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Abstract This paper describes a multivariate geostatistical methodology to delineate
areas of potential interest for future sedimentary gold exploration, with an application
to an abandoned sedimentary gold mining region in Portugal. The main challenge was
the existence of only a dozen gold measurements confined to the grounds of the old
gold mines, which precluded the application of traditional interpolation techniques,
such as cokriging. The analysis could, however, capitalize on 376 stream sediment
samples that were analysed for 22 elements. Gold (Au) was first predicted at all
376 locations using linear regression (R2 = 0.798) and four metals (Fe, As, Sn and
W), which are known to be mostly associated with the local gold’s paragenesis. One
hundred realizations of the spatial distribution of gold content were generated using
sequential indicator simulation and a soft indicator coding of regression estimates,
to supplement the hard indicator coding of gold measurements. Each simulated map
then underwent a local cluster analysis to identify significant aggregates of low or high
values. The 100 classified maps were processed to derive the most likely classification
of each simulated node and the associated probability of occurrence. Examining the
distribution of the hot-spots and cold-spots reveals a clear enrichment in Au along the
Erges River downstream from the old sedimentary mineralization.
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1 Introduction

In Portugal, ore exploitation and processing has been an important economic activity,
with open pit and underground structures, particularly until the early 1970s. The recent
spike inmetal prices and technologic developments havemade extraction and process-
ing more effective. In turn, this has led to renewed interest in previously abandoned
goldmining areas,with a few experimental explorations undertaken inAlentejo, south-
ern Portugal. A spatial approach is a suitable way to assess the potential for gold in
old mining areas, as demonstrated in other countries (Darwish and Poellmann 2010).

Geochemistry is one of the most significant instruments for exploring undiscovered
mineral resources (e.g., Cameron et al. 2004; Carranza et al. 2009; Carranza 2011;
Hronsky 2004; Hronsky and Groves 2008; McCuaig et al. 2010; Wang et al. 2008).
Geochemical cartography and the identification of associated anomalies have been
a goal in mining prospection techniques since the late 1920s with multiple applica-
tions to the estimation of gold mineralized deposits (Bin 1995; Goovaerts et al. 2014;
Madani 2011; Viladevall et al. 1999). Recent development of analytical methods and
computational resources facilitates the implementation of geochemical mapping and
its use in natural resources management (Antunes and Albuquerque 2013). In partic-
ular, multivariate data analysis has been widely applied to characterize the statistical
patterns of geochemical data (Carranza 2010; El-Makky 2011; Sadeghi et al. 2013,
2014; Viladevall et al. 1999; Zuo 2011). These methods commonly aim to reduce
the dimensionality of the problem through the creation of a few relevant factors that
explain a large proportion of variance in a multivariate data set (Davis 2002; Reimann
et al. 2008).

Stream sediment surveys remain the common geochemical approach used for
regional gold exploration where slope designs distinct drainage systems (Darwish
and Poellmann 2010; Fletcher 1997; Hale and Plant 1994; Goovaerts et al. 2014). The
exploration of sedimentary gold (alluvial) has been conducted in distinct mineralized
areas and linked upwith different genetic deposits (Chapman et al. 2000; Chapman and
Mortensen 2006; McInnes et al. 2008; Mortensen et al. 2004; Outridge et al. 1998;
Townley et al. 2003; Viladevall et al. 1999). The alluvial gold concentrates occur
downstream from the ore deposits (McInnes et al. 2008). Lithological and structural
criteria are considered to be the most important exploration criteria for gold deposits
(Madani 2011).

The aim of this manuscript was the development and application of a spatial statis-
tical approach for sedimentary gold exploration, with a focus on the visualization and
delineation of potential zones of low and high values for future prospections, instead
of the accurate estimation of gold content. The methodology is illustrated using trace
elements—Ag, As, B, Ba, Be, Cd, Co, Cr, Cu, Fe, Nb, Ni, Mn, Mo, Pb, Sb, Sn, V, Y,
U, W and Zn—measured in 376 stream sediments samples that were collected in the
old sedimentary gold abandoned mining region of Monfortinho (Central Portugal).

