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Abstract Discrete implicit modeling consists in representing structural surfaces as
isovalues of three-dimensional piecewise linear scalar fields, which are interpolated
from available data points. Data are expressed as local constraints that can enforce the
value of the scalar fields as well as their gradients. This paper illustrates some limita-
tions of published discrete implicit methods, related to the difficulty of controlling the
norm of scalar field gradient and its evolution over the interpolated domain. It is shown
that important artifacts may arise due to the intrinsic dependence between variations
in the norm and the direction of the scalar field gradient, from one element to its neigh-
bors. Evidence that these artifacts are related to mesh facet direction with respect to
gradient direction are given. The artifacts lead to rapid and uncontrolled variations of
thickness that may induce erroneous interpolations. This paper proposes two original
approaches to overcome these problems. The first one consists in iteratively adjusting
the norm of scalar field gradients in the direction obtained after previous iterations.
The second solution consists in optimizing the mesh used by the interpolation. This
requires finding appropriate mesh facet orientation with respect to scalar field gradient.
These methods demonstrate that the results of discrete implicit surface interpolation
can be improved and call for further development of available interpolation schemes.
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1 Introduction

The representation of geological interfaces as equipotential surfaces of one or several
scalar fields, often termed implicit modeling, has become a powerful approach to build
geological models (Lajaunie et al. 1997; Cowan et al. 2003; Chiles et al. 2004; Frank
et al. 2007; Calcagno et al. 2008; Hjelle et al. 2013; Caumon et al. 2013; Hillier et al.
2014; Jessell et al. 2014). This approach is particularly interesting when representing
continuous stratigraphic sequence, because it allows for the representation of a con-
formable continuum of surfaces at once (Jessell et al. 2014). It can also be useful to
represent structural elements, such as foliations and axial surface fields (Lajaunie et al.
1997; Maxelon et al. 2009; Massiot and Caumon 2010; Laurent et al. 2014). Lastly,
implicit surface representation can be used as a way to parameterize geological struc-
tures (e.g., fault surface, Cherpeau et al. 2012; fault frame, Laurent et al. 2013; fold
frame, Laurent et al. 2014).

In the context of modeling stratigraphic formations, the gradient of the scalar field
can be related to an apparent preserved uncompacted sedimentation rate (Mallet 2004,
2014). Because thickness changes are key to characterizing basin history and folding
style, an important question for implicit methods lies in their ability to accurately
capture or predict thickness changes (i.e., to deal with variations of both thickness and
norm of the scalar field gradient).

This paper identifies some limitations of the current implicit methods in the man-
agement of thickness variations between implicit surfaces, and proposes strategies to
address these limitations in discrete methods based on piecewise linear tetrahedra. The
basics of discrete implicit modeling are further explained and some undesired effect of
the piecewise linearity are illustrated . Its impact on the thickness of modeled layers is
illustrated, demonstrating dramatic artifacts that may be generated when the gradient
norm is not sufficiently constrained.

Two approaches are proposed for improving discrete interpolation results for mod-
eling stratigraphic layers. Section 3 presents an adapted gradient norm constraint based
on an iterative process. Preliminary results show more limited and better-controlled
variations of the thickness of interpolated layers as compared to a classical discrete
approach. Section 4 introduces a quantification of the thickness variation with respect
to mesh facet orientation. It is shown that using a mesh with optimal orientation is a
good way of reducing uncontrolled thickness variations, even without additional norm
constraints. Section 5 discusses the advantages and limitations of this approach, which
opens new ways to overcome the limitations of published discrete approaches.

