...en

n+1 (h1, h2, . . . , hn). Considering a spatial location xm as a
reference, the set of replicates obtained is defined as

{Y (xm),Y (xm + h1), . . . Y (xm + hn),m = 1 . . . M},
{xm, xm + h1, xm + hn} ∈ T e1,e2,...en

n+1 (h1, h2, . . . , hn),
(15)

where M is the number of replicates and xm is the central node of the replicate.
(d) Calculate the coefficients of the Legendre polynomial approximation

Li0,i1,...in = 1

M

M∑
m=0

Pi0(Y (xm)), Pi1(Y (xm + h1)) . . . Pin (Y (xm + hn)),

(16)

Pin (y) = 1

2in !

√
2

2in + 1

(
dn

dyn

)
[(y − 1)in ], (17)

where Pin is normalized Legendre polynomial of order in
(e) Build the conditional probability density function fY0(y0|y1, y2, . . . , yn) for

the random variable Y0 at the unsampled location x0 given the conditioning
data y1, . . . yn at the corresponding neighbors x1, x2, ...xn

fY0 (y0|y1, y2, . . . , yn) = C
r∑

i0=0

r∑
i1=0

. . .

r∑
iM=0

Li0,i1,...iM Pi0 (y0)Pi1(y1) . . . Pin (yn),

(18)

whereC is normalization coefficient defined asC = 1/
∫
fY0

(y0|y1, y2, . . . , yn)
dy0, and is the maximum order of approximation.

(f) Draw a uniform random value in [0, 1] to generate a simulated value from the
conditional distribution fY0(y0|y1, y2, . . . , yn) a simulated value Y0.

(g) Add to the set of sample hard data and the previously simulated values.
3. Repeat Steps 3a–g for the next points in the random path defined in Step 2.

Finally, factors are back-transformed into data space using (9).

3 Application at an Iron Ore Dataset

3.1 Study Area and Data

This section explores the application of the proposed diagonal domination technique
for the joint simulation on the iron ore dataset. The domain considered in this study
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Fig. 1 Iron ore dataset: a drill-hole data of iron content; b training image of iron content; c drill-hole data
of silica content, d training image of silica content. Colors are shown in log-scale

represents a portion of the deposit, and is 2-km long by 1.6-km wide. A horizon-
tal section with both exploration drill-hole and blast-hole data serves as the dataset
(Fig. 1a, c) and TI (Fig. 1b, d) for the case study, respectively. The study area includes
293 drill-holes on a near-regular 50-m grid. Each composite (sample) contains five
ore-quality attributes: iron (Fe), silica (SiO2), alumina (Al2O3), phosphorus (P) and
loss of ignition (LOI). The deposit in the area of study is discretized into 93 × 145
grid, each grid block is 10 by 10 m long.

Figure 2 shows the distributions for the iron and silica content, respectively. The
cross-plot of iron and alumina content for the drill-hole data and TI are shown in
Fig. 3a, b. It is apparent that the distributions strongly deviate from the Gaussian
distribution, given that they are skewed with long tails. Moreover, the elements are
highly correlated; this correlation is traced not only in second-order statistics, but also
in high-order statistics. Evidently, standard Gaussian techniques and decorrelation
approaches that use second-order statistics, such as PCA or MAF, fail to transform
non-Gaussian correlated variables into independent factors due to the presence of
high-order correlations.

Due to the power law distributions of the grades, the log-scale cross-plots better
visualize important features of distributions (Fig. 3c, d), and therefore all subsequent
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Fig. 2 Histograms of a iron content in drill-hole data; b iron content in training image; c silica content in
drill-hole data; d silica content in training image

results are presented in log-scale. The distributions and cross-plots for the rest of the
elements are presented in the Appendix.

3.1.1 High-Order Cumulant Visualization

To visualize the high-order cumulants, an unfolding technique is used (Kiers 2000),
whereby high-order cumulants are unfolded into the matrixes, which tend to have
minimum difference between the number of columns and rows such that

nrow = M�r/2�

ncolumn = mr/nrow, (19)

where nrow and ncolumn are the number of rows and columns of the resulting matrix,
respectively, r is the order of cumulant, M is the number of variables, and �r/2� is the
largest previous integer of r/2. For example, the third-order cumulant with dimensions
3× 3× 3 and the fourth-order cumulant with dimensions 3× 3× 3× 3 are unfolded
into matrices of sizes 3 × 9 and 9 × 9, respectively.