Section 2 describes the study area and the data available for modeling. The method-
ology is introduced in Sect. 3 and the results of its application to an old gold mine are
discussed in Sect. 4. Conclusions are summarized in Sect. 5.
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Fig. 1 Location of the study area in Portugal and sampling data configuration in the Tagus watershed

2 Study Area

The study area is located in Monfortinho region, about 70 km East of Castelo Branco
(central Portugal), and is part of the Central Iberian Zone, in the Portuguese–Spanish
border (Fig. 1). It is occupied mainly by the Cambrian schist-greywacke complex
associated with Ordovician quartzites and covered by Tertiary sedimentary materials
(Oliveira et al. 1992). The transboundary Portuguese-Spain border is delimited by
the Erges River, one of the last wild rivers in Portugal, with a rare natural value due
to its geodiversity. Agriculture is the main local activity and the thermal SPA water
from Fonte Santa contributes to the economy and tourism of the region. This region is
characterized by a dry climate with most streams drying up in the summer (Antunes
et al. 2002).

The area of sampling site is approximately 140 km2 and surrounds the mining of
sedimentary gold in the Erges River. Around mine tailing sites, the mineralogical con-
tent of the material exploited consists of inert materials from the gangue constituent’s
mineralization or mineral constituents of rocks (Maroto et al. 1997). Geochemical
anomalies found in the vicinity of tailings and mineralized areas indicate the action of
dominant wind and transport of fine dust from the superficial layers of the heap (San-
tos Oliveira et al. 1998). The stream sediments, resulting from the alteration of rocks
by various physical and chemical processes, are mobilized, transported and deposited
along the water lines.

The geochemical composition of stream sediments and their spatial distribution in
the study area were characterized using a total of 376 representative samples, col-
lected between 1980 and 1988, in a narrow region ranging from 50 m upstream to
100 m downstream from the streams’ confluences (Instituto Geológico e Mineiro
1988) (Fig. 1). Since almost all water lines correspond to open valleys, our point-
support stream sediments samples correspond to incipient instead of evolved soils. All
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the samples were collected on schist and their preparation included reduction, drying
and grinding. Total concentration of Ag, As, Au, B, Ba, Be, Cd, Co, Cr, Cu, Fe, Nb, Ni,
Mn, Mo, Pb, Sb, Sn, V, Y, U, W and Zn were analyzed by ICP-AES, with a precision
of 20 % for As and 10 % for the other elements (Instituto Geológico e Mineiro 1988).
Gold was measured in 12 samples collected inside the old mine area. Tin and W were
analysed by X-ray fluorescence spectrometry and plasma emission with a precision
of 10 % (0.05 ppb) (Antunes et al. 2002; Instituto Geológico e Mineiro 1988).

3 Methodology

The flowchart in Fig. 2 describes the different steps of the geospatial analysis which
includes linear regression, indicator kriging (IK), sequential indicator simulation and
local cluster analysis (LCA).

3.1 Hard and Soft Indicator Coding

Because gold content was measured only for a small subset (n1 = 12) of stream
sediment samples, the first step was to capitalize on the relationships between gold
content and four metals (Fe, As, Sn and W), which are known to be mostly associated
with the local gold’s paragenesis, to predict gold content at the remaining sampled
locations (n2 = 364). Although this relationship was established from in-situ gold
content it is relevant to the 364 stream sediment samples since the geochemistry of
Au and the other four elements are stable during mobility and weathering (Antunes
et al. 2002; Harraz et al. 2012). This prediction was here based on linear regression,
resulting in an estimated value mLR(uα) and associated standard error sLR(uα) at all
n2 locations with geographical coordinates uα .