2 Implicit Modeling Schemes: Orientation Constraints and Thickness
Control

Implicit modeling methods can be divided into two main approaches, depending on the
way scalar fields are represented and interpolated from data: polynomial trend-based
methods, and discrete methods. As gradient and thickness control may be encountered
in both methods, they are first briefly presented in this section. This paper then focuses
on the discrete approach, for which practical solutions are proposed.
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2.1 Polynomial Trend Methods: Kriging and RBFs

Inimplicit methods based on Radial Basis Functions (RBFs) (Cowan et al. 2003; Hillier
etal. 2014) or Kriging (Lajaunie et al. 1997; Chiles et al. 2004; Calcagno et al. 2008),
scalar fields are described as a weighted combination of a global polynomial trend and
an order-2 stationary residual given by the kriging or RBF weights. Therefore, local
thickness variations can be accounted for in the residual, but global thickness changes
must be addressed in the polynomial trend.

The instantaneous thickness of strata described by an implicit function ¢(x, y, z)
is given by the inverse of the norm of the gradient. The ability of typical second-order
polynomial drift function to approximate general types of thickness variations seems
limited. We are not aware of discussions about the impact of this observation in the
literature. This suggests that further research may be needed to define trend functions
appropriately capturing thickness changes.

2.2 Discrete Implicit Modeling and Gradient Norm Variations

In the following, the basics of discrete implicit modeling are briefly presented
(Sect. 2.2.1). With this approach, problems of gradient and thickness control come
as two main limitations (Sect. 2.2.2): (1) the lack of layer thickness control and (2)
possible rapid variations in gradient norm, referred to as gradient collapse or gradient
burst.

2.2.1 Principles of Discrete Implicit Modeling

Discrete implicit modeling represents geological surfaces as isosurfaces of a piecewise
linear scalar field ¢, interpolated within a set of three-dimensional elements (Moyen
et al. 2004; Frank et al. 2007; Caumon et al. 2013; Souche et al. 2013; Mallet 2014;
Collon-Drouaillet et al. 2015). Linear tetrahedron elements are generally used as they
provide a simple linear interpolation in three-dimensional space and can be progres-
sively refined (Frank et al. 2007) and adapted to discontinuities such as faults (Caumon
et al. 2013). Available data and spatial continuity are expressed as a series of linear
equations that are solved to find optimal values for the mesh nodes.

This piecewise discrete approach has a number of interesting features: (1) inter-
polated model can be locally controlled by element size and shape, which makes it
possible to easily generate geometric features based both on data and on prior knowl-
edge. For instance, fold hinges may be localized between data points using dip domains
(Caumon et al. 2013) and geometric features may be added with stochastic simulation
(Caumon 2010; Mallet and Tertois 2010). (2) The way each geological constraint is
applied can be locally weighted in each element, for example based on the reliability
of the information. (3) Interpolation complexity mainly depends on the number of
elements (Frank et al. 2007), which makes it possible to use large numbers of data and
control points.

In each tetrahedron, an interpolated scalar field pand its gradient V¢ are defined by
the following linear equations, where ¢.is a vector holding the values of the corners
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of the mesh, Mand Tare matrices defined by the geometry of the tetrahedron (Frank
et al. 2007), and - denotes the dot product.

go(x’yvz):[l’xvy9z]'M'(p07 (1)
Vox,y,2) =T - ¢c. 2

These two equations are used to transform each data point into a linear equation
(Frank et al. 2007). A regularization term is added to describe how the scalar field
should evolve between the data points. This is implemented by minimizing the vari-
ation of V¢ between neighbor elements. A linear equation is produced for each pair
of connected elements (i, j). Because neighbors share a facet, their gradient can only
vary in the direction n;; normal to this common facet. For this reason, a minimum
variation in gradient is enforced by constraining the projection of the gradient onto
vector n;; not to vary between elements i and j.

nl - (Ti-i = Tj- ;) =0. ?3)

The resulting set of linear equations is gathered into a linear system. This system is
solved in the least square sense, which yields a scalar field that balances all data and
smoothness constraints.

