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Abstract Evolution of Earth surface systems (ESS) comprises sequential transitions
between system states. Treating these as directed graphs, algebraic graph theory was
used to quantify complexity of archetypal structures, and empirical examples of for-
est succession and alluvial river channel change. Spectral radius measures structural
complexity and is highest for fully connected, lowest for linear sequential and cyclic
graphs, and intermediate for divergent and convergent patterns. The irregularity index
β represents the extent to which a subgraph is representative of the full graph. Fully
connected graphs have β = 1. Lower values are found in linear and cycle patterns,
while higher values, such as those of divergent and convergent patterns, are due to
a few highly connected nodes. Algebraic connectivity (μ(G)) indicates inferential
synchronization and is inversely related to historical contingency. Highest values are
associated with fully connected and strongly connected mesh graphs, whereas fork-
ing structures and linear sequences all have μ(G) = 1, with cycles slightly higher.
Diverging vs. converging graphs of the same size and topology have no differences
with respect to graph complexity, so complexity change is dependent on whether
development results in increased or reduced richness. Convergent-divergent mode
switching, however, would generally increase ESS complexity, decrease irregularity,
and increase algebraic connectivity. As ESS and associated graphs evolve, none of
the possible trends reduces complexity, which can only remain constant or increase.
Algebraic connectivity may increase, however. As improving shortcomings in ESS

Submitted toMathematical Geosciences.

B Jonathan D. Phillips
jdp@uky.edu

1 Biogeomorphology Research and Analysis Group, Department of Geography,
University of Kentucky, Lexington, KY 40506-0027, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11004-016-9642-1&domain=pdf


744 Math Geosci (2016) 48:743–765

evolution models generally result in elaborating possible state changes, this produces
more structurally complex but less historically contingent models.

Keywords Complexity · Evolutionary trajectory · Directed graph · Algebraic graph
theory

1 Introduction

Earth surface systems (ESS) develop and change over time. Theories of geomor-
phic, soil, hydrologic, and ecosystem evolution call for either (or both) increasing
or decreasing complexity as they develop. Thus, key questions across the Earth and
environmental sciences involve the extent to which ESS become more or less varied
and complex as they evolve. Here the concern is with complexity with respect to the
evolutionary or successional pattern or pathway itself, rather than complexity of the
individual elements. Thus, the concern is with the properties of, for instance, a phylo-
genetic tree rather than complexity of the taxa represented, or of the network of state
transitions in geomorphic evolution or vegetation change rather than properties of
the landforms or vegetation communities involved. The question is thus not whether,
for example, ecosystems or soils become more complex over time, but whether the
network of transitions among system states becomes more or less complex. This is
addressed by applying algebraic graph theory methods to some archetype (representa-
tive idealized) patterns of ESS development to assess structural complexity, network
irregularity, and historical contingency properties.

This paper extends previous work exploring complexity of temporal trends in ESS
represented as graphs or networks. Earlier papers sought to measure the degree of
historical contingency in ESS (Phillips 2013a) and to quantify the robustness of
chronosequences (Phillips 2015). In the first instance, the networks were based on
the idea of inheritance between temporal episodes—for example, given a set of rela-
tionships among geomorphic factors in a river, those that determine or influence the
same factor in a subsequent developmental episode (Phillips 2013a). In the second,
chronosequences were used to define system states (stages or phases of the sequence)
and possible transitions among them based on observed or inferred changes among
states. The path stability (degree to which developmental trajectories are sensitive
to disturbance) of the derived networks was determined (Phillips 2015). This paper
expands on the previous work by considering the actual network of changes over time
and how complexity might changes as systems continue to evolve.

Beyond the general scientific urge to quantify and the temptation to measure some-
thing because it can bemeasured, there are compelling reasons to assess the complexity
of evolutionary sequences. Most obviously, if the complexity of such sequences is
known or can be computed, questions of the evolution of complexity can be addressed
once the (or an) appropriate sequential model has been identified. For several decades
it has been widely recognized that simple progress-to-equilibrium models are incom-
plete and not always applicable (Scheidegger 1983; DeAngelis andWaterhouse 1987;
Montgomery 1989; Phillips 1992), but the understanding of state transitions in ESS is
still rudimentary in many cases (Huttl et al. 2014). Further, as ESS evolve they “com-
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pute intrinsically and store information” (Still et al. 2010). Information and complexity
are closely related in a statistical sense, but methods for estimating stored information
in historical data are currently restricted mainly to relatively long time series of integer
or ratio-level numerical data (Still et al. 2010). As entropy (and thus information) is
directly related to graph spectral properties described below (Geller et al. 2012), the
approach developed here could be useful in assessing the information stored in an
evolutionary sequence.

The questions addressed here are particularly relevant for the study of responses
to climate change and direct human impacts. For example, in a review of ecological
state-and-transitionmodels, Twidwell et al. (2013) found anoveremphasis onhistorical
climax plant communities and an assumption that these are optimal and that changes
indicate degradation (at least within the U.S. Department of Agriculture, which has the
world’s largest database of STMs).Twidwell et al. (2013) also identified anoverempha-
sis on certain drivers (e.g., grazing) and a failure to consider climate change. Svenning
and Sandel (2013) analyzed disequilibrium vegetation dynamics under future climate
change and noted that predictive studies have focused on equilibrium endpoints with
little consideration of historical trajectories. These reviews suggest the need for a better
appreciation of varying developmental pathways and their complexity.