An unfolded fourth-order cumulant, Ci, j,k,l , with dimensions 3 × 3 × 3 × 3 is
shown in Fig. 4. Its matrix representation consists of 9×9 elements, depicted by cells.
Gray cells represent diagonal elements: C1,1,1,1, C2,2,2,2, and C3333 of the fourth-
order cumulant Ci, j,k,l . Each slice of cumulant Ci, j,k,l with fixed indexes i and k is
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Fig. 3 Scatter plots of iron and alumina content: a drill-hole data; b training image or blast-holes; c
drill-hole data in log-scale; d training image or blast-holes in log-scale

Fig. 4 Unfolded 3 × 3 × 3 × 3
cumulant. Each cell is an
element of the cumulant and
solid, dashed, and dot-dashed
squares are slices. Grey cells are
diagonal elements of the
cumulant tensor
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the matrix 3×3 and these slices compose the resulting 9×9 matrix. For example, the
slice i = 1 and k = 1 is shown by solid square in Fig. 4 and the slice with i = 3 and
k = 1 is shown by dot-dashed square. The correspondence between the indexes of a
tensor i, j, k, l and its matrix representation indexes i j, kl is given by

i j = 3i + j

kl = 3k + l. (20)

3.2 Decorrelation Results

For the purpose of present study, only the high-order cumulants up to order five
are calculated, as this seems sufficient. To better understand the correlation between
variables, each cumulant is shown in absolute values and is scaled so that the diagonal
elements are equal to one. In the other words, values close to zero represent low
correlation and values close to one represent a strong correlation. Initial variables are
ordered in the followingway: Z1 is the iron content (Fe), Z2 is the silica content (SiO2),
Z3 is the alumina content (A12O3), Z4 is the phosphorus content (P), and Z5 is the loss
on ignition (LOI). All cumulants are represented in matrix form using the unfolding
technique described in a previous section. Thus, the first element of each matrix is
located in upper-left corner. Colors represent the levels of correlation: red represents
a strong correlation, whereas blue represents a low correlation.

The second-order cumulants shown in Fig. 5a are the covariance matrix of initial
variables. Each number on the axes represents an element: iron (1), silica (2), alumina
(3), phosphorus (4), and LOI (5). The second-order cumulants are shown in Fig. 5b,
which is the covariance matrix of the factors. Each number on the axes corresponds to
a particular factor. As can be seen in Fig. 5a, the iron content (Z1), is highly correlated
with the content of silica (Z2) and alumina content (Z3), respectively. The phosphorus
(Z4) and LOI (Z5) have low correlations with the other attributes. In the factor space
(Fig. 5b), all non-diagonal elements have values less than 0.01, which means there is
almost no correlation between factors.

The second-order cumulants reflect the correlation between two variables, whereas
the third-order cumulants in Fig. 6a, b represents the dependence between the values

Fig. 5 Covariance matrix of the original variables (a) and the decorrelation factors (b). Each cell is an
element of the matrix. Colors are the levels of correlation: red represents a strong correlation, whereas blue
represents a small correlation

123



Math Geosci (2017) 49:39–66 51

Fig. 6 Third-order cumulant of
the original variables (a) and the
decorrelation factors (b). Cells
are elements of the cumulant.
Each slice of the cumulant is
separated by black vertical line
shows three-variate correlations
of the element from the labels on
the top axis with other two
variables

of three variables. As previouslymentioned in Sect. 3.2, the third-order tensor 5×5×5
can be unfolded to 5 × 25 matrix. Each slice of the cumulants separated by a black
vertical line shows the three-variate correlations of the variable from the labels on the
top axis with other two variables. For example, the correlation between iron content,
the first variable Z1, and two other variables Z j , Zk, j, k = 1 . . . 5 is represented by
the left part of the image, columns 1–5. Similar to the second-order cumulant (Fig. 5),
the iron content shows a high level of correlation with silica and alumina.

The third-order correlation of LOI content, the fifth variable Z5, and two other
variables Z j , Zk, j, k = 1 . . . 5 is represented by the right part of the image with
columns from 20 to 25. It is not hard to see that, as in case with the second-order
cumulant, LOI has a low correlation with the other variables. However, there are green
values in the last column of the Fig. 6a, which show low correlation between LOI, iron
and silica contents. Thus, using the third-order cumulant map, it is possible to detect
complex dependencies among the variables that cannot be identified using second-
order statistics. In the factor space (Fig. 6b), there are high values only for diagonal
elements of the third-order cumulant; therefore, the factors are also decorrelated for
order three.

