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Abstract This paper presents amodel that can simulate early rock-forming processes,
including the influence of the initial packing of the grains on the subsequent rearrange-
ment that occurs as a consequence of pressure-induced grain damage. The paper is
concerned with the behaviour of assemblies of loose grains and the mechanics of early
lithification.Consider the concept of shear-induced negative dilatancy,where any shear
deformation has a tendency to produce densification even at very low pressures. As
shear deformation progresses, positive dilatancy starts to contribute and at the critical
state the two effects balance. This concept is encapsulated within the mathematics of
the model. The model building scheme is first outlined and demonstrated using a hard
particle model. Then, the concept of ‘self cancelling shear deformations’ that con-
tribute to the shear–volume coupling but not to the macroscopic shear deformation is
explained. The structure of the hard particle model is modified to include low levels of
damage at the grain contacts. A parameter that describes bonding between the grains
and possible damage to those bonds is incorporated into a term that, depending on
its magnitude, also accounts for frictional resistance between unbonded grains. This
parameter has the potential to develop with time, increasing compressive stress, or
in response to evolving chemical concentrations. Together these modifications allow
densification in the short term, and the formation of sedimentary rocks in the long
term, by pressure alone, to be simulated. Finally, simulations using the model are
compared with experimental results on soils.
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1 Introduction

When rock surfaces grind together during earthquakes or fault movement (Mair and
Abe 2008;Wibberly et al. 2008), fine particles become detached from the rock surface.
The particles are subsequently ground to finer material and, depending on the mineral
content of the parent rock, sands, silts and clays are formed.Non-mechanical processes,
such as freeze–thaw and repeated heating and cooling, also contribute to the production
of granular assemblies. Slowconsolidation increases the density of clay sediments such
that slates and shales eventually form (Baker et al. 1993; Ellis and Darby 2005).

The rearrangement of un-bonded granular materials (Paterson and Tobisch 1993)
subjected to shear and moderate compression is important in many geomechanical
situations. Shear, particularly cyclic shear, facilitates the rearrangement of loose sand
grains into a denser packing, particularly when supported by moderate pressure or
liquefaction during earthquakes (Gratchev et al. 2006; Dan et al. 2009). The deposition
of cementing minerals and crystal growth at the inter-granular contacts then results in
the formation of sandstones.

Slope instability (Cashman and Cashman 2000) is exacerbated by shear stresses,
such as those that occur during earthquakes or are generated by human activity. Slip
of sub-sea slopes can result in tidal waves. Shear stresses caused by vibrating equip-
ment or the transport of fluids can result in other difficulties, such as sand production
from oil reservoirs (Han and Dusseault 2005). It follows that a better understanding
of the mechanisms that produce shear stresses and pressure in granular assemblies
(both bonded and unbonded) together with an improved ability to predict the material
response to those stresses is of obvious importance.

While it is common to lump the above mechanisms together and assume an elas-
tic (Fokker and Orlic 2006) or viscoelastic (Hermanrud et al. 2013) material response,
the relatively recent acknowledgement of the presence of localised compaction
bands (Mollema and Antonellini 1996) in some sandstones, but not in others, has
initiated extensive experimental and theoretical investigations (Baud et al. 2006; Hol-
comb et al. 2007). This concern has also been investigated for carbonate rocks (Cilona
et al. 2012; Das and Buscarnera 2014). Experimental investigations of yield surfaces
clearly confirm the importance of shear (or differential) stress, in addition to pure
pressure, in the compaction process and approximately elliptical yield envelopes are
found (Baud et al. 2006). Although the fracture, disaggregation and rearrangement of
grains are reported (Holcomb et al. 2007), consideration of their relative contribution
does not form part of the constitutive models used to quantify their behaviour. For the
model presented in this paper, an attempt is made to identify the roles of these differ-
ent mechanisms. Specifically, three types of densification are postulated: (1) complete
rigid-grain rearrangement during shearing, without any pressure effect, at very low
pressures in the absence of negative dilatancy; (2) rigid ‘cooperative’ motion of the
grains requiring only very minor damage at the grain to grain contacts that is enhanced
by a loose initial packing; (3) grain motions dominated by significant crushing either
locally at the contacts or of the whole grain.

