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Abstract The standard forward transformation equation plays a major role in coor-
dinate transformation between global and local datums. Thus, it is a prerequisite step
in the forward conversion of geodetic coordinates into cartesian coordinates in coor-
dinate transformation from global to local datum and vice versa. Numerous studies
have been carried out on converting cartesian coordinates to geodetic coordinates
(reverse procedure) through the application of iterative, approximate, closed form,
vector-based and computational intelligence algorithms. However, based on literature
covered pertaining to this study, it was realized that the existing researches do not
fully address the issue of applying and testing alternative techniques in the case of the
forward conversion. Hence, the purpose of this present study was to explore the coor-
dinate conversion performance of two different artificial neural network approaches
(backpropagation artificial neural network (BPANN) and radial basis function neural
network (RBFNN)) and multiple linear regression (MLR). The statistical findings
revealed that the BPANN, RBFNN and MLR offered satisfactory prediction of carte-
sian coordinates. However, the RBFNN compared to BPANN andMLR showed better
stability and more accurate prediction results. Furthermore, in terms of maximum
three-dimensional position error, the RBFNN attained 0.004 m while 0.011 and 0.627
mwere achieved, respectively, byMLR andBPANN.By virtue of the success achieved
in this study, themain conclusiondrawnhere is thatRBFNNprovides a promising alter-
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native in the forward conversion of geodetic coordinates into cartesian coordinates.
Therefore, the capability of artificial neural network as a powerful tool for solving
majority of function approximation problems in geodesy has been demonstrated.

Keywords Backpropagation artificial neural network · Radial basis function neural
network · Multiple linear regression · Standard forward transformation equation ·
Coordinate conversion

1 Introduction

The recent rapid advancement in satellite positioning technologies such as global posi-
tioning system (GPS) in capturing locations of stationary and non-stationary objects
on, above and beneath the Earth’s surface has increased the possibility of obtaining
coordinate positions with improved accuracy. These satellite positioning technologies
provide vast amounts of spatio-temporal datums in either curvilinear geodetic coordi-
nates (ϕ, λ, h) or cartesian coordinate (X,Y, Z) system. In the quest for solving most
practical GPS navigation, geodetic, cartographical and astro-geodetic problems, it is
important to convert geodetic coordinates into cartesian coordinates and vice versa
(Civicioglu 2012; Ligas and Banasik 2011; Shu and Li 2010; Zhu 1994). The process
of converting geodetic coordinates to cartesian coordinates is known as the forward
conversion.

This forward conversion is an intermediate step in converting theGPS positionmea-
surement to the local coordinate system (Vanicek and Steeves 1996; Cai et al. 2011).
This is because before the advent ofGPS, local geodetic datumswere established based
on classical surveying methods like triangulation, trilateration, traverse, astronomical
observation among others (Andrei 2006; Tierra et al. 2008). Hence, the local geodetic
datum involved data in only geodetic coordinates without the existence of cartesian
coordinates. This prevalent situation makes it impossible to utilize GPS coordinates
based on the global datum of world geodetic system 1984 (WGS84) in a local geodetic
system. The first step in applying GPS data locally requires the determination of trans-
formation parameters. The most widely used methods in literature for such an applica-
tion include the similarity models of Bursa–Wolf, Molodensky–Badekas, Veis model
and three-dimensional Affine (Ge et al. 2013; Pan et al. 2015; Solomon 2013; Zeng
2014, 2015; Ziggah et al. 2013). However, the major point here is that, before these
aforementioned similaritymodels could be applied, there is the need to convert all geo-
detic data of common points to cartesian coordinates. It must be noted here that without
such conversion, the similarity models cannot be used in the transformation parameter
determination for coordinate transformation between the global and local datums.

To accomplish this task, the standard forward transformation equation (Hoar 1982;
Leick 2004; Schofield 2001; Sickle 2010) given in Eq. (1) is mainly used as the first
step in the coordinate transformation procedure

X = (N + h) cosϕ cos λ

Y = (N + h) cosϕ sin λ,

Z = [N (1 − e2) + h ] sin ϕ,

(1)
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where ϕ, λ and h is the geodetic latitude, geodetic longitude and geodetic height while
X,Y, Z is the cartesian coordinates. N in Eq. (1) is the radius of curvature in the prime
vertical defined by Eq. (2) as

N = a
√
1 − e2 sin2 ϕ

. (2)

Here, e is the first eccentricity expressed in Eq. (3) as

e =
√
a2 − b2

a
, (3)

where a and b are the semi-major axis and semi-minor axis of the geodetic ellipsoid.
Although Eq. (1) is mostly applied in geodetic practice, there exist other numeri-

cal methods such as artificial neural network (ANN) that can serve as an alternative
approach. It is well acknowledged that the introduction of ANN applications has rev-
olutionized the field of mathematical geodesy in terms of its attainable accuracy and
in most cases, its dominance over the empirical methods. This assertion is well doc-
umented in literature. For example, ANN has been applied to solve most coordinate
transformation problems between global and local datums (Gullu 2010; Gullu et al.
2011; Lin and Wang 2006; Mihalache 2012; Tierra et al. 2008, 2009; Tierra and
Romero 2014; Turgut 2010; Yilmaz and Gullu 2012; Zaletnyik 2004), for GPS height
conversion (Fu and Liu 2014; Liu et al. 2011; Lei and Qi 2010; Tieding et al. 2010;Wu
et al. 2012a), in geodetic deformation modelling (Bao et al. 2011; Du et al. 2014a, b;
Gao et al. 2014; Pantazis and Eleni-Georgia 2013; Yilmaz and Gullu 2014; Yilmaz
2013), earth orientation parameters determination (Liao et al. 2012; Schuh et al. 2002;
Yu et al. 2015), precise orbital prediction (He-Sheng 2006; Li et al. 2014), gravity
anomaly estimation (Hajian et al. 2011; Hamid and Mohammad 2013; Tierra and De
Freitas 2005), geoid determination (Kavzoglu and Saka 2005; Pikridas et al. 2011;
Stopar et al. 2006; Sorkhabi 2015; Veronez et al. 2006, 2011), transforming from
cartesian coordinates to geodetic coordinates (Civicioglu 2012) and many others.

It is important to know that, over the past years, there has been a surge of inter-
ests within the geodetic community in converting cartesian coordinates into geodetic
coordinates. This process is known as the reverse coordinate conversion technique.
Numerous methods such as iterative, approximate, closed form, vector-based algo-
rithms (Feltens 2007, 2009; Fok and Iz 2003; Gerdan and Deakin 1999; Shu and
Li 2010) and artificial intelligence algorithms (Civicioglu 2012) have been proposed
and used. More importantly, in Civicioglu (2012) the proposed differential search
algorithm and computational-intelligence algorithms utilized were only tested in the
reverse transformation and not the forward conversion. Hence, ANN was applied in
this study to ascertain its ability to convert geodetic coordinates to cartesian coordi-
nates (forward conversion).