To account for the uncertainty attached to n2 gold content estimates (soft data)
relative to n1 measurements (hard data), each of the 12 hard data z(uα) and 364 soft
data mLR(uα) were transformed into a set of K = 19 indicators as follows

i(uα; zk) =
{
1 if z(uα) ≤ zk
0 otherwise

(1)

i(uα; zk) = G

(
zk − mLR(uα)

sLR(uα)

)
, (2)

where zk is a gold content threshold identified with 5kth percentile of the distribution
of hard and soft data, andG(.) is the standard normal cumulative distribution function.
The spatial connectivity of these indicators was then quantified and modeled using the
indicator semivariogram defined as

γI(h; zk) = 1

2N (h)

N (h)∑
α=1

[i(uα; zk) − i(uα + h; zk)]2, (3)

where the indicator value at location uα is paired with another indicator value a lag
distance h away.
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Fig. 2 Flowchart describing the different steps of the analysis conducted on 12 gold data and 376 stream
sediment metal data to delineate areas of low and high gold content

3.2 Indicator Kriging and Cross-Validation

The delineation of zones of low and high values required the interpolation of gold
content to the nodes of a regular grid. This step was accomplished using soft indicator
kriging (Goovaerts 1994) whereby the probability of being no greater than a threshold
zk at any node u0 was estimated as the following linear combination of indicators

FIK(u0; zk |(n)) =
n(u0)∑
α=1

λαk i(uα; zk) k = 1, . . . , K , (4)
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where λαk are kriging weights that are solutions of the following system of linear
equations

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

n(u0)∑
α=1

λαkCI (uα − uβ; zk) + μ(uβ; zk) = CI (uβ − u0; zk)
n(u0)∑
α=1

λαk = 1
β = 1, . . . , n(u0) .

(5)
The indicator covariance function CI(h; zk) was derived by subtracting the model
fitted to the experimental indicator semivariogram (Eq. 3) from the sill. Indicator krig-
ing was conducted using the program AUTO-IK (Goovaerts 2009) which computes
at each node u0 the mean and variance of the local distributions of probability (ccdf),
denoted ẑE (u0) (E-type estimate) and s2E (u0), after correction of K probability esti-
mates (Eq. 4) for order relation deviations and interpolation/extrapolation to complete
the discrete ccdf.

The quality of the model of uncertainty provided by indicator kriging was assessed
using a leave-one-out cross-validation approach whereby IK results at sampled loca-
tions uα were compared to observations (soft or hard data) that were removed one at
a time. From the ccdf FIK(uα; z|(n)) one can compute a series of symmetric median-
centred p-probability intervals (PI) bounded by the (1− p)/2 and (1+ p)/2 quantiles
of that distribution: q(uα; (1 − p)/2) and q(uα; (1 + p)/2). For example, the 0.5-PI
is bounded by the lower and upper quartiles of the ccdf. According to this model of
local uncertainty, there is then a 0.5-probability that the actual attribute value (i.e.,
gold content) falls into the 0.5-PI or, equivalently, that over the study area 50 % of the
0.5-PI includes the true z values. The fraction of true values falling into the symmetric
p-PI was here computed as

p∗ = 1

n1

n1∑
α=1

j (uα; p) + 1

n2

[
n2∑

α=1

G

(
q(uα; (1 + p)/2) − mLR(uα)

sLR(uα)

)

−G

(
q(uα; (1 − p)/2) − mLR(uα)

sLR(uα)

) ]
, (6)

where j (uα; p) = 1 if the hard data z(uα) falls within the p-PI, and zero otherwise.
For the n2 soft data, the overlap between the p-PI and theGaussian distribution centred
on the regression estimate mLR(uα) is computed using an expression similar to Eq.
(2). Following Deutsch (1997), the agreement between observed,p∗

k , and expected
fractions, pk , is quantified using the following “goodness” statistic