Classical constraints (Fig. 1a), derived from (1) and (2), can enforce: (1) the value of
@ atobserved location; (2) the components of V¢ at observed location; (3) the variation
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Fig. 1 Discrete two-dimensional interpolation of a scalar field representing stratigraphy. a Mesh (a set of
connected triangles) and data used to define the interpolation. The values imposed on the two isolines are
0 (left hand side line) and 1 (right hand side line). b Interpolated scalar field
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of Vg between given elements. Additional constraints can be developed to improve
the control of this scalar field and introduce new information into this basic system
(Frank et al. 2007; Massiot and Caumon 2010). For example, it is possible to only
constrain the direction of Vg without fully specifying the values of its components.
This can be implemented using the property that the dot product of two orthogonal
vectors is null, together with (2). The following two constraints are then written to
enforce the observed direction wat a given location as a direction for Vg, using any
two non parallel vectors u and v, orthogonal to w

u” T, =0, (4)
v T g, =0. (5)

Alternatively, the direction of V¢ may be controlled by another scalar field (Massiot
and Caumon 2010; Laurent et al. 2013), by constraining V¢ to be orthogonal to the
controlling scalar field gradient in each tetrahedron of a given region (Fig. 5a).

2.2.2 Intrinsic Limitations of the Gradient Norm Control

The core of the discrete interpolation scheme resides in the regularization term, which
minimizes the variation of V¢ between neighbor elements. Its implementation relies on
the continuity of the scalar field, which is ensured by the fact that neighbor elements
share the corners of their common facet. This relationship between neighbors also
introduces limitations in the interpolation.

Figure 2 presents a basic two-dimensional example of neighborhood relationship,
considering two triangular elements. This example demonstrates how the gradient
in both triangles is interdependent because of the shared corners. The left hand side
triangle is constrained with a fixed vertical unit gradient, with fixed corner values. The
gradient in the other triangle is constrained with an angle from 0° (Fig. 2a), to 30°
(Fig. 2b), and 44° (Fig. 2¢).

The difference in gradient direction implicitly constrains the norm of the gradient
in the second triangle. To honor the difference of values along the shared edge, the
second triangle needs values that grow at a faster rate when the angle increases. The

0 10 24 0 10
e e e
1

: 7 | \§ o Computed corner value
ﬁ / Fixed gradient direction

Fig. 2 Gradient norm variation with varying direction constraints. The left hand side triangle has a con-
strained gradient direction and norm. In the other friangle, only the gradient direction is controlled. An
increasing angle is set from 0° (a) to 44° (c). As a result, the norm of the gradient in the second triangle
increases from a to ¢, which cannot be controlled in this particular setting

1

e Fixed corner value
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norm of its gradient rapidly increases when the relative angle increases. This simple
example illustrates how the gradient norm and direction are intimately linked and
represents a good example of gradient burst.

Although this configuration appears over-constrained, it illustrates how each shared
edge decreases the degree of freedom of the system. This phenomenon causes the loss
of a degree of freedom as soon as a circle of connected triangles is formed. It is also
interesting to point out with this example that setting an angle of 45° in the right hand
side triangle would not be possible because the variation of value along the shared
edge could not be honored.

In more complex examples, this intrinsic link between gradient norm and direction
leads to undesired behaviors. Constraints on the dip of an interpolated stratigraphy
result in uncontrolled variations in layer thickness. This situation is illustrated with
two synthetic case studies (Figs. 3, 5, 6, 9).

Figure 3 tests the ability of the interpolator to reconstruct a scalar field which
represents a series of constant thickness layers bent around the lower left corner of the
picture (Fig. 3a). This can be seen as an idealized isopach fold, with an axial surface
dipping 45° to the left and with an interlimb angle of 90°. Two data points that sample
the exact value and gradient of the scalar field around the lower left corner of the picture
are considered (Fig. 3b). The resulting scalar field is very different from the reference
field. Figure 3c shows an overlay of the reference scalar field isolines (dotted lines) on
top of the interpolated scalar field. The norm of the scalar field gradient appears to be
smaller than expected, in particular in the top-left and bottom-right corners (Fig. 3d),
which implies an increase in layers thickness in these regions. Errors in the orientation
of the scalar field are also produced, growing from 0° along the diagonal to 30° in
the top-left and bottom-right corners. These errors illustrate how the interpolation
accommodates the variation of direction in the data by varying both the orientation
and the thickness of the interpolated scalar field.