The concept that granular assemblies can achieve a denser packing as a result
of grain rearrangement caused by shearing is widely accepted (Mair and Abe 2008;
Chupin et al. 2011). On the other hand, the possibility that mechanisms might exist
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by which granular assemblies could densify by grain rearrangement under the influ-
ence of pressure alone has not been extensively investigated as an explicit part of the
modelling process. This paper explores that possibility and presents the concept of
‘self-cancelling’ shear deformation whereby granular rearrangement can occur as a
consequence of shear strains at the microscopic level that cancel each other out at
the macroscopic level (Sands and Chandler 2012, 2014). Additionally, a parameter
is introduced that controls the development of inter-particle bonding. Currently, this
parameter depends only on the amount of inter-particle bonding present, but it has the
potential to be a function of time, effective pressure, temperature and the chemical
composition of the interstitial fluid. At present, this bonding parameter has a single
strength value and so can only simulate a brittle bond that looses all its strength once
a maximum value of tension is exceeded; or a constant cohesion, or ‘liquid bonding’
between the particles, that is always present.

First, the mechanisms of compaction and how they can be modelled are explored,
and then the model construction is outlined. That modelling procedure is then illus-
trated by applying it to a simple hard particle model into which self-cancelling shears
and bond development are subsequently incorporated. The evolution equations are
then presented followed by an examination and explanation of the yield surfaces that
the model produces. Finally, some illustrative simulations are presented and the paper
closes with some concluding remarks.

2 Background

To better understand the mechanisms of compaction, it may be helpful to start by con-
sidering some simple aspects of the process. When sand is poured into a container, the
particles immediately rotate and rearrange to increase the packing density. The reduc-
tion in gravitational potential drives the frictional dissipation at the particle contacts.
The packing quickly becomes more difficult to densify and grain rearrangement stops.
If the particles are sufficiently hard, stiff and strong, the application of a monotonically
increasing load on the top surface produces little densification beyond that produced
under gravity alone. It is well known, however, that one can increase the density of
sand in this condition either by applying cyclic shear (Youd 1972) at low effective
pressures or by applying effective pressures that produce damage and deformation at
the particle–particle contacts (Vesic and Clough 1968). In both cases, further parti-
cle rotation and rearrangement are likely to occur. As densification continues, these
rotations become less significant and contact deformation starts to dominate.

Historically, continuummodels of the behaviour of unbonded granular matter were
designed only to account for monotonically increasing deformation. Although a very
few treatments proposed that compaction occurred at a critical value of hydrostatic
pressure, the vast majority of compactionmodels included shear enhanced compaction
and incorporated either an elliptical yield surface (Roscoe and Burland 1968) or a cone
and a cap (DiMaggio and Sandler 1971). These composite surfaces reflect particle
crushing on the cap and particle rearrangement on the cone. In some, the model
assumptions produce a smooth transition between cap and cone (Chandler 1990),
while in others an ad hoc smoothing function is inserted (DorMohammadi and Khoei
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2008). Some models were modified to cope with kinematic hardening, when the cone
swings in response to deformation (Gajo and Muir Wood 1999; Pestana et al. 2002a).
Others concentrated on modelling densification by cyclic shearing alone (Youd 1972).

Although generally developed to simulate the behaviour of soils—where intergran-
ular bonding is absent—models of this type have been used to simulate the behaviour
of soft rocks (Cuss et al. 2003; Baud et al. 2006). The circumstance that both materials
operate in compressive regimes, and the existence in many soil models of a cohesion
parameter that captures the influence of interfacial tensions, has enabled such mod-
els to be applied to rocks with relative ease. These models can work well but lack
an underlying micromechanical rationale needed to facilitate further development or
refinement.