Additionally, the regression technique was applied in this study as an alterna-
tive mathematical procedure to carry out the forward conversion. Several research
works have been carried out using multiple linear regression (MLR) and simple linear
regression (SLR) procedures in coordinate transformation from global datum to local
datum and vice versa (Dawod et al. 2010; Featherstone 1997; Odutola et al. 2013;
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Ziggah et al. 2012). It has been established that the regression techniques achievable
accuracies are applicable to surveying and mapping related works. Therefore, this
study adopted the MLR method over the SLR based on the multiple input parameters
utilized in Eq. (1) to carry out the forward coordinate conversion. This will help main-
tain system consistency betweenMLR and Eq. (1). Here, the objective is to investigate
and compare the performance of ANN to MLR in converting geodetic coordinates to
cartesian coordinates.

However, a distinction should be drawn here that the artificial neural networks and
the multiple linear regression technique have so far been applied only in coordinate
transformation between different datums and not in coordinate conversion. The dif-
ference is that, in coordinate conversion as is the case in the present study, there is
no change of datum and the geodetic ellipsoid parameters chosen for the transfor-
mation process are all based on the same geodetic datum (OGP 2012). That is, the
geodetic coordinates converted into cartesian coordinates and vice versa are all based
on the same geodetic datum, whereas, in coordinate transformation, the source and
target coordinate reference systems are based on different datums. Here, transforma-
tion parameters are empirically determined and thus maybe subject to measurement
errors (OGP 2012).

Furthermore, almost all the publications have not fully addressed the issue of
applying alternative techniques in the forward conversion of geodetic coordinates
to cartesian coordinates. Moreover, upon careful review of existing researches the
authors realized that the ANN techniques in most cases serve as a better practicable
alternative technology to the existing approaches.

In line with the above, this present study, for the first time, explored the regres-
sion method and the supervised learning technique of ANN in the forward conversion
of geodetic coordinates to cartesian coordinates. To achieve this, the backpropagation
artificial neural network (BPANN), radial basis function neural network (RBFNN) and
multiple linear regression (MLR)methods were applied. This study also highlights the
comparison between BPANN and RBFNN through the use of a set of training, valida-
tion and test data based on the results of statistic performance indicators such as mean
square error (MSE), coefficient of determination (R2), correlation coefficient (R),
mean bias error (MBE), mean absolute error (MAE), noise to signal ratio (NSR), rel-
ative error correction (REC), Legates and McCabe index (LM) and three-dimensional
position error. The findings showed that BPANN compared to RBFNN had the latter
model more significant for converting geodetic coordinates to cartesian coordinates.
Furthermore, comparison between the BPANN, RBFNN and MLR models revealed
that the RBFNN produced much better results than the BPANN andMLR. Hence, this
study will serve as an added contribution to existing knowledge of ANN applications
in geodesy.

The paper is structured as follows: in Sect. 2 the necessary background informa-
tion on ANN is first presented before narrowing it down to the steps adopted in the
ANN models development. This is followed by a description of BPANN and RBFNN
structures. Section 3 covers a brief overview of multiple linear regression technique.
Statistical performance indices used to assess the ANNmodels prediction capabilities
are presented in Sect. 4. Section 5 contains the application of the ANN and MLR
methods of practical case, while Sect. 6 presents the concluding remarks.
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2 Artificial Neural Network Methods

Artificial neural network (ANN) is a technology inspired by the adaptive, parallel com-
puting style of the human brain and functions through a variety of theoretical concepts
and computer analogies (Arbib 2003). It involves the use of computational techniques
tomodel the structure, operation and behaviour that imitate the properties of biological
neural networks. ANN consists of a number of neurons interconnected with links of
variable synaptic weights that processes information fed into the network through an
interaction with the environment. Thus, each neuron unit receives input information
weighted by a factor which signifies the strength of the synaptic connection to produce
an output. This output is then sent as a new input to another neuron by adapting new
weights if the total sum of the weighted inputs is above a certain threshold. Generally,
there are different types of ANN based on their architecture. However, a typical ANN
architecture applied inmost disciplines such as geodesy is structured into different lay-
ers. It is worth mentioning that the application of ANN in mathematical geodesy can
be categorized into two aspects. That is, the type of function approximation problem
to be solved and the type of training algorithm to be applied. The supervised training
algorithm was adopted in this study for the ANN model development and subsequent
prediction. This is because in the supervised learning, the training data comprise of
training examples with each example having a pair of input vector and desired output
data. The main objective here is to build a forecasting model that can produce reason-
able predictions for mapping new examples. Besides, the supervised training provides
the opportunity to interpret the output results based on the training values. In this
study, an optimized BPANN and RBFNN models for converting geodetic coordinates
into cartesian coordinates were developed. The choice of these networks was based on
their frequent use as universal function approximators (Hartman et al. 1990; Hornik
et al. 1989; Park and Sandberg 1991) within the geoscientific disciplines. Figure 1
shows a typical ANN architecture with inputs (X1, X2, …, XN ) and output (Y ).

In order to develop the BPANN and RBFNN prediction models and achieve the
results presented in this paper, the procedural steps adopted are described in the sub-
sequent sections.

2.1 Data and Selection of Input Parameters

In the present study, a total of 328GPS geodetic coordinates (ϕ, λ, h) collected by field
measurement in Tarkwa, Ghana, located in West Africa, were used in the BPANN and
RBFNNmodel formulation. It iswell acknowledged that one of the contributing factors
affecting the estimation accuracy of ANN is related to the quality of datasets used in
model-building and selection of appropriate inputs parameters (Dreiseitl and Ohno-
Machado 2002; Ismail et al. 2012). Therefore, to ensure that the obtained geodetic
coordinate (ϕ, λ, h) data from the GPS receivers are reliable and accurate, several
factors such as checking of overhead obstruction, observation period, observation
principles and techniques as suggested by many researchers were considered (Yakubu
and Kumi-Boateng 2011). In addition, all potential problems relating to GPS survey
work were also considered.
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The next step was the identification of the input parameters for the ANN train-
ing. It must be noted here that the input neurons act as control variables with an
influence on the desired output of the neural network. Hence, the input data should
represent the condition for which training of the neural network is done (Konaté et al.
2015). Consequently, the 328 GPS points measurement was first transformed into
cartesian coordinates (X, Y, Z) using Eq. (1). The GPS WGS84 semi-major axis, a
and semi-minor axis, b parameter values of 6,378,137.0 and 6,378,299.99899 m were
implemented in Eq. (1). It is important to note that, in order for the ANN models to
have consistency with Eq. (1), the radius of curvature in the prime vertical (N ) and
the square of the first eccentricity (e2) values were estimated separately. With this in
mind, (φ, λ, h, N , e2)was used as the input layer data while (X,Y, Z) was used as the
output layer data.