G = 1 − 1

K ′
K ′∑
k=1

wk |p∗
k − pk | with 0 ≤ G ≤ 1, (7)

wherewk = 1 if p∗
k > pk , and 2 otherwise. K ′ represents the discretization level of the

computation. Twice more importance is given to deviations when p∗
k < pk (inaccurate
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Fig. 3 a Scatterplot of measured gold content (n1 = 12) versus estimates computed by linear regression
from four metals (Fe, As, Sn and W). b Results of the application of this regression model to 364 stream
sediment samples. Bottom scatterplot illustrates the larger uncertainty (standard error) associated to values
extrapolated beyond the range (26 to 34 ppb) of the 12 gold measurements

case). The weights penalize less the accurate case, which is the case where the fraction
of true values falling into the p-probability interval is larger than expected. The good-
ness statistic is completed by the so-called “accuracy plot” that allows one to visualize
departures between observed and expected fractions as a function of the probability p.

3.3 Local Cluster Analysis

The delineation of zones of low and high contents in gold was conducted through
the application of local cluster analysis (Anselin 1995; Fu et al. 2014; Goovaerts
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Fig. 4 Location map of stream sediment samples overlaid on a topographic map of the study area. The
size of yellow dots is proportional to the gold concentration estimated by linear regression

et al. (2005a, b); Goovaerts (2010)). The basic idea is to compute at each grid node
a local indicator of spatial autocorrelation (LISA) and test whether this statistic is
significantly positive, indicating the existence of an aggregate of grid nodes with
similar gold content, either low or high. Similarity between the gold concentration E-
type estimate at node u0 (kernel value) and values estimated at J (u0) adjacent nodes
u j (e.g., J (u0) = 8 nodes adjacent to u0) was here quantified by the local Moran’s I
statistic defined as

I (u0) = ẑE (u0) − m

s
× 1

J (u0)

J (u0)∑
j=1

ẑE (u j ) − m

s
, (8)

wherem and s are the mean and standard deviation of the set of N grid estimates. This
local statistic is simply the product of the kernel value and the average of neighboring
values; it can detect both positive and negative autocorrelations. It exceeds zero if the
kernel and neighborhood averaged gold content estimates jointly exceed the global
meanm (High–High, HH cluster) or are jointly belowm (Low–Low, LL cluster). LISA
values are negative if the kernel and neighborhood mean values are on opposite sides
of the global mean m, which indicates the presence of spatial outliers or anomalies:
High–Low (HL outlier) or Low–High (LH outlier).

To test whether any test statistic, I (u0), is significantly greater or smaller than 0
(i.e., presence of spatial autocorrelation), one needs to know its probability distribution
under the null hypothesis of spatial independence. The common way to generate such
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Fig. 5 Experimental indicator semivariograms standardized to unit sill with the isotropic model fitted
automatically by AUTO-IK for each of the 19 gold content thresholds

reference distribution is to shuffle the set of estimated values randomly and then to use
the shuffled values to compute the neighborhood average in Eq. (8) while the kernel
gold content remains the same. In other words, the LISA statistic is computed for
randomly distributed gold contents in adjacent locations. This operation is repeated
K times (K = 999 in this article) to compute the P value of the test. Because the
statistical test is repeated for each grid node, there is an increased likelihood of false
positives (i.e., risk of rejecting the null hypothesis when it is true) and the test needs
to be corrected for multiple testing. This correction was here accomplished using the
false discovery rate (FDR) approach, which aims to control the expected proportion of
true null hypotheses that will be rejected (Castro and Singer 2006); that is the objective
is to limit the risk of false positives.
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Fig. 5 continued