In contrast to approaches that implicitly or explicitly assume convergent develop-
ment, emerging studies on the role of initial conditions in ESS development assume
more homogeneous conditions in early stages,with increasing heterogeneity over time.
In their review of the role of initial development processes as key factors in landscape
development, Raab et al. (2012) identified a common pattern of less complexity ini-
tially, with increasing complexity over time due to sensitivity to initial conditions and
amplification of variations. Biber et al. (2013) study of interrelationships among sub-
strate, topography, and vegetation in early stages of ESS development also assumed
increasing complexity. Raab et al. (2012) also noted the importance of historical infor-
mation for understanding the contemporary state of an environmental system.

The problem of measuring complexity in evolutionary sequences is also relevant to
historical reconstruction. Due to the incompleteness of the stratigraphic record, stratig-
raphy has been referred to as a set of frozen accidents (Miall 2015) with more gap than
record (Ager 1973). The same applies to paleoenvironmental datamore generally. Spa-
tial records may also contain significant gaps, as in, for example, nugget effects in spa-
tial data. Miall andMiall (2001) and Bailey (1998) have highlighted some of the prob-
lems and issues associated with applying particular conceptual models of sedimentary
sequences, and argued for consideration of more complex possibilities. Analysis of
historical sequences as networks adds to our understanding of their phenomenology
and instrumentality. The ability to assess their complexity may aid in choosing appro-
priate frameworks for filling gaps (if, e.g., the goal is to choose the least complex of
competing models) or assessing the informational implications of such decisions.

In general, complexity is the state or quality of being complex, and complex means
consisting of many different and connected parts. Complexity implies complications,
intricacies, and difficulties. Scientific definitions are not inconsistent with these ideas,
but are more specific and nuanced. In many cases complexity in ESS is understood
in the context of contemporary complexity science, implying coupled dynamics over
a broad range of scales and/or showing emergent or self-organized behavior. A 2007
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volume, Complexity in Geomorphology (Murray and Fonstad 2007), for example, is
firmly in this category, as is Phillips (1998) study of complexity in pedology, and a
number of works on ecological complexity (Burkett et al. 2005).

However, consistent but broader perspectives also exist, such as the aims and
scope of the journal Ecological Complexity (http://www.journals.elsevier.com/
ecological-complexity/), for instance, along with Richards (2002) discussion of com-
plexity in physical geography. Cadenasso et al. (2006) presented a view of ecosystem
complexity specifically designed to incorporate both nonlinear dynamical systems
and complexity science aspects, and the broader, more general ecological complexity
evident to field scientists. They identify the critical dimensions of complexity as hetero-
geneity, connectivity, and history. Heterogeneity incorporates structural complexity,
spatial variability and heterogeneity, and connectivity reflects the interconnectedness
of system components. History relates to historical contingency; the extent to which
relationships extend beyond direct, contemporary links, involving phenomena such
as lag, memory, and legacy effects. Cadenasso et al. (2006) also recognize the related
issue of complicatedness; how large a system is and howmany components it contains.
In this paper graph complexity, network (ir)regularity, and inferential synchronization
are assessed. While the measures do not map precisely onto Cadenasso et al.’s cri-
teria, they do reflect, respectively, structural complexity, network heterogeneity, and
historical contingency. Connectivity influences all three measures.

2 Background: Evolutionary Pathways in Earth Surface Systems

Beyond the obvious coexistence and overlap among landforms, soils, and ecosystems,
theoretical frameworks in geomorphology, pedology, and ecology have themselves
coevolved, both historically (Osterkamp and Hupp 1996) and recently (Thoms et al.
2007; Butler and Sawyer 2012). Thus all three perspectives are briefly reviewed here.

2.1 Geomorphology

Phillips (2014) analyzed geomorphic development involving decreasing or increasing
variability in terms of convergent vs. divergent development. Convergence involves
decreased amplitude of variations, increased spatial isotropy, and decreasing complex-
ity. For instance, convergent landform development includes topographic evolution
involving decreasing relief, and weathering that leads to smoothing of rough, irregular
rock surfaces. Divergence results in increased average amplitudes of variations, ampli-
fication of initial differences, and increasing spatial complexity. Relief-increasing
topographic evolution and erosional dissection of initially more uniform surfaces are
examples. Steady-state, with no net convergence or divergence, may also occur in
some geomorphic systems. Phillips (2014) argued that both convergent and divergent
modes are common in real landscapes and showed that switches between convergent
and divergent trends often occur due to a common structure in geomorphic systems
which leads to dynamically unstable interactions and divergence in earlier stages of
development. Later, as thresholds are approached, the systems become dynamically
stable and switch to convergent modes.
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Debates on divergent vs. convergent evolution have existed nearly as long as geo-
morphology itself. This is best illustrated by the classic nineteenth and twentieth
century debates on the increase or decrease of relief during topographic evolution
(Thorn 1988; Goudie 2011), though this and similar problems have rarely been
expressed explicitly in terms of convergence and divergence. Exceptions include
Scheidegger (1983), Johnson and Watson-Stegner (1987), Johnson et al. (1987),
Twidale (1991), Phillips (1995), Phillips (2002), Gournellos (1997), and Gunnell and
Louchet (2000). From the 1990s, studies of deterministic chaos, dynamical instability,
and other forms of nonlinear complexity in geomorphic systems showed that divergent
development occurs frequently in a variety of geomorphic phenomena, and at a range
of spatial and temporal scales (Elverfeldt 2012).

Dynamic equilibrium-based theories of landscape evolution, that emerged in the
early twentieth century, gained prominence in the 1960s, and arguably remain domi-
nant today (Gregory and Lewin 2014) postulate convergent development. Even before
the advent of nonlinear approaches, however, classic theories of (Davis 1899, 1902;
Penck 1924) allowed for either divergent or convergent development of topography.
These depend on the stage in a cycle of erosion (Davis) or the relative rates of uplift
vs. denudation (Penck).