2.2 Data Normalization

In order to train the neural network, data set must be normalized. Generally, the orig-
inal data are expressed in different units with different physical meaning. Therefore,
to ensure constant variability in the ANN model, data set are usually normalized to a
certain interval such as [−1, 1], [0, 1] or other scaling criterion. This data normaliza-
tion improves convergence speed and doing so, reduces the chances of getting stuck
in local minima. In this study, the selected input and output variables were normalized
into the interval [−1, 1] using Eq. (4) (Muller and Hemond 2013; Wu et al. 2012b)

yi = ymin + (ymax − ymin) × (xi − xmin)

(xmax − xmin)
, (4)

where yi represents the normalized data, xi is the measured coordinate values, while
xmin and xmax represent theminimumandmaximumvalue of themeasured coordinates
with ymax and ymin values set at 1 and −1, respectively.

2.3 ANN Architecture

The ANN models that are popular and widely used in solving most function approx-
imation problems in geosciences are, respectively, the BPANN and RBFNN. In this
study, the BPANN and RBFNN were utilized due to its frequent application. These
networks have a feed forward topology consisting of input, hidden and output layers
that are fully connected together. Detailed description of their structures is given in
Sects. 2.5 and 2.6, respectively.

2.4 Network Training

It is well known that datasets are trained in ANNs to generate the required desired
output for a particular input. Likewise, in this study, the aim is to train the ANNs to find
an approximation of the functional relation between cartesian coordinates (X,Y, Z)
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and selected input variables (φ, λ, h, N , e2). Owing to the special property of ANN
technology as a black box system with no specific function expression, the authors
assumed a functional relation for the trained neural networks expressed inEqs. (5–7) as

Xi = F (φ, λ, h, N , e2)i , (5)

Yi = G (φ, λ, h, N , e2)i , (6)

Zi = H (φ, λ, h, N , e2)i , (7)

where F,G and H are functions that relate the input vectors with corresponding out-
put vectors while i = 1, 2, 3, …, N (N = number of observation points). To carry out
the network training, the data set after normalization was divided into three subsets,
namely training, validation and testing.

Here, 150 points were selected out of the 328 GPS point measurement as reference
points set P = (P1, P2, . . .P150) and applied as the training set. Out of the remaining
178 data points, 78 were used as validation set V = (V1, V2, V3, . . ., V78) while
the remaining 100 points were used as the test set T = (T1, T2, T3, . . ., T100). The
training set served as parameterization (weight adjustment) to minimize the error
function,while the validation setwas used for fine-tuning the parameters of the network
during learning. This provided an unbiased estimate of the generalization error. For the
network training, the Levenberg-Marquardt backpropagation algorithm was used to
train the BPANN and the gradient descent rule was used to train the RBFNN. During
this phase, the training and validation data sets were used together. The two networks
(BPANNandRBFNN)were allowed to train until no additional effective improvement
occurred. As a result, if there was a significant change in terms of error between the
training and validation results, then there was a possibility of overfitting occurring.
In such situations, the error on the validation set typically begins to rise although at
the initial phase of training, both the validation and training error were at a minimum.
Such occurrences will make it difficult for the network to perform better when unseen
data (testing data) are presented to it. This implies that the ANN has memorized the
specific details of the training set instead of the general pattern found in all present and
future data. After training the networks, the testing data which had no effect on training
were applied to the trained models to provide an overall independent assessment of
the network performance.

In determining the optimum BPANN and RBFNN model, the mean squared error
(MSE) of all the models were monitored at each stage of training, validation and
testing. In addition, the coefficient of determination (R2) and correlation coefficient
(R) were used to judge the performance of the ANN models. After several trials, the
model with the lowest MSE value and highest R2 and R values was selected as the
better model. Other statistic indicators for evaluating the BPANN and RBFNNmodels
obtained results are given in Sect. 4. It is notable to know that only the results given
by the optimum performing BPANN and RBFNN models are presented in this study.

2.5 Backpropagation Artificial Neural Network

The backpropagation artificial neural network (BPANN) is one of themostwidely used
ANN models in geodesy (Lin and Wang 2006; Mihalache 2012; Tierra and Romero
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Fig. 1 Artificial neural network
structure
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2014; Turgut 2010; Yilmaz and Gullu 2012; Zaletnyik 2004). This network as shown
in Fig. 1 contains input, hidden and output layer of processing units with each layer
feeding input to the next layer in a feedforward manner through a set of connection
weights (Yegnanarayana 2005). The input layer is an outlet that receives the input
information, whereas the output layer gives the final results of the computation. In
between these two layers is the hidden layer chamber where data transferred from the
input layer are analysed and processed.

It is well known that the efficiency of BPANN model depends on the number of
hidden neurons, hidden layers and type of activation functions applied. Usually, the
number of hidden neurons is obtained through the sequential trial and error approach.
This is partly due to (i) the type of problem at hand, (ii) the choice of neural network
architecture and (iii) the proposed theoretical concepts that are yet to be universally
accepted to clarify the number of hidden units needed to approximate a given function.
In this study, the optimum number of neurons in the hidden layer was obtained based
on the smallest mean squared error.

Determining the number of hidden layers in this work was based on Hornik et al.
(1989) where it was proven that the BPANN with one hidden layer is sufficient as a
universal approximator of any discrete and continuous functions. Hence, one hidden
layer was used in this research. Moreover, to introduce non-linearity into the network,
the hyperbolic tangent activation function was selected for the hidden units while a
linear function was applied for the output nodes. The hyperbolic tangent function
(Yonaba et al. 2010) is defined in Eq. (8) as

f (x) = tanh(x) = 2

1 + e−2x − 1, (8)

where x is the sum of the weighted inputs.
It is important to note that the BPANN training can be characterized as a non-linear

optimization problem, w∗ (Konaté et al. 2015), given by Eq. (9)

w∗ = argmin E(w), (9)

where w is the weight matrix and E (w) is the error function. The purpose of the
network training is to find the optimumweight connection (w∗) that minimizes E (w)
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such that the estimated outputs from the BPANN will be in good agreement with the
target data. This E (w) (Konaté et al. 2015) is evaluated at any point of w shown in
Eq. (10) as