In some configurations, the interpolated scalar field might be an appropriate rep-
resentation of stratigraphic layering. But in general, geological layers would tend to
have a relatively constant thickness or show slow, progressive variations. Stratigraphic
orientations may vary more rapidly. In this particular example, only the orientation
of the reference scalar field is changing whilst the thickness remains constant. This is
not captured by the interpolation and results in erroneous orientation and thickness.

2.2.3 Analysis of Sensitivity to Mesh and Data Density

Figure 4 illustrates the sensitivity of the interpolation to: (a) mesh density, (b) density of
orientation data, and (c) relative weight of the regularization term and data constraints.
None of these three factors succeed in improving the obtained results. The resultant
scalar fields show both erroneous orientations and overestimated thickness.

When too few elements are used, the results present dramatic thickness overesti-
mation. Figure 4a shows that increasing the mesh density reduces this effect. This
improvement is limited and further increasing the mesh density does not completely
remove thickness over-estimation nor orientation errors in the bottom right and top
left corners.
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Figure 4b illustrates that this effect becomes even more important when the num-
ber or orientation data points increase. Using more data points improves interpolated
scalar field direction but increases the thickness over-estimation. As shown in Fig. 2,
the interpolator can only account for the variation of orientation by increasing layer
thickness. Increasing the weight of the regularization constraint could limit the vari-
ation of thickness. Figure 4c shows that increasing the weight of the regularization
term (i.e., decreasing the data relative weight) limits the variation of orientation. This
yields erroneous orientations without succeeding in correcting the thickness errors.

Finally, the only obvious way to really improve the quality of the result is by
considering more value data points, but this is not a practical solution as the density
of available data is generally not controlled.

2.2.4 Gradient Collapse with Orientation Constraints

Figure 5 presents a second case study, where an additional scalar field v is used for
constraining the orientation of ¢. This is implemented by minimizing the dot product
between Vg and V. This type of constraint is used by Laurent et al. (2013), to build
a fault frame orthogonal to a given fault surface, and in Massiot and Caumon (2010)
to constrain the fold axis direction of a folded stratigraphy. This situation, where the
density of orientation constraints is relatively high compared to value or gradient norm
constraints, can result in unexpected behavior of the interpolated scalar field. In this
example, the gradient norm rapidly decreases away from the data point located in the
center of the model, which is referred to as a gradient collapse. This anomaly results
in an uncontrolled increase of layer thickness and a perturbation of the scalar field
orientation.

2.2.5 Discussion of Direction and Thickness Constraints

The situations described in the previous examples seem to be generally avoided in
classical use of discrete implicit modeling. This can be attributed to the fact that a
higher number of value or norm constraints are available to prevent the interpolated
gradient norm from varying too much. However, the results presented in this paper
suggest that this problem may still arise, to a lesser extent.

Figure 4 illustrates the difficulty of improving interpolation results by modifying
the mesh density or relative weights of constraints. It also shows that extracting more
orientation control points from available data would not be a practical solution. In the
following sections, it is demonstrated that interpolation results might still be improved.
Two avenues are proposed and explored to solve the issues of gradient collapse and
norm control: an iterative gradient norm constraint (Sect. 3) and a condition of optimal
mesh to minimize the effect of gradient lock (Sect. 4).

3 Iterative Gradient Norm Constraint
Observations from the previous section suggest that defining an additional constraint

capable of controlling the norm of the gradient would help to avoid undesired gradient
norm variation and to control layers thickness at a given location. This section proposes
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a strategy to make such constraints possible by defining a linear norm constraint
(Sect. 3.1) and by applying it in an iterative process (Sect. 3.2). Results are presented
in Sect. 3.3.