Onmore restricted spatial and temporal scales understandings of geomorphic devel-
opment have also been expanded from linear sequences or simple cycles tomore varied
patterns of landform and landscape change. This is best illustrated by the supplemen-
tation of linear stream channel evolution models with constructs allowing for multiple
pathways (Phillips 2013b; Van Dyke 2013, 2016).

2.2 Pedology

Traditionally, conceptual models of pedogenesis focused on convergent pathways,
such as development of climax soils, where, for example, properties inherited from
parent material become less prominent and those associated with the regional climate
more important (Dokuchaev 1883; Marbut 1923; Jenny 1941). Broad-scale climate–
soil correlations and soil–landscape relationships support this notion, but at more local
scales divergent evolution has been increasingly recognized.

At the landscape scale, some chronosequence studies indicate divergent pedoge-
nesis, where soil variability and diversity increases over time (Phillips 1993, 2001a;
Barrett and Schaetzl 1993; Barrett 2001; Saldana and Ibanez 2004). Other studies at
this scale show divergent pedogenesis associated with dynamical instabilities in topo-
graphic/soil coevolution, vertical translocation processes, and persistence of pedolog-
ical impacts of disturbances (Ibanez et al. 1994; Schaetzl et al. 2006; Toomanian et al.
2006; Samonil et al. 2014, 2015; Valtera et al. 2015). Some pedon-scale studies also
show dynamically unstable trends toward increasing variability (Phillips 2000, 2001b;
Montagne et al. 2013) that imply non-convergent development at broader scales.

Both convergent and divergent pathways of pedogenesis are common, at different
spatial scales, times or stages of soil landscape evolution, or contingent on specific
factors such as thickness of the weathering mantle (Johnson et al. 1987; Gracheva
et al. 2001; Temme 2015).
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2.3 Ecology

Foundational theories of ecological succession from the late nineteenth century
and early twentieth century are based on a monotonic linear progression toward a
stable climax community (Cowles 1899; Clements 1916). Later, conceptual frame-
works allowing for more complex and variable successional patterns were introduced
(Gersmehl 1976; Cattelino et al. 1979;Westoby et al. 1989). State-and-transitionmod-
els, while motivated by and often associated with alternative stable state concepts, are
a general tool for describing and predicting ecological state changes that can accom-
modate virtually any pathway (Briske et al. 2005; Bestelmeyer et al. 2009; Phillips
2011). Recent reviews and syntheses of succession theories are given by Mori (2011)
and Pulsford (2014). These make it clear that successional trends or ecological change
more generallymay be linear (or cyclical, when disturbance resets the system), conver-
gent, divergent, or characterized by various possible transitions among system states.

Different patternsmay also be evident at different scaleswithin the same system. For
example, in an old-growth forest (Woods 2007) found convergence in some habitats,
but not across habitats, with successional dynamics structured at the habitat-patch
scale.

Scale dependence and both convergent and divergent paths within the same system
were also found by Dini-Andreote et al. (2015), who used a chronosequence to study
the balance of stochastic and deterministic processes in microbial succession. They
identified several pathways that involve different roles of homogeneous vs. heteroge-
neous selection pressure, and thus either convergent or divergent paths.

In evolutionary ecology, a key issue involves niche differentiation vs. niche con-
vergence. Classic niche theory, based on the former, predicts competing species
will evolve to use different resources and interact less. Many examples of niche
differentiation exist; a recent one that specifically links partitioning to soils and
geological controls is Kohout et al. (2015) study of mycorhyzzal communities. Niche-
convergence ideas, by contrast, predict that species evolve to use similar resources and
increase their interactions. Aarsen (1983) proposed an evolutionary theory of coexis-
tence, particularly applicable to plants, involving not only natural selection for niche
differentiation, but also selection for competitive combining ability. The latter involves
reciprocal selective effects in which approximately equal competitive advantages are
maintained. Empirical examples of niche convergence include Ackerly (2004) recon-
structions of leaf evolution in California chaparral vegetation and Elias et al. (2008)
studies of mutualistic interactions in butterflies. Niche convergence is also linked to
neutral theories of community assembly (Hubbell 2006).

However, the issue is not a simple matter of niche differentiation and (or ver-
sus) niche convergence. Miller et al. (2014) followed the evolution of four species of
Protozoa during succession and found that during evolution in multispecies systems
weak competitors evolved to be stronger, while strong competitors evolved to become
weaker. This does not conform to expectations of either niche partitioning or conver-
gence, implying a need to rethink the roles of competition and evolution in structuring
communities.

Additionally, there is niche construction, whereby organisms modify the abiotic
environment to create or expand niches for themselves and/or other organisms (Odling-
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Smee et al. 2003; Matthews et al. 2014). The interactions among niche partitioning,
convergence, and construction, evolution, and ecosystem functions for plants are dis-
cussed byThorpe et al. (2011). In particular, they highlight potential effects of histories
of coexistence within a region.

Niche construction, differentiation, and convergence have fundamentally different
implications with respect to evolutionary trajectories and complexity. Construction
indicates the possible expansion of state space, while differentiation and convergence,
respectively, imply increasing or decreasing niche complexity within a existing state
space.

3 Assessing Complexity in ESS Evolution

From the overview above it is clear that evolution of ESS may follow linear, cyclical,
convergent, divergent, or other pathways. Linear trends or convergence toward a sta-
ble climax or steady-state imply simplification and reduced richness (defined as the
number of, e.g., soil series, vegetation communities, landform types, etc.) over time.
Divergence signifies increasing richness and diversification.