E (w) =
∑

n

En (w), (10)

where n is the number of training examples and En (w) is the output error for each
example n. En (w) (Konaté et al. 2015) is mathematically defined by Eq. (11)

En (w) = 1

2

∑

j

(dnj − ynj (w))2, (11)

where dnj and ynj (w) are desired network outputs and estimated values of the j th
output neuron for the nth example, respectively. Therefore, substituting Eq. (11) into
Eq. (10) gives the objective function to be minimized expressed in Eq. (12) (Konaté
et al. 2015) as

E(w) = 1

2

∑

n

∑

j

(dnj − ynj (w))2. (12)

The training process continues by adjusting the weight of the output neurons and then
proceeds towards the input data until the error function reaches an acceptable value.
There exist several numerical optimization algorithms to perform this weight adapta-
tion (Kecman 2001; Nocedal and Wright 2006). In this study, Levenberg-Marquardt
algorithm (LMA) was chosen to train the BPANN because it is faster and has more
stable convergence compared to the popular gradient descent algorithm. This was
proven in the works of Hagan and Menhaj (1994) and Wang (2009). The LMA can
be thought of as a combination of steepest descent and the Gauss–Newton method.
The algorithm behaves like steepest descent method when the current solution is far
from the correct one, thus slow but guaranteed to converge. On the other hand, when
the algorithm approaches the correct solution, it becomes a Gauss–Newton method.
Detailed mathematical theory of LMA can be found in (Lourakis 2005; Nocedal and
Wright 2006).

2.6 Radial Basis Function Neural Network

The radial basis function neural network (RBFNN) has a feedforward topology embed-
ded in three layers: input, hidden and output layers that are completely linked together.
An example is as shown in Fig. 1. This network is basically used for supervised train-
ing.

The RBFNN input layer receives information into the network and transfer into
the hidden layer space by means of unweighted connections. The hidden layer then
transforms the input data by means of a non-linear function. Within the hidden layer,
each neuron calculates a Euclidean norm that shows the distance between the input
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to the network and the position of the neuron called the centre. This is then inserted
into a radial basis activation function which calculates and outputs the activation of
the neuron (Deyfrus 2005). The present study applied the Gaussian activation function
(Gurney 2005) expressed in Eq. (13) as

θ j (X) = exp

[

−‖X − μi‖2
2σ 2

j

]

, (13)

where X is the input vector, μi is the centre of the Gaussian function and σj is the
spread parameter of the Gaussian bells and ‖‖ is the Euclidean norm. The output
layer contains the linear function and uses the weighted sum of the hidden layer as
propagation function.

Let y(H)
ki be the output of the kth radial basis function on the i th sample. The output

of each target node j is computed using the weightsw jk (Michie et al. 1994) expressed
in Eq. (14) as

y ji =
∑

k

w jk y
(H)
ki . (14)

Let the target output for sample i on target node j be Y ji . The error function E(w)

(Michie et al. 1994) is written in Eq. (15) as

E(w) = 1

2

∑

j i

(
∑

k

w jk y
(H)
ki − Y ji

)2

, (15)

which has its minimum where the derivative (Eq. (16))

dE

dwrs
=

∑

k

∑

i

wrk y
(H)
ki y(H)

j i −
∑

i

Yri y
(H)
si , (16)

vanishes. Let R be the correlation matrix of the radial basis function outputs given by
Eq. (17) as follows

R jk =
∑

i

y(H)
ki y(H)

j i . (17)

The weight matrix w∗ (Eq. (18)) which minimises E lies where the gradient vanishes

w∗
jk =

∑

r

∑

i

Y ji y
(H)
ri (R−1)rk . (18)

Thus, the problem is solved by inverting the square H × H matrix R, where H is the
number of radial basis function. This matrix inversion can be solved using the singular
value decomposition (SVD) approach whereby an approximate inverse is provided by
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diagonalising the matrix. The eigenvalues exceeding zero are inverted by a parameter-
specified margin and transformed back to the original coordinates. This provides an
optimal minimum-norm approximation to the inverse in the least-mean-squares sense
(Michie et al. 1994). This training process continues until the network error reaches
an acceptable value.

3 Multiple Linear Regression

The multiple linear regression (MLR) is an extensively used technique for articulating
the dependence of a response variable on several explanatory variables. It fits a linear
combination of the components of multiple input parameters xi to a single output
parameter y defined in Eq. (19) (Ghorbani et al. 2015) as

y = a0 +
N∑

i=1

ai xi , (19)

where a0 is the intercept (values when all the independent variables are zero) while ai
values denote the regression coefficients which were determined in this study using
the least square approach. Here, i in Eq. (19) is an integer varying from 1 to N , where
N is the total number of observations. Since there are several variables that can be
used as candidates for predictor variables in the MLR model formulation, it would be
demanding having to try every possible combination of variables. Therefore, in this
study, Pearson correlation analysis was applied as a criterion for predictor selection
in a stepwise manner.

4 Assessment of Model Quality

TheBPANNandRBFNNmodels’ performance for training, validation and testing data
was evaluated. Thus, by examining the discrepancies between the measured training,
validation and testing data to those predicted by the BPANN and RBFNN models. In
this study, mean squared error (MSE) (Ali and Abustan 2014) was used as a criterion
to determine the optimumBPANN and RBFNN structures. The correlation coefficient
(R) (Banarjee et al. 2011) and coefficient of determination (R2) (Krause et al. 2005),
on the other hand, were used to judge the ANNmodels performance. Their respective
mathematical representations are given by Eqs. (20–22), respectively, as

MSE = 1

N

N∑

i=1

(Oi − Pi )
2, (20)

R =
⎛

⎝
∑N

i=1 (Oi − O)(Pi − P)
√∑N

i=1 (Oi − O)2 ×
√∑N

i=1 (Pi − P)2

⎞

⎠ , (21)

R2 =
⎛

⎝
∑N

i=1 (Oi − O)(Pi − P)
√∑N

i=1 (Oi − O)2 ×
√∑N

i=1 (Pi − P)2

⎞

⎠

2

. (22)
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Additionally, to produce amore comprehensivemodel performance analysis consistent
with the training, validation and testing results, dimensioned error statistic indicators
such as mean bias error (MBE), mean absolute error (MAE) and noise to signal ratio
(NSR) were utilized in the model valuation. Their mathematical expressions (Ali and
Abustan 2014; Banarjee et al. 2011; Krause et al. 2005) are given by Eqs. (23–25)
as

MBE = 1

N

N∑

i=1

(Oi − Pi ), (23)

MAE = 1

N

N∑

i=1

|Oi − Pi |, (24)

NSR =
[

1
N−1

∑N
i=1 (Oi − Pi )2

]1.2

O
. (25)

Furthermore, two model efficiency-based statistics, Legates and McCabe index (LM)
and relative error correction (REC), were also implemented. They are expressed
(Legates and McCabe 1999; Hu et al. 2014) in Eqs. (26–27) as

LM = 1 −
∑N

i=1 Abs(Oi − Pi )
∑N

i=1 Abs(Oi − Ō)
, (26)

REC = 100 −
[
1

N

N∑

i=1

|Oi − Pi |
Oi

× 100

]

. (27)

With reference to Eqs. (20–27), Oi is the measured cartesian coordinates and
Ō is the mean of the measured cartesian coordinates. While Pi is the predicted
cartesian coordinates and P is the mean of the predicted cartesian coordinates.
i is an integer varying from 1 to N where N is the total number of observa-
tions.