The fourth-order cumulants are shown in Figs. 7 and 8. The fourth-order tensor
5×5×5×5 can be unfolded to 25×25 matrix. Each slice of the cumulants separated
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Fig. 7 Fourth-order cumulant of initial variables. Cells are elements of the cumulant. Each slice of the
cumulant separated by black lines shows four-variate correlations of the element from the labels on the top
axis, the element from the labels on the right axis and other two variables

Fig. 8 Fourth-order cumulant of decorrelation factors. Cells are elements of the cumulant. Each slice of
the cumulant separated by black lines shows four-variate correlations of the factor from the labels on the
top axis, the factor from the labels on the right axis and other two factors. Red cells correspond to diagonal
terms C1,1,1,1,C2,2,2,2, . . .C5,5,5,5

by black lines shows four-variate correlations of the variable from the labels on the
top axis, the element from the labels on the right axis and other two variables. For
example, the correlations between phosphorus, silica and the contents of the other two
elements are represented by the slice with the indexes four and two on the top and
right axes, or cells with column indexes 16–20 and row indexes 6–10.

According to Fig. 7, there is a high dependence between iron, silica, and alumina
contents, represented by orange and red colors in the upper-left part of the graph. In
the factor space (Fig. 8), high values are only present for the diagonal elements of the
forth-order cumulant; therefore, the factors are also decorrelated for the fourth-order.
A similar tendency can be seen for the fifth-order cumulants (Figs. 9, 10).

3.3 Simulation Results

After decorrelation, drill-hole data and TI are transformed into factor space using
Eq. (9). Thus, the contents for the five elements (Fe, SiO2, Al2O3, P, and LOI) are
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Fig. 9 Fifth-order cumulant of
initial variables. Each cell is
element of the cumulant

Fig. 10 Fifth-order cumulant of
factors. Each cell is element of
the cumulant. Colors show the
levels of correlation: red color is
maximum correlation, blue
color is no correlation. Red cells
correspond to diagonal terms
C11111,C22222, . . .C55555

transformed into five factorswhich have a low level of correlation. Each of the factors is
then simulated separately using the AlgorithmA.2 and back-transformed into contents
of elements. The final 20 realizations contain 93×145 points at a 10 m by 10 m grid,
with simulated Fe, SiO2, Al2O3, P, and LOI content. Examples are shown in Fig. 11,
and a realization for all elements is presented in the Appendix.

By visual inspection, the simulations in Fig. 11 reproduce the spatial distribution of
ore content and preserve connected structures of high values. Besides that, the areas
with low-values of iron content on the north-east and south-west parts of image (blue
areas in Fig. 11a, b) coincide with high values of silica content (red areas in Fig. 11c,
d). These observations are confirmed by quantitative analysis in subsequent valida-
tion by: (1) quantile–quantile plots (QQ-plots) between drill-hole data and simulated
values; (2) cross-plot comparison of drill-hole data and simulation values; (3) zero-
lag cumulant validation; (4) variogram and cross-variogram validation; (5) high-order
spatial cumulant and spatial cross-cumulant validation (De Laco and Maggio 2011).

In Fig. 12, QQ-plots of the simulated realization and the drill-hole data are indicated
by grey lines. In addition, QQ-plots of the training image and the drill-hole data are
depicted by blue and red lines, respectively. Despite the decorrelation and related
data transformations, the simulations do reproduce the distributions of the drill-hole
data reasonably well. The scatter plots between iron, silica and alumina contents are
shown in Figs. 13, 14 and 15. Graphs on the left represent scatter plots of drill-hole
data, whereas graphs on the right scatter plots of one of the simulated realizations. The
general shape of the clouds of points remains preserved. Next, the reproduction of the
cumulants at lag-zero is investigated to demonstrate the performance of the proposed
decorrelation technique. As in Sect. 2.2.3, all cumulants are shown in absolute values
and scaled to better depict the correlations: the values close to zero represent low
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Fig. 11 Two simulations of iron content (a, b) and silica content (c, d). Colors are shown in log-scale

correlations, whereas values that are close to one represent high correlations. The
second-order cumulant (i.e., the covariancematrix) of a simulation is shown in Fig. 16.
It is noted that the simulations reproduce the covariance of drill-hole data (Fig. 5a).