3.1 Definition of a Gradient Norm Constraint

Itis not trivial to specify the norm of the gradient at a given location without constrain-
ing its direction. Where the direction of the gradient is not known, the norm would be
defined with the following general equation

1 2
||wn2=V¢T-V¢=wZ-TT-T-¢C=(Z) : (6)

where ||-]| refers to the norm, and L refers to the thickness of the layer involved.
Equation (6) is not linear with respect to ¢, so it cannot be directly integrated into
the linear system. The resolution of such a system would require quadratic matrix
systems, which are more complex to solve (Schurbet et al. 1974). It is proposed to use
a more simplistic approach where the gradient norm constraint can still be expressed
as a linear equation. If a unit direction vector u is given as an estimate of the gradient

—_—~—

direction, Eq. (7) provides an approximation of the gradient norm || Vg||

— T 1
IVoll=u”-T-¢c=—. )

This time, (7) is linear with respect to ¢., and can be integrated into the linear system.

3.2 Iterative Estimation of Gradient Direction Vector

The main difficulty in using (7) is finding a good estimation of the possible gradient
direction for each element where the constraint is to be applied. Ideally, this direction
would be derived from the result of the interpolation process, which is not possible
as the final solution is not known when defining the constraints. To overcome this
hurdle, an iterative process is proposed (Fig. 6), where u is defined as the direction of
the gradient obtained at the previous iteration. This process is initialized using a first
interpolation without norm constraint.

To avoid propagating erroneous gradient direction throughout the iterations, it is
proposed to progressively incorporate this constraint into the system instead of apply-
ing it all at once. Three possible strategies are considered:

(1) Increasing the relative weight of the constraint.
(i) Applying the constraint in a growing number of randomly selected elements.
(iii) Applying the constraint within a growing region around data points.

The following case studies show that this process progressively corrects the direc-
tion in which the norm is constrained and attenuates undesired norm variations.
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3.3 Results of Iterative Gradient Norm Control
3.3.1 Case Study 1: Comparison of Iteration Strategies

The iterative norm correction is applied on case study 1, using the same dataset as
in Fig. 3. The process is initialized with the direction of the gradient of the scalar
field obtained using a classical interpolation. The gradient norm constraint is then
progressively introduced at each iteration. The three proposed strategies have been
tested (Fig. 7):

A Increasing weight

%

Al. Increasing weight (0.02)

A2. Increasing weight (0.1)

. B Random elements

" B3. Rando

s

. C Growing radius

CI. Growing radius (1) "7 (02 Growing radius (7) "7 (3. Growing radius (28)

Fig.7 Application of the iterative gradient norm constraint to case study 1 (Fig. 3). Isolines of the reference
scalar field are shown (dotted lines) for comparison with the interpolated scalar field (plain lines). The norm
constraint is applied: a with an increasing weight: 0.02 (al), 0.1 (a2) and 1 (a3); b with an increasing number
of elements: 10 % (b1), 50 % (b2) and 100 % (b3); ¢ within a growing radius from the data: 1 (c1), 7 (c2)
and 28 (c3)
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(1) The weight progressively grows from 0.01 to 1.
(i) The percentage of affected elements progressively grows from 1 to 100 %.
(iii) The radius in which elements are constrained goes from 0.1 to 28, which covers
the whole model.

One hundred iterations have been run in each case. The norm constraint weight is set
to 1 in case B and C. In each case, the weight of the regularization constraint remains
0.1.

For each strategy, the interpolation result is progressively corrected and becomes
similar to the reference scalar field (Fig. 3a). Small variations are still visible, but
the interpolated scalar fields show a good general behavior. Both thickness and layer
orientation are honored. It is difficult to compare the three strategies based on this
example because they affect different aspect of the interpolation. It can still be observed
that progressively increasing the number of constrained elements (randomly or with
a growing radius) seems to provide results that are slightly closer to the reference
solution.