However, other patterns of change over time are less clear with respect to changes in
richness over time. Further, richness is only one aspect of complexity. Others include
evenness (relative abundance of types or system states), the network of possible tran-
sitions among states, and the degree of historical contingency. Richness/evenness,
network of possible transitions, and contingency correspond to the heterogeneity, con-
nectivity, and historical aspects of complexity identified by Cadenasso et al. (2006). A
theoretical framework for assessing complexity of evolutionary sequences or patterns
represented as networks is outlined below.

4 Theory

A chronosequence, successional pattern, or other historical sequence can be treated as
a network. Each node in the network represents a system state, such as a landform type,
vegetation community, soil type, or developmental stage. The network nodes are con-
nected by historical patterns of transition among states, which may be established by
observation, historical reconstruction, theory, or experiments. A network may include
transformations back to a previously existing state, and can be represented as a directed
graph, where states that occur more than once are represented as a single node (Fig. 1).

The graph has an N×N adjacencymatrixA, where n is the number of system states
or graph nodes. The elements ofA are zero if the state on the vertical axis (rows) cannot
or does not transition to the corresponding state on the horizontal axis (columns), and
1 otherwise, with zeros on the diagonal. These transitions are represented by edges
(links) in the graph. This is an unweighted, unsigned directed graph. Weighted graphs
may have entries other than 0, 1 to represent varying probabilities of transitions.
Directed graphs of this type may have entries of −1, 0, 1 depending on whether
existence of the row state inhibits, has no effect on, or promotes transition to the
column state. Phillips (2015) presented a method for analyzing the path stability or
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Fig. 1 Evolutionary sequence (pedogenetic pathways) of soil landscapes in the coastal plain of North
Carolina, USA, shown as a directed graph. (Derived from Phillips 2015)

robustness of chronosequences represented by a signed digraph. Here the unsigned
form is used for maximum generality.

The adjacency matrix has N eigenvalues λ, such that λ1 ≥ λ2 ≥ · · · λN. The largest
eigenvalue λ1 is the graph spectral radius and is widely used in algebraic graph theory
as a measure of the complexity of graphs and networks (Biggs 1994). In general,
spectral radius remains constant or increases with network size (N ) and increases
with the number of edges or links m. The spectral radius is sensitive to the number
of cycles within a graph (paths that start and end at the same node) and has thus been
used to measure the complexity of food webs, for example (Fath and Haines 2001).
For networks of contemporaneously interacting agents, λ1 is related to the presence
or absence of coherence in those interactions (Restrepo et al. 2006).

Spectral radius is related to themaximum in- and out-degrees of the graph nodes (the
number of links ending and starting, respectively, at a node). Kwapisz (1996) showed
that the upper bound for the spectral radius of a directed graph is the geometric mean
of the maximum in-degree (d−

max) and maximum out-degree (d+
max)

λ1 ≤ [
(d−

max)(d
+
max)

]0.5
(1)

Graph regularity is the extent to which graph nodes vary in their degree (number
of in- and out-links); in a regular graph the degrees of all nodes or vertices are equal.
Graph regularity is important in this context because it indicates the extent to which
a subgraph is representative of the larger graph structure. Because the evolutionary
patterns of ESS are sometimes imperfectly known (or incomplete, for systems still
developing), this relates to whether an incomplete observed evolutionary network
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may be representative. Elphick and Wocjan (2014) developed a spectral measure of
graph irregularity

β = λ1/d, (2)

where d is the mean vertex degree. A graph with β = 1 has the highest degree of
subgraph representativeness of the entire graph. β > 1 reflects increasing degree of
a small number of nodes, with other nodes remaining much less connected. β < 1
indicates that node connectedness varies across the network.

The spectral radius and irregularity index provide quite different information,
despite the dependence of β on λ1. For example, a fully connected graph (any state
can transition to any other) has the highest possible spectral radius for a given N ,
but a β value of 1, as it is a regular graph. Thus, while a fully connected is the most
complex structure for a graph of a given size, any subgraph is representative of the
overall structure.

4.1 Historical Contingency

A key element of complexity is historical contingency (Cadenasso et al. 2006; Phillips
2013a). Historical contingency can be assessed based on algebraic connectivity. Alge-
braic connectivity of graph G(μ(G)) is a measure a graph synchronization: the extent
to which nodes or elements of a network act or change simultaneously, or in a
predictable sequence. Convergence properties of a network are also dependent on
algebraic connectivity. Literal synchronization is not relevant to historical or evolu-
tionary graphs, but Phillips (2013a) generalized graph synchronization to the notion
of inferential synchronization—the extent to which observations or inferences at one
point in the network can be applied to components elsewhere in the graph (synchro-
nization terminology is retained because of itswide use in the graph and network theory
literature). In a graph representing temporal stages of development, a high degree of
inferential synchronization would indicate a low degree of historical contingency, as
one part of the graph (i.e., a subgraph) would be representative of network dynamics
in another portion of the graph.

Fiedler (1973) showed that the second smallest eigenvalue of the Laplacian matrix
(λ(L)N−1) of an undirected graph is related to convergence and synchronization prop-
erties, and coined the term algebraic connectivity. The Laplacian of the adjacency
matrix is obtained by

L = D − A, (3)

where D is the degree matrix, with the degree of each node on the diagonal and zeros
otherwise.

The second smallest Laplacian eigenvalue of directed graphs has also been used to
indicate synchronization and convergence (Merris 1994; Lafferriere et al. 2004). Wu
2005 extended Fiedler’s algebraic connectivity to directed graphs, acknowledging that
this generalization can be direct; that is, defining algebraic connectivity for directed
graphs as λ(L)N−1. However, Wu (2005) andMolitierno (2006) developed alternative
algebraic connectivity measures for directed graphs that are related, but not equal, to
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the second smallest Laplacian eigenvalue. Here λ(L)N−1 is used directly to indicate
algebraic connectivity.