The third-order cumulant is generally also reproduced; however, some of the cor-
relations are underestimated in the third-order cumulant of simulated realizations; for
example, elements with indices (2,20), (2,23), and (2,24) have values of approximately
0.5 for the drill-hole data (Fig. 6a) and approximately 0.1 for simulations (Fig. 16b).

The fourth-order cumulant of the simulation (Fig. 17) depicts more discrepancies
from the drill-hole data (Fig. 7); however, the overall structure is preserved. Finally,
the fifth-order cumulant (Fig. 18) of the simulation is underestimated when compared
to the cumulants of the drill-hole data (Fig. 9). There are several reasons of these devi-
ations in high-order cumulants. First of all, the condition (13) favors decomposition of
lower order, because they have greater impact on joint distribution of multiple corre-
lated variables. Secondly, the high-order cumulants that are obtained from thedrill-hole
data are sampling statistics and, therefore, the estimation error is inevitably introduced
to results. Finally, similar to variogram analysis, the fluctuations are consequence of
ergodicity and the estimations of high-order statistics differ among simulations.

Figure 19 shows a variogram (left) of the iron content, and a cross-variogram (right)
between iron and alumina. The variogram of univariate spatial distribution for iron
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Fig. 12 QQ-plots of a iron, b phosphorus, c alumina, d silica, and e LOI contents.Grey lines are simulated
realizations with drill-hole data, blue line is the TI with drill-hole data, and red line is drill-hole with
drill-hole data

is well-reproduced. The cross-variogram shows some slightly lower values than the
data, which is a result of the fact that the decorrelation technique does not take into
account high-order cross-cumulants at non-zero lags.

A similar analysis is performed for the third-order spatial cumulant and the third-
order spatial cross-cumulant. For the calculation of the third-order spatial cumulant
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Fig. 13 Scatter plot between Fe and SiO2, for the data (a) and simulation #1 (b). Contents are shown in
log-scale

Fig. 14 Scatter plot between Fe and Al2O3, for the data (a) and simulation #1 (b). Contents are shown in
log-scale

Fig. 15 Scatter plot between SiO2 and Al2O3, for the data (a) and simulation #1 (b). Contents are shown
log-scale

map of iron content (Fig. 20), an L-shape template and Eq. (6) are used. The L-shape
template lag’s directions are (1, 0) and (0, 1), so for each cell the triplets Z1(x, y),
Z1(x + idx, y), Z1(x, y+ jdy) are used. Here (x, y) ∈ �, i = 1 . . . 30, j = 1 . . . 30,
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Fig. 16 Covariance matrix and third-order cumulant of simulation #1. Each cell is element of the matrix

Fig. 17 Fourth-order cumulant
of simulation #1. Cells are
elements of the cumulant. Each
slice of the cumulant separated
by black lines shows four-variate
correlations of the element from
the labels on the top axis, the
element from the labels on the
right axis and other two
variables. Colors show the levels
of correlation: red color is
maximum correlation, blue
color is no correlation

Fig. 18 Fifth-order cumulant of
simulation #1. Each cell is
element of the cumulant. Colors
show the levels of correlation:
red color is maximum
correlation, blue color is no
correlation

and dx, dy, are grid block sizes, that is 10 m × 10 m. For the cross-cumulant map
of iron and alumina the same template is used, but points are taken from different
variables Z1(x, y), Z3(x + idx, y), Z3(x, y + jdy). As can be seen in Fig. 20, there
is a good reproduction of the spatial features, and the area of high- and low-values of
the data’s spatial cumulant (Fig. 20a) corresponds to the areas on the cumulant map of
the simulated realization (Fig. 20b). The third-order spatial cross-cumulant map of a
simulated realization (Fig. 21b) has also structures similar to drill-hole data (Fig. 21a).

The fourth-order spatial cumulants of the iron content are shown in Fig. 22, and are
calculated using a template with directions (1, 0), (0, 1), and (1, 1): for each cell, the
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Fig. 19 Variogram of iron content (a), and cross-variogram of iron and alumina contents (b) for 20 simu-
lations (grey lines) and drill-hole data (black points). Contents are taken in log-values

Fig. 20 The third-order spatial cumulant maps for iron content of a initial data and b simulation #1. Colors
are the levels of correlation: red color is maximum correlation and blue color is no correlation.