5 Application

5.1 ANN Models Developed

The main aim of this study was to convert geodetic coordinates (ϕ, λ, h) into cartesian
coordinates (X,Y, Z) using artificial neural network (ANN) technology to develop
prediction models. The proposed ANN models (BPANN and RBFNN) accepted for
converting geodetic coordinates (φ, λ, h) into cartesian coordinates (X,Y, Z) consist
of three layers: input layer, hidden layer and output layer. For the ANN model formu-
lation, the data set was split into three divisions: training, validation and testing sets, as
described in Sect. 2.4. The supervised learning procedure was applied to the BPANN
and RBFNN with their corresponding input (φ, λ, h, N, e2) and target (X,Y, Z) data
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Table 1 The results from the training, testing and validation data sets for the ANN models

Data set BPANN RBFNN

X Y Z X Y Z

Training

MSE (m) 1.0368E−08 3.1508E−06 1.5570E−08 2.1155E−10 2.5308E−10 1.7889E−10

R2 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998

R 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999

Validation

MSE (m) 7.5631E−08 3.3258E−03 2.2799E−06 6.3710E−08 4.9676E−07 6.3794E−08

R2 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998

R 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999

Testing

MSE (m) 4.0335E−06 2.7128E−02 1.7799E−06 2.7898E−08 5.1881E−07 6.5851E−08

R2 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998

R 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999

normalized between −1 and 1. In this study, the BPANN structure used is made up
of five inputs with a hyperbolic tangent function from the input layer to a single hid-
den layer, and a linear transfer function to the output layer. The network was trained
for 1000 epochs using the Levenberg–Marquardt backpropagation algorithm with a
learning rate of 0.03 and a momentum coefficient of 0.7. It has been established that
working with the momentum term makes optimization more robust with respect to
the choice of learning rate (Kecman 2001), thereby improving convergence speed in
the network. The five input data were trained and tested by the BPANN, and the opti-
mal number of neurons in the hidden layer was identified based on a sequential trial
and error procedure. The network that yielded the best results with the lowest MSE,
largest R2 and R values from the testing dataset was selected as the best BPANN
scheme. After several trials, the optimum structure of the BPANN for converting geo-
detic coordinates into X,Y and Z cartesian coordinates was [5 − 8 − 1], [5 − 4 − 1]
and [5 − 7 − 1], respectively. Thus, for X output vector, there are five inputs with
eight hidden neurons. Y and Z output vector had four and seven hidden neurons with
five inputs. Table 1 shows the optimum performance results of BPANN in training,
validation and testing period.

The RBFNN model, on the other hand, comprises of five inputs, one hidden layer
using Gaussian function as the non-linear activation and an output layer containing
linear activation function. The network was trained using the gradient descent learn-
ing algorithm in which the weights are adapted in part to the deviation between the
predicted output and target output. In determining the best RBFNN structure, the
MSE, R2 and R of all the trained models were examined at each phase of training,
validation and testing. The model that gave the smallest MSE, largest R2 and R in
the testing dataset was selected as the optimum RBFNN architecture. The optimum
RBFNN structure selected for converting geodetic coordinates into cartesian coor-
dinates was five inputs with one hidden layer of 30 neurons for each output vector
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Fig. 2 Training data (X coordinates) prediction results for a backpropagation artificial neural network
(BPANN) and b radial basis function neural network (RBFNN)

(X,Y, Z), that is, [5−30−1]. Their respective width parameters (σ ) determining the
extent of each radial basis function utilized in the RBFNN structures for predicting
X,Y, and Z cartesian coordinates were 13, 22, and 26. Table 1 shows the optimal
performance results obtained in training, validation and testing stages of the RBFNN
approach.

It is pertinent to note that theMSE utilized in this study was acting as the optimality
criterion to aid in selecting the best BPANN and RBFNN structures for converting
geodetic coordinates into cartesian coordinates. On the basis of the results, the MSE
values (Table 1) obtained for the training data in both BPANN and RBFNN structures
considering the X,Y and Z coordinates depict the closeness of the models fit to the
measured training data. Figures 2a, b, 3, 4a, b depict this closeness of fit of the BPANN
and RBFNN predictions to the measured cartesian coordinates based on the training
data.
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Fig. 3 Training data (Y coordinates) prediction results for a backpropagation artificial neural network
(BPANN) and b radial basis function neural network (RBFNN)

Moreover, the high R2 and R values (Table 1) obtained in training further confirmed
the quality of training performances in both BPANN and RBFNN structures. Here,
the R2 values attained for the training data indicate the tolerability of the BPANN and
RBFNN prediction values. Thus, 99% changes in the measured cartesian coordinates
(training target values) are explained by the variation in training predicted output
values. The R findings, on the other hand, show the strength and direction of linear
dependency existing between the training targets and the predicted training outputs.
Correspondingly, the MSE, R2 and R values at the training stage also imply that
the calibration capability of the BPANN and RBFNN structures are better for the
given training data. Judging from the outcomes in Table 1, it can be inferred that both
BPANN and RBFNN structures achieved satisfactory training performance based on
the MSE values, hence indicating that in the case of this study, the BPANN and
RBFNN have both demonstrated greater learning abilities. Specifically, the results
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Fig. 4 Training data (Z coordinates) prediction results for a backpropagation artificial neural network
(BPANN) and b radial basis function neural network (RBFNN)

from Table 1 revealed superiority in RBFNN training performance, since RBFNN
structure produced the lowest MSE compared to BPANN although identical R2 and
R values were achieved by the two ANNs.