5 Evolutionary Archetypes

Based on Eqs. (1) and (2), the maximum spectral radius and irregularity index can be
calculated for some archetypal graph structures that represent evolutionary sequences
in ESS, along with the algebraic connectivity and the rate at which N ,m increase with
length of the historical sequence. These archetypes include linear, cyclical, convergent,
divergent, and bifurcating tree structures.

Linear sequences are represented by classic monotonic, monoclimax succession
models. A pioneer community succeeds to one or more intermediate serial stages,
culminating in the climax community. Some fluvial channel evolution models also
have this form (Van Dyke 2013), as well as pedogenesis towards a climax soil at the
pedon scale. A Davisian cycle from original uplift to peneplain, before renewal by
new uplift (Davis 1899, 1902) is also a linear or chain-type graph.

Cycle graphs are linear sequences, plus a return to the starting point. In addition
to the cycle of erosion, ecological succession with disturbances that can reset the
sequence can be treated as cycles. The sequence stratigraphy conceptual model for
interpreting sedimentary sequences is also cyclical (Miall andMiall 2001). Alternative
stable state models, most of which involve two stable states, are essentially cycles of
N = 2.

In a convergent graph, multiple initial states converge (in the simplest form, in one
step) to a single attractor state. This could correspond, for example, to a transition
where a major disturbance such as a massive deposition event or volcanic eruption
transforms a variety of existing topographic or landform states to a single state.

Divergent graphs involve transitions to multiple possible states from a single start-
ing point (in the simplest case), or from a small number to a larger number of
states. Dynamical instability and chaos, and models based thereon, indicate diver-
gent sequences for landscape, landform, and soil evolution. Biological evolution by
speciation is also divergent, as is niche differentiation. Patch-gap dynamics in ecology
(Forman 1995) also imply divergent evolution.

Divergent patterns may involve simple radiation (transition from a single starting
point to multiple alternative states in a single step), or sequential stages of bifurca-
tion, which produces a dendritic or tree graph. Some models of chaotic dynamics are
based on patterns of successive bifurcations (May 1973; Hui and Li 2003), and phy-
logenetic trees in evolutionary biology illustrate this structure. A reverse bifurcation
(convergence of nodes two at a time) is also a possible structure for a convergent
evolutionary graph. For clarity, the one-step many-to-one or one-to-many state transi-
tions will be referred to as simple convergent or divergent patterns to distinguish them
from tree-type graphs. The fully connected evolutionary graph exists where history
(or theory) indicates that a direct transition between any two known states is possible
(where such transitions are also equally probable, this would also constitute a random
transition pattern). This is useful not only as a reference structure, but some ecological
state-and-transition models are also fully connected (Twidwell et al. 2013).
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Table 1 Number of nodes (N ) and links (m) in relation to the number of events or stages (q) in an
evolutionary sequence for archetypal graph structures

Graph type N = f (q) m = f(q)

Linear N = q m = q – 1

Cyclea N = q m = q

N ≤ q m ≤ q

Simple converging Unrelated Unrelated

Simple diverging Unrelated Unrelated

Fully connected N2 – N ≤ q m = N2 – N ≤ q

Bifurcating N = 2q – 1 m = 2q – 2

n-furcating N = (nq − 1)/(n−1) m = [(nq − 1)/(n−1)] – 1

a Top expression is for a single cycle; bottom for sequences where >1 cycles have occurred

5.1 Complicatedness

If the developmental sequence of an ESS is characterized by q events, episodes, tran-
sitions, or phases (q = 1, 2, 3, . . .) we can determine changes in complicatedness
(N ,m), which influence spectral radius and structural complexity (λ1), irregularity
(β), and historical contingency and inferential synchronization (μ(G)) over time (i.e.,
as q increases).

Linear and cycle type patterns become more complicated in direct proportion to the
length of the sequence, while bifurcating and other branching patterns increase their
nodes and links at an exponential rate (Table 1). Simple convergence and divergence
are special cases here, as complicatedness clearly decreases or increases over time,
respectively, and the number of nodes is unrelated to q. For q > 1, the simple structures
become n-furcating patterns.

For the fully connected case, if we assume that new states are created by or dur-
ing the historical transitions, and considering only actual (as opposed to potential or
hypothetical) transitions, then q ≥ N 2 − N to produce a given N .

5.2 Structural complexity

Table 2 shows the maximum spectral radius for the archetypal graph structures
described above. The last row generalizes the bifurcating pattern to sequences with n
potential forks at each step (n-furcations). Fully connected and simple divergent and
convergent graph types are sensitive to the number of system states, though the former
is more strongly so, with linear dependence vs. increasing as the square root of N .
The bifurcating pattern is more complex than the linear or cyclical, but in all cases the
spectral radius is insensitive to the length of the sequence. Note that just as the simple
convergent and divergent graphs have identical spectral radii for a given N , so also
would convergent patterns with the same topology have the same λ1 as the divergent
forking types.
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Table 2 Maximum spectral radius for archetypal graph structures

Graph type Largest in-degree Largest out-degree Max λ1

Linear 1 1 1

Cycle 1 1 1

Simple convergent N−1 1 (N−1)0.5

Simple divergent 1 N−1 (N−1)0.5

Fully connected N−1 N−1 N−1

Bifurcating 1 2 1.414

n-furcating (n= number of
forks at each split)

1 N n0.5

Table 3 Maximum irregularity index for archetypal graph structures

Graph type Mean degree Max λ1 Irregularity index (β)

Linear (2N−2)/N 1 1/[(2N−2)/N]

Cycle 2 1 0.5

Convergent (2N−2)/N (N−1)0.5 (N−1)0.5
(2N−2)/N

Divergent (2N−2)/N (N−1)0.5 (N−1)0.5

(2N−2)/N
Fully connected N−1 N−1 1.0

Bifurcating (N−2)2 1.414 1.414
2N−4

n-furcating (N−n) n n0.5 n0.5
Nn−n2

Structural complexity of the historical sequence, as indicated by the spectral radius,
is constant with increasing q for all the archetypical patterns except fully connected,
for which λ1 increases linearly with N , and the simple converging/diverging patterns,
where λ1 increases as the square root of N . Complexity increases with the number of
possible splits at each historical transition.