Fig. 21 The third-order cross-spatial cumulant maps for a iron and alumina contents of initial data and b
simulation #1. Colors are the levels of correlation: red color is maximum correlation and blue color is no
correlation

four-point relationship Z1(x, y), Z1(x+idx, y), Z1(x, y+ jdy), and Z1(x+kdx, y+
kdy) is used. Here the (x, y) ∈ �, lags are indexed by i = 1 . . . 30, j = 1 . . . 30, and
k = 1 . . . 30; dx, dy are grid block sizes, that is 10m× 10m.According to Fig. 22, the
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Fig. 22 The fourth-order spatial cumulant maps for iron contents of initial data (upper) and simulation
#1 (lower). Colors are the levels of correlation: red color is maximum correlation and blue color is no
correlation

fourth-order cumulant is reproduced quite well, thus four-point relationships available
in data are preserved in the simulations.

4 Conclusions

This paper proposes a newmethod for the joint high-order simulation of non-Gaussian
spatially correlated variables. Typically, mineral deposits are modelled using a finite
number of samples, and are multi-element thus require joint simulations of the per-
tinent attributes of interest. These variables are often non-Gaussian, with complex
spatial connectivity and joint connectivity of extreme values that are critical to the
uses of simulated models, such mine panning optimization and reservoir multi-face
flow simulation.

The proposed technique extends the univariate high-order simulation framework
to address multiple correlated variables based on a new decorrelation approach that
generates uncorrelated factors using the so-termed diagonal domination condition for
high-order cumulants. Specifically, the joint high-order simulation method presented
decorrelates variables to independent factors, simulates these factors independently,
then, factors are then back-transformed to correlated high-order realizations of the
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pertinent attributes of interest in a way that high-order spatial relations and cross-
relations are reproduced.

The algorithm presented herein is tested using iron ore deposit data. The results
show that the newly proposed method transforms initial variables into factors with a
low level of dependence. Using high-order statistics both at the decorrelation step and
the simulation step permits the ability to generate jointly simulated grades with the
same complex spatial statistics as the initial data. It is noted that the spatial high-order
cross-statistics may be underestimated, thus the need to validate results given that
high-order statistics at lag-zero are considered. In general, the application shows the
feasibility and excellent performance of the proposed method.

One related issue to be discussed is the availability of suitable training images,
which, given the interest in high-order relations, is not trivial. In the case of mineral
deposits, the two known options are to (1) in an operating mine use as a dense dataset
for a TI, such as the blast-hole data used herein. In the absence of the first option; (2)
one may consider dense information that may be available from a similar orebody. In
other cases, different opportunities may exist.

Further research will address the improvement of the decorrelation condition,
namely cross-cumulants at various lags will be added to objective function (13).
In addition, the non-linear transformation model will be applied to initial variables
instead of linear model (8).
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for optimizing mining complexes with uncertainty”, NSERC Discovery Grant 239019, and the COSMO
consortium of mining companies (AngloGold Ashanti, Barrick Gold, BHP Billiton, De Beers, Kinross
Gold, Newmont Mining and Vale).

Appendix: Statistics and Simulation Results

The histograms of alumina, phosphorus, and LOI contents are shown in Figs. 23, 24,
and 25, respectively. The scatter plots for Fe–SiO2 and SiO2–Al2O3 are shown in
Figs. 26 and 27, respectively. In Figs. 28, 29 and 30 simulation results for alumina,
phosphorus, and LOI contents are shown.

Fig. 23 Histograms of alumina content: a drill-hole data; b training image
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Fig. 24 Histograms of phosphorus content: a drill-hole data; b training image

Fig. 25 Histograms of LOI content: a drill-hole data; b training image

Fig. 26 Scatter plot between Fe and SiO2, for the data (a) and training image (b). Contents are shown in
log-scale
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Fig. 27 Scatter plot between SiO2 and Al2O3, for the data (a) and training image (b). Contents are shown
in log-scale

Fig. 28 a Drill-hole data, b training image, and c, d two simulations of alumina content. Colors are shown
in log-scale
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Fig. 29 a Drill-hole data, b training image, and c, d two simulations of phosphorus content
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Fig. 30 a Drill-hole data; b training image, and c, d two simulations of LOI content. Colors are shown in
log-scale
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