In the validation stage, performances of the various ANNs prediction model that
were created based on the training dataset were compared thus to estimate how well
the BPANN and RBFNN structures had been trained. It is interesting to know that in
Table 1, the best performance of the trained BPANN and RBFNNmodels based on the
MSE results obtained from the validation data are in close agreement with the MSE
values obtained in training. The MSE results indicate a good statistical estimation
measure of the residuals generated by the BPANN and RBFNN from the validation
data. Besides, the high values of R2 and R attained were also in proximity to that
from the training data. The inference to be made here is that the validation results
did not show any significant overfitting scenario of the trained BPANN and RBFNN

123



Math Geosci (2016) 48:687–721 703

Fig. 5 Validation data (X coordinates) prediction results for a backpropagation artificial neural network
(BPANN) and b radial basis function neural network (RBFNN)

structures. Figures 5a, b, 6 and 7a, b show the plot of the predicted validation output
values from the trained BPANN and RBFNN models using the validation data.

When the training and validation phase was over, the testing phase was carried
out. This was necessary to independently test and confirm the predictive power of
the optimized BPANN and RBFNN structures. In this procedure, the optimized ANN
models applied on the test data provided a realistic estimate of their performance on
entirely unseen data. The statistical performance criteria (MSE, R2 and R) achieved
by the BPANN and RBFNN using the testing data are presented in Table 1. The testing
data MSE values obtained further provided an independent measure of the BPANN
and RBFNNmodels’ performance. By virtue of the testing dataMSE results (Table 1),
it can obviously be concluded that the predicted testing outputs rendered by the trained
BPANNandRBFNNmodels are significantly close to the desired testing target outputs
after the testing data (untrained) were introduced to the neural networks. This indicates
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Fig. 6 Validation (Y coordinates) prediction results for a backpropagation artificial neural network
(BPANN) and b radial basis function neural network (RBFNN)

that the BPANN and RBFNN are well developed and have achieved generalization.
This assertion can also be gathered from Figs. 8a, b, 9 and 10a, b correspondingly.

Again, taking into account the MSE test results (Table 1), it was uncovered that
the RBFNN outperformed the BPANN since RBFNN structure produced the lowest
MSE values, while BPANN suffered from higher MSE values. It can, therefore, be
concluded that, in this study, the RBFNN scheme fits cartesian coordinates better than
BPANN.

Furthermore, the adequacy of the BPANN and RBFNN predictions based on test
data was ascertained using the R2. Upon inspection, it was evident from Table 1 that
both BPANN and RBFNN model yielded identical R2 values (testing data). These
values of R2 are evidently showing that the predicted test data points fall closely to
the line of best fit and thus, the BPANN and RBFNN models delineate discrepancy
in the test data with high precision and accuracy. The testing data R values (Table 1)
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Fig. 7 Validation data (Z coordinates) prediction results for a backpropagation artificial neural network
(BPANN) and b radial basis function neural network (RBFNN)

supported this high strength of correlation between measured and predicted test coor-
dinates. Similarly, the high R values obtained for the testing data indicate that both
BPANN and RBFNN implemented in this study have demonstrated good potential in
converting geodetic coordinates to cartesian coordinates.

5.2 Residual Analysis

With reference to Figs. 2a, b, 3, 4, 5, 6, 7, 8, 9, 10a, b, due to the closeness of the
respective predicted outputs from the BPANN and RBFNNmodels, it is a challenge to
visually identify the amount the predicted outcomes deviate from their corresponding
measured data. Hence, it is essential that a plot depicting clearly the variation of the
residuals obtained from the BPANN and RBFNN models in training, validation and
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Fig. 8 Testing data (X coordinates) prediction results for a backpropagation artificial neural network
(BPANN) and b radial basis function neural network (RBFNN)

testing stages are shown. First, the residuals were estimated by subtracting the pre-
dicted coordinates at the various stages from its corresponding measured coordinates.
The obtained residuals signify the prediction limitations of the BPANN and RBFNN
models developed.

Figures 11a–c, 12, 13a, b, c show the variation in residuals with respect to the
training, validation and test data points when the BPANN and RBFNN models were
executed. Ideally, a functional relation model should produce zero error results.
However, in real-world situations, this is almost impossible to achieve in function
approximation related problems. Therefore, these graphical illustrations (Figs. 11a–c,
12, 13a–c) offer a better description of the dynamics on how much the BPANN and
RBFNN models predicted coordinate values matched with the measured coordinates
by way of errors along the ideal zero error (vertical axes).

A visual check in Figs. 11a–c, 12, 13a–c confirms graphical evidence that the
RBFNNmodelwas able to produce better predictions thanBPANNmodel. In addition,
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Fig. 9 Testing data (Y coordinates) prediction results for a backpropagation artificial neural network
(BPANN) and b radial basis function neural network (RBFNN)

a fairly steady change along the ideal zero error valuewas observed for RBFNNmodel.
Although based on visual inspection, there have been slightly inconsistencies in the
reduction trend of BPANN residuals; the BPANNmodel produced satisfactory results
based on the error interval range. However, in comparison, the RBFNN was able to
learn and generalize better than the BPANN.

It is well acknowledged that for practical applications, coordinates are usually
utilized either in two-dimension or three-dimension. This means that individual coor-
dinate points as a stand-alone do not have any physical meaning unless combined to
form two-dimension or three-dimension. In view of this, the predicted X, Y, Z coordi-
nates from the BPANNandRBFNNwere considered in three-dimension. This enabled
the practical application of the predicted outcomes of the BPANN andRBFNNmodels
to be ascertained. A summary of the total error obtained using both the BPANN and
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Fig. 10 Testing data (Z coordinates) prediction results for a backpropagation artificial neural network
(BPANN) and b Radial basis function neural network (RBFNN)

RBFNN is presented in Table 2 by using themean position error (MPE), standard devi-
ation (SD), maximum and minimum coordinate differences as the error performance
indices (EPI). They are given by Eqs. (28–32), respectively, as

MPE = 1

N

N∑

i=1

3D PSi , (28)

SD =
√√
√
√ 1

N

N∑

i=1

(3D PS − 3D PS)2, (29)

Max MPE = max(3D PS), (30)

Min MPE = min(3D PS). (31)
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Fig. 11 Backpropagation artificial neural network (BPANN) and radial basis function neural network
(RBFNN) training data descriptive error distribution for aX coordinates,bY coordinates and cZ coordinates
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Fig. 12 Backpropagation artificial neural network (BPANN) and radial basis function neural network
(RBFNN) validation data descriptive error distribution for a X coordinates, b Y coordinates and c Z coor-
dinates
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Fig. 13 Backpropagation artificial neural network (BPANN) and radial basis function neural network
(RBFNN) testing data descriptive error distribution for a X coordinates, b Y coordinates and c Z coordinates
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Table 2 Total error of the three-dimensional coordinate differences with the ANN models

EPI BPANN RBFNN

Training (m) Validation (m) Testing (m) Training (m) Validation (m) Testing (m)

MPE 1.228E−03 0.023 0.090 1.976E−05 4.493E−04 4.726E−04

SD 1.290E−03 0.053 0.1390 1.597E−05 6.542E−04 6.270E−04

Min MPE 5.123E−05 8.249E−05 2.928E−04 5.110E−07 6.006E−06 1.647E−05

Max MPE 9.319E−03 0.308 0.640 9.127E−05 0.003 0.004

Here, 3D PS is the three-dimensional position error expressed in Eq. (32)

3D PS =
√

�X2 + �Y 2 + �Z2, (32)

where �X , �Y , �Z is the individual coordinate differences between the predicted
and measured in relation to the data set (training, validation and testing) under con-
sideration.