5.3 Graph Irregularity

The irregularity indices are shown in Table 3. The fully connected graph is regular,
and β = 1. In simple divergent or convergent graphs β increases as N 0.5, while the
linear graph asymptotically approaches 0.5 as N increases, the constant value for a
cycle of any length.

For n-furcating trends, N increases as a power function of the number of steps in
the sequence n(b)

N = (nn(b)−1 − 1)/(n − 1). (4)

Mean degree is then
d = [n + (n + 1)]/N . (5)
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Thus, for a bifurcating sequence β falls quickly below 1 as n(b) increases, asymptot-
ically approaching a value of 0.4713333. . .(= 1.414/3).

The irregularity index is constant for cycle and fully connected graphs of all
sizes (0.5, 1.0, respectively). β decreases with size and number of steps in splitting
graph types, converging toward n0.5/(n + 1) .The simple convergent and divergent
sequences increase as N 0.5.

5.4 Historical contingency

Inferential synchronization is directly, and historical contingency inversely, related
to μ(G) (Phillips 2013a). Lower algebraic connectivity indicates a high degree of
historical contingency and path dependence. All forms are equal in this regard except
for the cycle, whereμ(G) decreases as a function of N , and the fully connected, which
increases with N . Though the cycle algebraic connectivity declines with m, it is >

1, which it asymptotically approaches. Thus fully connected graphs have the lowest
degree of historical contingency, and linear, convergent, divergent, and forking graph
types have maximum historical contingency. Cycles are intermediate, but closer to the
latter, with μ(G) < 1.5 for N > 6.

6 Graph Maturation

The sequences represented by evolutionary graphs develop over time. Referring to the
appearance of each state or form as a historical transition, with a one-state starting
point and a single transition only one form is possible, an A → B linear graph.
With two transitions an N = 3 linear graph is possible, or an N = 2 cycle. With
further transitions, many more possible graph structures emerge. An evolutionary
graph may be called mature when enough transitions have occurred for the graph
structure to become evident. For example, an ecological state-and-transition model for
rangelands could be considered mature when all plausible ecological states relevant
to the management context have been identified. Or, a phylogenetic tree could be
considered mature when enough nodes and branches have been identified to define its
overall branching structure.

Starting with a linear sequence, several possibilities emerge, alone or in combina-
tions or sequences: (1) indefinite continuation of the linear sequence; (2) progression
of the linear sequence to a persistent attractor or sink state; (3) divergent branching;
(4) transition from a linear sequence to a cycle; and (5) graph articulation by returning
to previously existing states (other than the cyclical return to an initial state). With a
multiple-state starting point, or following development of multiple states, convergent
branching is also possible.

What are the complexity implications of these trends? As a linear sequence gets
longer it becomesmore complicated, but its low structural complexity does not change;
nor does the algebraic connectivity. The irregularity index decreases toward 0.5. If the
sequence repeats (becomes a cycle) the spectral radius remains the same, and the
irregularity index is constant at 0.5. The algebraic connectivity decreases relative to a
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linear sequence of the same N . The cycle is slightly more complicated than the linear
trend of the same N , but once established this does not change.

Development of forks or divergences in a sequence increases complicatedness,
structural complexity, and irregularity and decreases algebraic connectivity (thus
increasing historical contingency). These changes compared to linear sequences or
cycles are fairly intuitively obvious with respect to increases in N ,m and structural
complexity (Table 4). Historical contingency increases slightly relative to a cycle and
is the same as for a linear sequence. The decrease in β indicates a decline in the extent
to which a subset of the graph (e.g., an incomplete observation of the evolutionary
sequence) is representative of the overall pattern.

Graph maturation may occur as every relevant state has occurred and multiple
transitions between them are observed. The addition of one or more transitions to pre-
viously existing states other than a return to the initial state increases λ1 and decreases
β relative to a cycle. Though N does not increase in this scenario, m does, and thus
the sequence becomes more complicated. Algebraic connectivity increases. If new
transitions continue to add new links (progressing toward mesh structures and full
connectivity), this further increases λ1 and pushes the irregularity index toward unity.
Algebraic connectivity increases, and thus historical contingency declines.

Diverging graphs and thosemore highly connected than linear sequences and cycles
are more complex than the latter. However, they differ from each other with respect
to different aspects of complexity. More highly connected structures have greater
structural complexity, as indicated by the spectral radius. However, they also have
greater algebraic connectivity, indicating a lower degree of historical contingency.
Once the network has matured, observations, analyses, and models are more rep-
resentative of long-term behavior than for graphs with lower μ(G) and thus lower
inferential synchronization. Further, the forking structures have irregularity indices far-
ther from 1, indicating higher irregularity and less ability to infer graph behavior from
subgraphs.

An important general point is that although the maximum possible spectral radius
increases with N , the actual complexity indicated by λ1 does not necessarily, depend-
ing on the connection patterns. Thus, while addition of new nodes may increase the
complicatedness of a network, other aspects of complexity may increase, decrease, or
remain unchanged.