Early models of granular plasticity introduced a yield surface and then determined
a flow rule, either using the associated flow rule or by introducing a plastic potential
function and assuming a flow rule associated to that function. Hunter (1976) suggested
that the use of an independent potential function limits the flow rules unnecessarily,
and independent flow rules have been used, (Gajo and Muir Wood 1999). Perhaps the
most significant disadvantage of using an independent potential function is that it does
not allow micromechanical concepts to be properly incorporated into the macroscopic
constitutive description. More recently, starting with a dissipation function and dila-
tancy rule and deducing a yield surface have become popular. This can be done in a
number of ways. Ziegler (1983) suggested one scheme and, using the mathematical
theory of envelopes, Chandler (1985) obtained the same results. More recently, Chan-
dler and Sands (2007a) updated the envelope approach as an optimisation problem and
similar schemes are now used more widely, for example Tsegaye and Benz (2014).
Collins and Houlsby (1997) used Legendre transforms in the context of thermody-
namics as their rationale, and thermodynamic approaches remain popular (Zhu and
Arson 2014).

In this paper, an approach is used that facilitates this incorporation and improves a
model, originally developed to simulate the behaviour of saturated sands, to incorpo-
rate the effect of pressure in aiding densification and suppressing dilation as well as
the introduction of inter-granular bonding.

3 Model Building Scheme

Themodelling schemeused in this paper starts by postulating: (1) an energy conserving
kinematic rule linking the shear and volumetric strains induced by the rearrangement
of essentially rigid grains; and (2) a dissipation function that encapsulates the conver-
sion of work into heat by frictional sliding and/or by grain damage. It is then assumed
that only when sufficient work has been done to satisfy the requirements of the dissi-
pation function will deformation occur. This latter condition is found by maximising
the dissipation rate (Ziegler 1983) with respect to the strain rate under the principal
constraint that the rate of doing work is equal to the dissipation rate. This entirely
mathematical process produces a rigid-plastic flow rule and a yield criterion.

An approach is then presented that is suitable for modelling the densification of
loose granular assemblies that often occurs during lithification. In the resulting model,
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hydrostatic pressure alone can produce compactionwith theminimumof particle dam-
age. This outcome is achieved via additional terms in both the established kinematic
constraint and the dissipation function that capture the rotational deformation occur-
ring at inter-particle contacts within granular assemblies undergoing deformation.

Specifically, the reader is asked to imagine positive and negative shear strains vary-
ing over a small length scale that cancel each other out macroscopically. The overall
rate of this complex micro-scale particle rearrangement is represented by a single pos-
itive scalar variable, α̇. This variable is incorporated within the kinematic constraint
and the dissipation function so that the model is able to simulate pressure-enhanced
compaction. It is postulated that this mode of deformation is associated with some
small scale increase in particle to particle contact area, which is captured within two
additional terms in the dissipation function. A bonding parameter incorporates the
effect of the increased contact area that occurs as a consequence of bond material
growth. Another additional term, that is not associated with particle rearrangement, is
included within the dissipation function and accounts for the increase in contact area
that occurs as a result of particle damage at the contacts. Both these terms have the
potential to evolve with time, temperature, stress, and chemical concentration.

This paper makes use of the convention that tension is positive andworks entirely in
terms of effective (rather than total) stress. First, consider a loosely packed, unbonded
granular assembly of unit volume in a Cartesian coordinate system x1, x2 and x3. It
is subjected to components of macroscopic effective stress σi j and undergoes com-
ponents of macroscopic strain ei j . In this context, macroscopic means that they are
volume averages and that while the assembly is non-uniform locally, it is regarded
as homogeneous if the unit volume contains at least 1000 grains. The mean effective
stress using the Einstein summation convention is σ = σmm/3 and, similarly, the
volume strain is e = emm . Deviatoric components of stress and strain are defined as

si j = σi j − σδi j (1)

and
di j = ei j − eδi j/3, (2)

where δi j is the Kronecker delta. Note that a list of notation used in this paper is
provided in Table 1.

A dot over the relevant symbol indicates a rate, or increment, and so the rate of
doing work on the assembly (ẇ) can then be written as

ẇ ≡ si j ḋi j + σ ė . (3)

If viewed on the local scale, one might expect a contribution from the product of the
fluctuations of the components of stress and strain, but this product is zero (Bishop
and Hill 1951), as the assembly is macroscopically homogeneous. For the rigid plastic
idealisation, an energy balance can then be written as

si j ḋi j + σ ė = Ḋ(σ, ḋi j , ė), (4)
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where Ḋ is the rate of dissipation. This function is always positive, and, to ensure the
strain rate independence typical of sands, is homogeneous of degree one in the strain
rate components. That is, if each component of the strain rate tensor is doubled, then
the rate of dissipation is doubled.