3.4 Propagation of Uncertainty Using Sequential Indicator Simulation

The application of local cluster analysis to E-type estimates has two main drawbacks:
(i) the detection of artificial clusters resulting from the autocorrelation imparted to
estimates ẑE (u0) by the smoothing effect of kriging, and (ii) the failure to account
for the uncertainty attached to kriging estimates (e.g., variance s2E (u0) of the ccdf).
Goovaerts (2006) proposed a simulation-based approach to account for uncertainty in
local cluster analysis and avoid the smoothing effect of kriging. First, the uncertainty
attached to the spatial distribution of gold content is modeled through the generation
of a set of equally-probable simulated maps, {z(l)(u j ), j = 1, . . . , N ; l = 1, . . . , L},
each consistent with the information available, such as histogram or a spatial correla-
tion function. This step was here accomplished using sequential indicator simulation
based on soft indicator coding (Sect. 3.1). Then, the uncertainty is propagated through
the computation of the LISA statistic by replacing in Eq. (8) the E-type estimates
ẑE (u0) and ẑE (u j ) by the corresponding simulated values, leading to a set of L sim-
ulated LISA values {I (l)(u0), l = 1, . . . , L}. In other words, the correlation of each
node with adjacent nodes will be tested L times, enabling the computation of the prob-
ability for that node to belong to a cluster of small gold content (low value surrounded
by low values) or a cluster of large gold content (high value surrounded by high val-
ues). The L classified maps are then processed to derive the most likely classification
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Fig. 6 Results of a
cross-validation of soft indicator
kriging: a accuracy plot, and b
scatterplot of E-type estimates
(ccdf mean) versus gold data
used for hard and soft indicator
coding and displayed in Fig. 4

of each node and the associated likelihood (i.e., frequency of occurrence of that class
over L simulations).

4 Results and Discussion

A linear regression analysis of gold content versus four metals (Fe, As, Sn and W)
explained close to 80%of the total variance (R2 = 0.798).Although the large R2 is due
to some extent to the small number of data available (n = 12), the scatterplot in Fig. 3a
indicates a good agreement between the predicted and measured gold concentrations.
The application of this regressionmodel to the remaining 364 stream sediment samples
led to gold content estimates that are plotted versus their standard error in Fig. 3b. This
scatterplot clearly illustrates the larger uncertainty (standard error) associated with
values extrapolated beyond the range (26 to 34 ppb) of the twelve gold measurements.
Such an extrapolation makes sense in the present exploratory setting where few gold
samples are available and lower values are expected away from the location of the old
gold mine. The larger uncertainty attached to the prediction of these lower values is
incorporated into the analysis through the soft indicator coding and the subsequent
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Fig. 7 Map of the standard deviation of the conditional cumulative distribution functions (ccdf) derived
using soft indicator kriging. Black crosses denote the location of the 12 hard data (gold content) measured
inside the abandoned gold mines whereas white dots are the soft data

simulation procedure. The gold content estimated by regression is mapped in Fig. 4.
Zones of low and high gold contents could, however, not be readily delineated from
this location map because of the discrete nature of the sampling and the fact that the
uncertainty attached to the regression estimates was ignored.

Each of the 12 gold data and 364 regression estimates were coded into a set of 19
indicators according to Eqs. (1) and (2). This high level of discretization was justified
by the fact that each soft data take the form of a Gaussian probability distribution
centred on the regression estimate. The thresholds were identified from the histogram
of 376 values in order to split the sample distribution into 20 classes of equal fre-
quency. The indicator semivariograms in Fig. 5 indicate a good spatial connectivity
of the indicators regardless the threshold. In particular the average relative nugget
effect is 38.2 %, well within the range of 25 to 75 % commonly used to characterize
a moderate spatial dependence (Cambardella et al. 1994). Interestingly the range of
autocorrelation increases with the threshold: it is around 2 km for the smallest thresh-
old’s concentrations (<17 ppb) and exceeds 6 km for the largest thresholds (>23 ppb).
In other words, the highest gold values are better connected in space than the lowest
gold values, which is unlike most environmental datasets where high concentrations
are often isolated hotspots (e.g., Goovaerts et al. 2005a, b).