7 Examples

There are few examples of network or graph-based analyses of evolutionary, devel-
opmental, successional or chronosequences in geosciences (Heckmann et al. 2015;
Phillips et al. 2015), However, network-basedmethods have been applied to identifica-
tion of key transitions, historical contingency, andmemory in time series and historical
data in climatology, paleoclimatology, and seismology (Marwan et al. 2009; Donges
et al. 2011; Donner and Donges 2012; Telesca and Lovallo 2012; Radebach 2013).
Phillips (2015) analyzed the network of possible pedological transitions revealed in
a soil chronosequence via graph theory, but did not analyze the temporal network of
transitions. Two empirical examples are given below.
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Fig. 2 Forest succession in the North Carolina coastal plain. a The traditional successional model (linear
sequence), with the dotted line indicating possible resetting of the sequence by large disturbances (cycle).
b Successional pathways where frequent or occasional fires occur

Table 4 Algebraic connectivity
for archetype graph structures

Graph type Algebraic connectivity

Linear 1

Cycle
[
2 sin2(π /N)

]
+ 1

Convergent 1

Divergent 1

Fully connected 2(N − 1) + 1

Bifurcating 1

n-furcating 1

7.1 Coastal Plain Forest Succession

In the southeastern US coastal plain, the general successional pathway on abandoned
cropland or other situations where pre-existing forest has been removed from upland
sites, and where fire is excluded, begins with a variety of pioneers and early succes-
sional species. Pines (Pinus spp.) eventually become dominant, forming a canopy.
The pines are shade-intolerant, so as the canopy develops hardwoods become estab-
lished, and amixed pine/hardwood forest is the next seral stage. Hardwoods eventually
become dominant, and the climax community is a variant of the southern mixed hard-
wood forest. Forest succession in this region is reviewed by Ware et al. (1993) and
Batista and Platt (1977).

The historical role of disturbance by recurrent fire has been a subject of some debate,
but sources above agree that without fire the successional pattern is represented by
the linear sequence in Fig. 2a, which could also be construed as a cycle if one allows
for the possibility of rare large fires, tropical cyclone or tornado events, or logging to
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Table 5 Properties of graphs represented in a linear succession without, and successional cycle with, the
dashed link and b state transitions with fire effects

Linear succession Succession cycle State transitions
with fire

Number of nodes (N) 5 5 5

Number of edges (m) 4 5 8

Spectral radius (λ1) 1.000 1.000 1.676

Irregularity index (β) 0.625 0.500 1.117

Algebraic connectivity (μ(G)) 1.000 1.690 2.346

return vegetation to the pioneer stage. Allowing formore frequent fires, however, leads
to the graph of Fig. 2b, where fire favors pines, with the specific transitions depending
on fire severity and pre-fire vegetation (4).

Complexity indicators are shown in Table 5. Including fire effects increases the
structural complexity, and reduces the historical contingency, as vegetation depends
more on the time since the most recent fire than stage along a monotonic pathway. The
irregularity index > 1 represents the increasing concentration of edges in the lower
part of Fig. 2b, especially the mixed hardwood climax.

7.2 Alluvial Channels

The classical channel evolution model (CEM) for incised alluvial channels is a linear
sequence of six stages (or could be construed as an N = 5 cycle, as the 6th stage is
similar to the initial state). Phillips (2013b) developed a flow-channel fitness model
that, when interpreted as a state-and-transition model (STM), can be represented as in
Fig. 3, with N = 5,m = 12.

The contrast in λ1, β, andμ(G) can be seen in Fig. 4. The increase in spec-
tral radius reflects the greatly increased structural complexity, and the threefold
increase in algebraic connectivity indicates the reduced historical contingency. This
is consistent with the idea that channel change responds to changes in sediment
supply and transport capacity rather than simply either developing toward or main-
taining a steady-state equilibrium condition. The irregularity index indicates that
a subgraph of the STM is more representative of the system than a subset of the
CEM.

If an alluvial channel may also be either bed or suspended load dominated under
different scenarios, and thus aggradation and degradation potentially dominated by
either width or depth adjustments, then Fig. 3 can be taken as a STM with N = 7 and
m = 32 (Phillips 2013b). In this case λ1 = 4.702;β = 0.514; and μ(G)= 6. Thus
complexity and inferential synchronization increase substantially, while the irregular-
ity index declines, reflecting the increasing relative density of links associated with
the aggradation and degradation states.
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Fig. 3 State-and-transition model for alluvial channel changes. Underfit and overfit refer, respectively, to
channels that are too large or small relative to a reference discharge (Phillips 2013b)

Fig. 4 Complexity indicators for linear CEM, CEM treated as a cycle, and STM in Fig. 3. Spectral radius
values are, respectively, 1.000, 1.000, and 2.562; irregularity indices are 0.599, 0.500, and 1.067; and
algebraic connectivity is 1.000, 1.000, and 3.000

8 Discussion

As mentioned in the introduction, Twidwell et al. (2013) found that ecological
state-and-transition models overemphasize historical climax communities and certain
drivers of change. With respect to vegetation response to climate change, Svenning
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and Sandel (2013) also noted an overemphasis on equilibrium endpoints, and under-
appreciation of historical trajectories. In both cases rectifying those shortcomings will
almost certainly result in increasing articulation of transition networks, which the
results here show will lead to increases in structural complexity and regularity, and
decreases in historical contingency.