3.3.2 Case Study 2: Correcting Gradient Collapse

The second case study shows how the iterative gradient norm control can reduce the
problems of gradient collapse illustrated in Fig. 5. In this three-dimensional example,
an orthogonality constraint is used, in addition to a data point placed in the center
of the model with a value of 0 and gradient of [1, 0, 0]. The scalar field used for the
orientation constraint is shown in Fig. 8a. The scalar field obtained by a classical
interpolation (Fig. 8b) has two issues: (1) the range of values that are obtained is
smaller than expected, because the gradient norm decreases rapidly when moving
away from the data point, and (2) the obtained orientations are not correct as they
show a bend in the isosurfaces, particularly visible on the vertical faces of the model.

The gradient constraint is iteratively applied with a growing radius (from 1 to 20,
over 20 iterations). Both the problems of norm and direction are progressively fixed
(Fig. 8c), and the final results correspond to the expected straight isosurfaces honoring
the orthogonality constraint.

3.3.3 Case Study 3: Folded Layers

Figure 9 presents a third synthetic example showing a cross section with four data
points defining an anticlinal structure. The norm of the gradient of the control points
is 5 for each point. The value of the scalar field is constrained to be O for the top two
data points and is not constrained for the other two. The result obtained with a classical
interpolation shows a sudden decrease of the gradient norm in the region between the
data points (Fig. 9a2). It is due to the variation of the direction of the gradient set
on data points around this area. This variation is accommodated by varying both the
direction and the gradient norm of the scalar field.

When applying a gradient norm correction (Fig. 9b—d), the norm of the gradient of
the scalar field gets closer to the control point values. This also has consequences on
the resulting geometry of the interpolated fold.
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4 Optimization of Shared Facet Orientation

Section 3 introduces additional constraints that can be used to improve the scalar field
interpolation. This section proposes another approach which focuses on the mesh used
for the interpolation.

Figure 2 demonstrates that the thickness variation between neighbor elements is
controlled by their relative gradient direction. When varying the orientation of their
common facet, it appears that the effect of thickness variation can be limited by finding
a better orientation. A first step towards a mesh improvement would be to quantify this
relationship. To that end, two neighbor triangles are considered, where the orientation
of the scalar field is known (Fig. 10).

It is possible to find an optimal orientation for the shared facet knowing the angle
6 between the two gradient directions. In each triangle, the orientation of the shared
facet is defined by its angle with the gradient direction, respectively, denoted «; and
a>. These angles are linked by the following relationship: oy = § — «1. The apparent
thickness L; along the shared facet is obtained by projecting the actual thickness, L
and L, onto the facet direction.

L L
L= ——1 — =2 (8)
coso|  cosan

The thickness ratio L, /L is then expressed by the following equation

cosar  cos (6 —ayp)
Lo/Ly = = .
cos o] cos o]

&)

It appears that L can be the same as L | in two situations. A first trivial solution comes
for § equals 0, because cos (—a1) equals cos «q. The ratio L /L is then equal to 1.

A B

Fig. 10 Thickness variation in neighbor elements. a Two neighbor triangles t; and , containing an
interpolated layer (dashed lines). b A blow-up around the shared facet which illustrates the layer thickness
L and orientations used in (9)
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Another set of solutions is obtained with the following condition

§—ay=a +2kn, keN, (10)
< a1 =8/2+km, keN. (11)

These results suggest that another avenue for improving discrete scalar field interpola-
tion would be to use an optimal mesh where each facet honors one of these conditions:
(1) the direction of the gradient is the same on both sides of the facet, or (2) the facet
bisects the angle between the gradient directions on both sides.

In very simple cases, it is possible to define the parameters of such a mesh. For
example with the data configuration used in Figs. 3 and 7, the ideal facets would
converge towards the bottom left corner of the picture. Figure 11 shows that an inter-
polation based on such a mesh is able to progressively vary the direction of the scalar
field gradient without affecting the norm. This suggests that, in more general cases,
a better mesh could result in a better interpolation without unexpected gradient norm
variations. However, it is not trivial to define an algorithm to build a mesh based on
these characteristics in the general case. First, it depends on the direction of the inter-
polated gradient, which is part of the solution of the interpolation. This suggests that
an iterative process could be used, as in Sect. 3.