Indicator semivariogram models were used with ordinary kriging to interpolate
hard and soft indicator data to the nodes of a grid with 100 m spacing. A small per-
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Fig. 8 Results of a local cluster
analysis conducted on the map
of gold content estimated by soft
indicator kriging: significant
clusters of low (LL) and high
(HH) gold content detected
using local Moran’s I. Dots
correspond to sampled locations

centage (1.9 %) of kriged probabilities had to be slightly corrected (average correction
= 0.0015) in order to create valid cumulative probability distributions at each of the
11,286 grid nodes. The resolution of the discrete ccdf was then increased by perform-
ing a linear interpolation between tabulated bounds provided by the sample histogram
(Deutsch and Journel 1998). The accuracy of the resulting model of uncertainty was
first quantified using cross-validation. The accuracy plot indicates a very good agree-
ment between observed and expected proportions of true values falling into probability
intervals, leading to a goodness statistics close to 1 (Fig. 6a). The mean absolute pre-
diction error was 3.6 ppb and the scatterplot in Fig. 6b illustrates the good correlation
between E-type estimates and the original 376 data (r = 0.73). As for all least-squares
interpolation methods (Goovaerts 1997), results display a conditional bias whereby
the large concentrations are underestimated while the small concentrations are over-
estimated.

Figure 7 shows the map of the standard deviation of the local distributions of
probability (ccdf) which can be interpreted as a measure of local uncertainty. As
expected, the uncertainty is the lowestwithin the goldmines (upper right corner)where
actual gold content was measured at 12 locations denoted by black crosses. At other
locations the uncertainty combines the standard error of regression estimates where
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Fig. 9 Three simulated maps of gold content created using sequential indicator simulation (left) and the
corresponding results of local cluster analysis (right)

goldwas not recorded (white dots) with the uncertainty caused by spatial interpolation.
The uncertainty is particularly large in sparsely sampled areas (zones A and B) and
in zones of greater spatial variability which border between areas of low and high
gold content displayed in the map of E-type estimates at the top of Fig. 8. A local
cluster analysis was conducted using a significance level α = 0.05 and the false
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Fig. 10 Map of the most
frequent cluster category (LL,
HH, non-significant) computed
from a local cluster analysis
(LCA) of one hundred simulated
maps of gold content. The
intensity of the shading is
proportional to the likelihood of
occurrence of that category

discovery rate (FDR) approach for multiple testing correction. Two significant clusters
of low gold content (LL) and two significant clusters of high gold content (HH) were
identified within the study area (Fig. 8, bottom). Of particular interest are the higher
gold content estimates found along the Erges River and downstream from the old
abandoned sedimentary mineralization.

A better alternative to the smooth map of E-type estimates is an ensemble of simu-
lated maps which reproduce the variability displayed by hard and soft data and model
the uncertainty attached to their spatial distribution. One hundred maps were gener-
ated by sequential indicator simulation and each underwent a local cluster analysis
similar to the one conducted for the single map of E-type estimates. Figure 9 shows
the results for the first three simulated maps, which illustrates the uncertainty attached
to the spatial distribution of gold content and how it impacts the definition of the
LL and HH clusters. One obvious difference with kriging results (Fig. 8, bottom)
is the much smaller size and spatial compactness of the clusters of low and high
gold content; in particular, the cluster of high gold content immediately downstream
from the gold mines vanished almost completely on some simulations. The remaining
HH cluster is, however, bigger and more spatially compact than LL clusters, which
agrees with the longer range of autocorrelation displayed by the indicator semivari-
ograms corresponding to higher thresholds (Fig. 5). This difference in size between
LL and HH clusters was less apparent on the classification map based on E-type esti-
mates because the smoothing effect of kriging artificially inflated the size of these
clusters.
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The local Moran’s I was also found significantly lower than zero at multiple loca-
tions, which indicates the presence of spatial outliers or anomalies. The set of 100 LCA
results was summarized by assigning each grid node to the most frequent category
(ML classification) and reporting that maximum frequency. Figure 10 confirms the
conclusions drawn from the first three realizations regarding the severe shrinking of
the cluster of high gold content located immediately downstream from the gold mines:
only one node has a likelihood of belonging to that cluster above 0.75 and even for a
0.5 likelihood the cluster is pretty small with a size less than 5 % the size of the same
cluster delineated on the basis of E-type estimates (Fig. 8, bottom). In comparison, the
HH cluster in the Southern part of the study area represents 35 % of the counterpart
kriging HH cluster and is now split into two parts. For both HH and LL clusters, the
centres of the cluster are typically associated with the highest likelihood (i.e., more
intense shading). Note that none of the nodes in the ML classification is flagged as a
significant outlier.