Table 2 shows that in our case of the forward conversion from geodetic coordinates
to cartesian coordinates, the RBFNNmodel is dominant over the BPANNmodel. This
is in line with the RBFNN attaining the least mean three-dimensional position error
(MPE) in training, validation and testing data, respectively (Table 2), thus indicat-
ing a massive improvement in three-dimensional positional accuracy of the converted
coordinates given by the RBFNN model compared to the BPANN model. This asser-
tion conforms to Fig. 14a–c where the three-dimensional position error in training,
validation and testing data is displayed.

The estimated SD values for the three-dimensional position error signify a practical
expression for the precision of the predicted training, validation and test outputs from
the two ANNmodels. In Table 2, it can be seen that the RBFNN was again superior to
the BPANN because, RBFNN had the least SD values which indicate the limit of the
error bound by which every value within the predicted training, validation and testing
data sets varies from its mean value. On the strength of the SD values obtained by
the RBFNN model, it can be stated that its predicted outcomes are more precise and
accurate than the BPANN model. Moreover, on the basis of the results in Table 2, it
can also be seen that the RBFNN demonstrated good generalization capability in the
testing data than the BPANN.

The inference made in line with the maximum and minimum values (Table 2) is
that the RBFNN model predicted outputs in training, validation and testing differed
by not more than 0.004 m, whereas 0.64 m was realized by the BPANN model. This
additionally gives a better indication about the accuracy range of the two ANNmodels
in terms of their practicality. In conformance to the maximum and minimum values
(Table 2), the RBFNN model can thus serve as a better substitute for the standard
forward transformation equation (Eq. 1) in converting geodetic coordinates to cartesian
coordinates compared to the BPANN model.

Considerably, these errors incurred in this study during the BPANN and RBFNN
models’ formulation and subsequent application could be attributed to two factors. The
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Table 3 ANN models performance assessment

Dataset BPANN RBFNN

X (m) Y (m) Z (m) X (m) Y (m) Z (m)

Training

MBE 5.33E−06 −1.75E−05 −1.45E−05 5.64E−09 1.84E−07 −1.02E−07

MAE 3.56E−05 1.22E−03 7.63E−05 1.06E−05 1.04E−05 9.98E−06

NSR 1.61E−11 2.81E−10 1.97E−11 2.30E−12 2.51E−12 2.11E−12

Validation

MBE −9.06E−05 0.017852 −4.77E−04 2.99E−05 3.93 E−04 −7.54E−05

MAE 1.70E−04 0.02337 5.36E−04 1.48E−04 3.93E−04 1.19E−04

NSR 4.36E−11 9.14E−09 2.39E−10 4.00E−11 1.12E−10 4.01E−11

Testing

MBE −3.03E−04 −0.08705 7.89E−04 −9.44E−05 −1.60E−04 1.29E0−4

MAE 8.20E−04 0.089347 8.12E−04 1.19E−04 3.94E−04 1.59E−04

NSR 3.18E−10 2.61E−08 2.11E−10 2.64E−11 1.14E−10 4.06E−11

first are subject to the issue that ANN methods are approximate functions. Second,
random errors of the measured data (X,Y, Z ) applied for the model formulations have
an influence on the outcome of the estimation. Nonetheless, ANNs could still produce
sub-meter accuracy predictions as was the case observed in the present study.

5.3 Dimensioned Error Statistic

In order tomake further objective assessments ofBPANNandRBFNN results attained,
dimensioned error statistics (DES), namelyMBE,MAE and NSR as stated in Sect. (4)
were utilized. The choice of these indices was based on the recommendation in Fox
(1981) that these indices are able to quantify model performance in terms of prediction
accuracy, thus informing the modeller and the reader about the actual size of the error
produced by the model. The closer these statistical indices are to zero the better the
prediction abilities of the BPANN and RBFNNmodels. Table 3 presents the statistical
results of the ANN models.

With reference to Table 3, the estimated MBE values in training, validation and
testing data emphasize the degree of the average over-estimation (positive value) or
under-estimation (negative value) by the BPANN and RBFNN models. On account
of the MBE results (Table 3), it can be conveyed that the overall maximum over-
and under-estimation by the RBFNN in X, Y and Z cartesian coordinates consider-
ing together the training, validation and testing data is approximately 3.93E−04 and
−1.60E−04m, respectively. TheBPANN instead achievedmaximumover- and under-
estimation values of approximately 0.018 and −0.087 m, respectively, thus signifying
that the RBFNN predicted outcomes deviated marginally from the measured data and
thus they are more practically applicable to convert geodetic coordinates into cartesian
coordinates than the BPANN.
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Fig. 14 Three-dimensional position error for a training, b validation and c testing data
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Table 4 Model efficiency criteria

Dataset BPANN RBFNN

X (%) Y (%) Z (%) X (%) Y (%) Z (%)

Training

REC 99.99999 99.99994 99.99999 99.99999 99.99999 99.99999

LM 99.99931 99.99784 99.99989 99.99979 99.99998 99.99998

Validation

REC 99.99999 99.9989 99.9999 99.9999 99.9999 99.9999

LM 99.99733 99.9556 99.9989 99.9977 99.99925 99.9998

Testing

REC 99.99999 99.9959 99.9999 99.9999 99.9999 99.9999

LM 99.97756 99.8083 99.9978 99.99674 99.9992 99.9996

The MAE (Table 3), on the other hand, was used to identify the variation in error
by providing a measure on how close the BPANN and RBFNN predictions in training,
validation and testing data are to the measured data. In conformance with the MAE
results in Table 3, it can be stated that the RBFNN produced promising related out-
puts than the BPANN. The computed NSR (Table 3) for the BPANN and RBFNN
models indicate acceptable outcome signifying the occurrence of less random errors
in predicting cartesian coordinates. Consequently, model performances with respect
to computing errors were found to be satisfactory.