Another limitation comes from the possible contradiction between the ideal position
of neighbor facets. Figure 12 presents a slightly more complex mesh with two layers
of triangles. Here, only one facet of each triangle can be oriented in the ideal position
which lowers the quality of the result. The isolines of the resulting scalar field do not
match the reference isolines (Fig. 12a, b). This effect becomes limited when using a
higher number of elements because the orientation of the limiting facets becomes very
close to the optimal position (Fig. 12c). An implementation of this criterion could be
developed in an optimization process with a cost function based on (9).

5 Limitations and Discussion

The examples presented above show interesting results but some caveats remain. For
the iterative gradient control process, the constraints presented in Sect. 3.1 require
that the gradient norm value is known beforehand and remains relatively constant.
This would probably not be possible in the general case. To overcome this hurdle,
the gradient norm could be estimated from the data and interpolated in the model.
Another approach would be to constrain the variation of norm between neighbor
elements considering the gradient direction obtained at previous iteration. Adapting
the weight of the norm constraint is also a way to control how constant the resulting
norm would be. For example, a moderate weight would enforce a globally constant
norm while allowing some local variations (e.g., in Fig. 9b).

This method is also limited by a lack of theoretical proof of convergence. In par-
ticular, the system may propagate erroneous orientation generated at the initialization
step. For example, in Fig. 13, this approach is applied to the result obtained in Fig. 5,
where a strong gradient collapse can be observed. The norm constraint succeeds in
limiting the norm variations but propagates erroneous initial orientations. This result
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is in part due to the complex orientation constraints that are applied (Fig. 5a), but also
results from the wrong general orientation of the initial interpolation which is kept
throughout the iterations. In this case, the norm constraint is not sufficient to correct the
gradient direction. This problem suggests that this process may not be robust enough
in its current form to be applied in any case study, even if it proves useful for correcting
some interpolation results as shown above.

A method to detect and correct erroneous directions used in the norm correction
process needs to be developed. A solution could be to use local weighting around the
data points, as suggested by the positive results obtained using the growing radius strat-
egy (Fig. 6¢). This could lead to a solution combining discrete interpolation scheme
and radial basis functions (RBFs). Alternatively, a process to independently interpolate
gradient directions would be another way to progressively correct these misleading
initial orientations.

6 Conclusions

This paper addresses the limitations of the discrete implicit modeling method related
to the norm of the scalar field gradient. The first contribution is to clearly identify
and illustrate these limitations with simple examples. They demonstrate that the norm
and the direction of the gradient of an interpolated scalar field are closely related.
Classical interpolation is not able to independently control these two aspects of scalar
field spatial variation.

This paper presents two avenues for improving discrete interpolation schemes:
(1) An iterative gradient constraint, with different strategies to progressively apply
this constraint. (2) A mesh optimization criterion for minimizing thickness varia-
tion between neighbor elements by finding optimal facet orientation. The preliminary
results obtained with both methods are encouraging and suggest that the proposed
method may help improve discrete interpolation.

The limitations of the proposed methods are also shown. Its main limitation is
its potential difficulty to converge to an appropriate solution in some circumstances
(Fig. 13). These limitations could make this approach difficult to apply to more com-
plex case studies in its current form. However, using an iterative scheme proves useful
for defining norm constraints and progressively correcting what the classical discrete
approach may fail to interpolate in only one first iteration. The mesh considerations
presented in this paper should lead to more work on mesh definition for interpolation
purposes.

The solutions presented in this paper should not be taken as mature and practical, yet.
They clearly demonstrate that it is possible to improve current interpolation schemes
available for geomodeling. Two promising directions have been proposed for further
research: (1) iterative regularization and (2) mesh optimization.
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