Recent studies on the role of initial conditions in ESS development assume more
homogeneous conditions in early stages,with increasingheterogeneity over time (Raab
et al. 2012; Biber et al. 2013). Structural complexity for any form of divergence is
greater than for a linear or cycle trend, as is graph irregularity. Historical contingency
remains high, as algebraic connectivity in simple or forking divergent graphs is the
same as in linear graphs, and less than that of cycles.

With respect to stratigraphic or paleoenvironmental sequences, a fundamental rela-
tionship exists between complexity and interpretation. Bailey (1998), for example,
proposed an alternative approach to stratigraphic analysis based not on sequence
stratigraphy (a cyclic model), but on complex, potentially chaotic behaviors. Thus,
observed gaps in or deviations from the expected sequence are not (without indepen-
dent evidence) assumed to be due to gaps in the record, but are accepted as representing
transitions as they actually occurred. This inevitably converts (the graph representation
of) the sequence from a simple cycle to a more complex network.

With respect to divergent vs. convergent evolution in geomorphology, the analyses
here show that diverging vs. converging patterns of the same size (N ,m) and topology
have no differences with respect to complexity. In this case complexity change is
dependent on directionality of the directed graph, so that converging patterns result in
reduced richness and fewer potential outcomes, and diverging patterns the opposite.
The convergent–divergent mode switching found by Phillips (2014) would tend to
increase ESS system complicatedness and structural complexity, decrease irregularity,
and increase algebraic connectivity. Similar outcomes with respect to evolutionary
network complexity occur as linear or cyclical sequence models are expanded and
elaborated to more strongly connected state-and-transition type models. Compare,
for example, the linear fluvial biogeomorphic succession model of Corenblit et al.
(2009) with the state transitions identified by Rountree et al. (2000), or the classic
linear channel evolution models compared to more recent multi-path CEMs (Van
Dyke 2013, 2016).

Debates regarding evolutionary pathways of soil formation have also highlighted
convergent and (or versus) divergent evolution, so implications are similar to those for
geomorphology of this regard. Still to be resolved, however, are the scale-contingent
differences in divergence or divergence in pedogenesis often encountered, and how
theymay affect overall complexity. Similar issues arise in ecology andgeomorphology,
though they have not been as widely discussed as in pedology. For niche convergence
vs. partitioning, the implications are as discussed for divergent vs. convergent trends
above. Where niche construction occurs, however, it would in general tend to increase
spectral radius and algebraic connectivity, with changes in irregularity dependent on
the relative changes in λ1 and d.

In ecology, binary alternative stable state models are often linked to ideas from
complexity science. However, in graph terms these are essentially N= 2 cycles and
thus are no more complex than linear or cyclical succession models. Where there
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are >2 alternative states, however, as in many ecological STMs, the graph structural
complexity increases accordingly.

Graph maturation requires that an evolutionary sequence has been completed, or
continued long enough for its structural pattern to fully emerge, and that observa-
tions of state changes are sufficient to reflect the pattern. For immature graphs—those
that are still developing or incompletely observed—complicatedness and structural
complexity cannot decrease, though they may remain constant. Trends that develop
splits or forks will increase in overall complexity and a decrease in the irregularity
index,while the algebraic connectivity remains unchanged. Trends that result in denser
interconnections among graph nodes with generally increase complexity and algebraic
connectivity.

9 Conclusions

Evolutionary trends and historical trajectories in ESS can be considered as a net-
work of transitions between system states, stages, or conditions. By representing these
networks as directed graphs, techniques from algebraic graph theory can be used to
quantify several aspects of complexity. These were applied to several archetypal struc-
tures of ESS historical trajectories: linear sequences, cycles, simple convergent and
divergent, and splitting or forking (bifurcating or n-furcating).

The spectral radius of the graph adjacency matrix is a measure of graph structural
complexity, and is highest for fully connected graphs, lowest for linear sequential and
cyclic graphs, and intermediate for various divergent and convergent patterns. The
irregularity index β (equal to the ratio of spectral radius to mean degree) represents
the extent to which a subgraph of the network (perhaps representing censored or
incomplete observation of the evolutionary sequence) is representative of the full
graph. Fully connected graphs have β = 1, indicating maximum regularity. Lower
values, such as those found in linear and cycle patterns, are associatedwith low spectral
radii, while higher values, such as those found in divergent and convergent patterns,
are linked to a single or few highly connected nodes with other poorly connected
nodes. Algebraic connectivity (μ(G)) indicates graph inferential synchronization and
is inversely related to historical contingency. The highest values and lowest historical
contingency are associated with fully connected and strongly connected mesh graphs,
whereas splitting or forking structures and linear sequences all have μ(G) = 1, with
cycles slightly higher.

ESS evolve, and so do their directed graphs. Starting with a linear sequence, diver-
gent branching, cycles, and graph articulation by transitions back to previously existing
states can occur. None of these trends reduces complicatedness or structural stability,
which can only remain constant or increase. Algebraic connectivity may increase, thus
decreasing historical contingency.

Improving some of the perceived shortcomings in ecological succession and state
transition models, as well as conceptual models of change in geomorphic systems,
generally involves further elaborating possible state changes (graph links), thus likely
pushing our understanding of those systems toward more structurally complex but less
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historically contingent constructs. These are illustrated by two applications, to forest
succession and alluvial channel change.

Many issues related to evolution of geomorphic, pedologic, and ecological systems
involve the relative prevalence of convergent and (or versus) divergent trends. Diverg-
ing vs. converging graphs of the same size and topology have no differences with
respect to complexity. In this case complexity change is dependent on directionality
of the directed graph, so that converging patterns result in reduced richness and fewer
potential outcomes, and diverging patterns the opposite. Convergent-divergent mode
switching, however, would generally increase ESS complexity, decrease irregularity,
and increase algebraic connectivity.
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