5.4 Model Efficiency Based Statistics

Model efficiency (ME)-based indicators of Legates and McCabe index (LM) and rel-
ative error correction (REC) (Sect. 4) were also utilized. The LM provides the degree
to which the BPANN and RBFNN predictions are error free, by evaluating the accu-
racy of the predicted value with respect to the measured data. From the LM results
(Table 4), it was discovered that 99% of the potential error has been explained by the
BPANN and RBFNN models developed for converting geodetic coordinates to carte-
sian coordinates. Similarly, the REC values show that the BPANN and RBFNN could
predict about 99% of the cartesian coordinates from geodetic coordinates. Therefore,
both BPANN and RBFNN could practically be considered useful for surveying and
mapping applications. However, in comparison, the RBFNN is the better model.

5.5 Comparing ANN and Multiple Linear Regression

Multiple linear regression (MLR) techniquewas performed to convert geodetic coordi-
nates to cartesian coordinates. It is known that five geodetic parameters are considered
as inputswhen applying the standard forward transformation equation (Eq.1). They are
geodetic longitude (φ), geodetic latitude (λ), geodetic height (h), radius of curvature in
the prime vertical (N ) and first eccentricity squared (e2). Although the results are not
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Table 5 Statistical performance of BPANN, RBFNN and MLR models using all the data

Model MSE R

X (m) Y (m) Z (m) X Y Z

BPANN 1.2524E−06 9.0393E−03 1.5358E−04 0.9999 0.9999 0.9999

RBFNN 2.3753E−08 2.7642E−07 3.5329E−08 0.9999 0.9999 0.9999

MLR 7.2977E−05 3.3367E−08 1.6482E−08 0.9999 0.9999 0.9999

included here, Pearson correlation analysis at 0.01 significance level (two-tailed) was
performed in a step wise manner using all the 328 data sets in both X, Y and Z coor-
dinates. This was necessary to select the most appropriate input parameters suitable
for developing the MLR models. The results showed that the relationships existing
between φ, λ, h, N, e2 and measured X, Y, Z coordinates are statistically significant
with p ≤ 0.01. This means that the measured data sets provide enough evidence to
reject the null hypothesis and accept the alternative hypothesis that “the population
correlation coefficient is different from zero” (i.e., ρ �= 0). Therefore, in this study φ,
λ, h, N, e2 were selected as input parameters in the MLR models’ formulation. The
MLR models developed are represented by Eqs. (33) to (35) given as follows

XP = 5422381306199.340 − 3871.664 λ+890.141 φ+0.995h,
−269.899N − 809731969723261 e2

(33)

YP = 110561056524.072 + 110781.164 λ−1431.822 φ+0.035 h,
+15.687 N − 16530449241434.2 e2

(34)

ZP = −76234661419.438 − 0.0097 λ+110982.793 φ+0.092 h
−12.691N + 11399951149870.5e2.

(35)

Here, XP, YP, ZP are the predicted cartesian coordinates and φ, λ, h, N, e2 are the
independent variables. It is noteworthy that all the 328 data were used to form the vari-
ousMLRmodels. Consequently, to make effective comparison with the ANNmodels,
the 328 data sets were implemented in the already determined optimum RBFNN and
BPANN structures. Moreover, this will further show how well the developed ANN
models will generalize using the whole data.

From Table 5, it was uncovered that closely identical MSE values were achieved
by both MLR and RBFNN models. These MSE results (Table 5) clearly depict close
association with the respective prediction values of MLR and RBFNN models com-
pared to the BPANNmodel. The identical R values attained by BPANN, RBFNN and
MLR models show a strong positive relationship between predicted cartesian coor-
dinates and measured cartesian coordinates. This means that BPANN, RBFNN and
MLR models fit lines closely coincide with the ideal line and thus the three models
have satisfactorily predicted cartesian coordinates.

In order to check the practicality of the three models, a summary of the total error
obtained usingBPANN,RBFNNandMLRmodels in its three-dimensional application
is presented in Table 6. It is important to note that Eqs. (28–32) were used in obtaining
the results in Table 6.
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Table 6 Three-dimensional position deviation from the measured data using all the data

Model Mean three-dimensional
position error (m)

SD (m) Minimum (m) Maximum (m)

BPANN 0.036 0.089 1.57E−04 0.627

RBFNN 2.599E−04 5.184E−04 5.11E−07 0.004

MLR 8.486E−03 1.008E−03 5.119E−03 0.011

Fig. 15 Three-dimensional position error for BPANN, RBFNN and MLR models using all the data

The results in Table 6 clearly depict that the RBFNNmodel surpasses both theMLR
and BPANN models. This is because RBFNN model produced the least mean three-
dimensional positional error of 2.599E−04 m and standard deviation (SD) value of
5.184E−04m (Table 2). Additionally, based on the maximum position error (Table 6),
it can be interpreted that when the RBFNN model is applied within the study area
to convert geodetic coordinates to cartesian coordinates a maximum error of 0.004
m could be achieved, whereas MLR model will give 0.011 m and BPANN model
attaining 0.627 m. Therefore, in this study, it is obvious that the RBFNN structure
appears to perform much better in fitting cartesian coordinate than the BPANN and
MLR models. Figure 15 intuitively confirms this assertion.

6 Conclusions

Transformation of geodetic coordinates into cartesian coordinates system has been
a common practice in geodesy for solving majority of astronomic, geodetic, carto-
graphic, navigation and datum-related problems. This procedure is generally carried
out using the standard forward transformation equation. However, literature has shown
that little or no alternative technique has been tested to serve as a substitute for the
standard forward transformation equation. The main contribution in this study is to
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explore the capability of ANNs as a realistic alternative technology for converting
geodetic coordinates to cartesian coordinates.

To this end, backpropagation artificial neural network (BPANN) and radial basis
function neural network (RBFNN) based on the supervised learning technique as
well as the multiple linear regression (MLR) technique have been presented. The
findings revealed that the BPANN, RBFNN and MLR offered satisfactory prediction
of cartesian coordinates.However, theRBFNNcompared toBPANNandMLRshowed
superior stability and more accurate prediction results. It can, therefore, be proposed
that the RBFNN should be used instead of the BPANN andMLRwithin the study area
in the forward conversion of geodetic coordinates to cartesian coordinates.

On the basis of the analysis, it has been demonstrated that geodetic longitude,
geodetic latitude, geodetic height, radius of curvature in the prime vertical and first
eccentricity squared, combined into RBFNN could produce accurate estimates of
cartesian coordinates. Therefore, this study does not only have a localized significance
but will also open upmore scientific discourse into the applications of ANN in geodesy
within the geoscientific community.
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