5 Conclusions

This paper presented a multivariate geostatistical methodology to delineate areas of
potential interest for future sedimentary gold exploration. The challenge was the exis-
tence of only a dozen of gold measurements confined to the grounds of the old gold
mines, which precluded the application of traditional interpolation techniques, such
as cokriging. The spatial characterization of the study area could, however, rely on
the availability of a large set of stream sediment samples and the relationship between
concentrations of severalmetals and gold content thatwasmodeled using linear regres-
sion. This information translated into a set of prior distributions of probability thatwere
discretized into indicator vectors and their semivariograms revealed the stronger spa-
tial connectivity of larger gold concentration estimates (>23 ppb) relative to smaller
concentrations (<17 ppb).

Soft indicator kriging allowed the derivation of the distributions of probability for
gold content at the nodes of a regular grid, accounting for the uncertainty caused
by the initial linear regression, in particular when extrapolating beyond the range of
the twelve gold data, and the uncertainty resulting from the spatial interpolation. The
use of the public-domain program AUTO-IK (Goovaerts 2009) greatly facilitated the
application of indicator krigingwith 19 thresholds as all the computation, including the
modeling of 19 indicator semivariograms, was done automatically. Cross-validation
demonstrated the accuracy of these models of uncertainty. The delineation of aggre-
gates of low and high gold content was accomplished using local cluster analysis
(LCA), which is commonly used to detect cancer clusters (Goovaerts and Jacquez
2005), yet has been seldom used in earth sciences (Zhang et al. 2008). Unlike a simple
visual interpretation of a map of kriging estimates, LCA is based on statistical testing
of the strength of spatial autocorrelation and allows the delineation of zones of signifi-
cant clustering. Onemain difference between the applications of LCA in earth sciences
relative to epidemiology is the sheer size of the dataset (e.g., large interpolation grid
versus a few hundred administrative units), which increased the risk of false detection
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through multiple testing. This issue was here addressed using the false discovery rate
(FDR) approach.

Because it is a least-square interpolator, kriging tends to create smooth maps which
display greater spatial continuity than the original data and a conditional bias. This
was a shortcoming for the application of local cluster analysis since it led to artificially
large clusters. In addition, the model of local uncertainty provided by the ccdf, which
captures the uncertainty attached to applying regression outside the range of the data,
was useless to characterize the uncertainty of a multi-point statistic like the local
Moran’s I. Both drawbacks were overcome by implementing the approach within
a stochastic simulation framework. Sequential indicator simulation generated maps
that reproduce the variability displayed by gold data, resulting in the identification of
clusters of smaller size and the detection of spatial anomalies or outliers corresponding
to significant negative spatial auto correlation. On the other end, the ensemble of
100 realizations provided a model of spatial uncertainty that could be propagated
through the local cluster analysis to compute the likelihood of the clusters of high
gold concentrations. In the current application, we found a clear Au enrichment along
the Erges River downstream from the old abandoned sedimentary mineralization. The
likelihood of this cluster of higher gold content would justify the future sampling of
this area to validate the findings of the present study. The local likelihood could also
help prioritizing which locations should be explored first, information that would be
unavailable from a simple visual interpretation of maps of E-type estimates.
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