To better illustrate the model building procedure, it is first applied to a three-
dimensional version of a two-dimensional, hard particle model developed by the
current authors that has been shown to successfully simulate the behaviour of unbonded
granular assemblies (Chandler and Sands 2007b). Themodel is then extended to incor-
porate various forms of damage at the particle contacts. These modifications allow the
model to be used to simulate the behaviour of cemented rock as well as assemblies of
unbonded grains. Themodel can simulate the detachment of intact grains and rotations
at a microstructural scale during compaction by pressure alone, and the suppression
of dilation at moderate pressures, as well as compaction associated with full grain
crushing.

4 Hard Particle Model

The model development procedure is illustrated using a rate-independent model of an
unbonded, granular material, where grains are not damaged or deformed—the hard
particle model. A sophisticated dilatancy rule presented in earlier work (Chandler
and Sands 2007b) is implemented in this model. In that paper, a two-dimensional
version of the hard particlemodelwas used successfully to simulate some experimental
results (Joer et al. 1998). That work demonstrated the ability of this dilatancy rule to
capture all the important features of bothmonotonic and cyclic deformation evenwhen
the principal axes rotate. This dilatancy rule is given by

ė = νi

√
ḋmnḋmn + 2νr (di j − dri j )ḋi j , (5)

where νi and νr are coefficients of isotropic and rotational dilation, respectively, and
are functions of the current density and dri j is defined by the differential equation

ḋri j = c1(di j − dri j )
√
ḋmnḋmn, (6)

where c1 is a measure of how quickly the material reaches the critical state if the grains
are rigid, and is assumed to be constant. As the hard particle model is unbonded and
can only operate within a compressive regime νi is negative, permitting compaction
to be simulated, while νr is positive, and both are dependent on the current volume
(Chandler and Sands 2007b). As νi and νr have different signs, they oppose each
other, permitting the development of the critical state when they cancel each other out,
and the dramatic increase in density on strain-rate reversal observed by others (Yunus
et al. 2010). νr controls the rotational aspect of the kinematic hardening, producing
the non-coaxiality of stress and strain rate observed experimentally (Joer et al. 1998).

It has been shown (Chandler and Sands 2007b) that the dilatancy rule presented
in Eq. 5 will correctly predict: the non-coaxiality of the stress and strain rate, critical
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state behaviour, and cyclic densification. As there is no characteristic material stress
(for example, a particle strength or a specified preconsolidation pressure), the model
cannot simulate the suppression of dilatancy by high pressure, but that capability is
developed for the present model in Sect. 5. The isotropic dissipation rate is defined as

Ḋ ≡ −μσ

√
ḋmnḋmn, (7)

where μ is an effective friction coefficient.
The next step in themodelling procedure is to produce flow rules and a yield surface

and a number of ways exist for producing them (Chandler and Sands 2010). In this
model the principle ofmaximumdissipation rate is applied under the explicit constraint
that all the work done is dissipated. An additional constraint that the dissipation rate
is finite is also included. For completeness, the requirement that ḋmm = 0 is explicitly
enforced, although in this case the dissipation function and dilatancy rule are such that
the Langrangian multiplier is zero (Chandler and Sands 2007a). Equation 5 is also
directly incorporated into the rate of doing work (ẇ).

An appropriate Lagrangian function, incorporating Lagrangian multipliers (φ,�

and κ), is
L = Ḋ − φ(ẇ − Ḋ) − �(Ḋ0 − Ḋ) − κ ḋmm, (8)

where Ḋ0, the nominal rate of dissipation, is a positive constant that is required to
produce a unique solution to the optimisation problem. The term

s̃i j ≡ si j + 2νr (di j − dri j )σ, (9)

is defined and used with Eq. 3, to substitute for ẇ in the Lagrangian, which is then
differentiated to find an optimality condition

∂L

∂ ḋi j
= −φ

(
s̃i j + σνi

ḋi j√
ḋmnḋmn

)
+(1+φ+�)(−μσ)

ḋi j√
ḋmnḋmn

−κδi j = 0. (10)

A contraction with δi j determines that κ = 0 and, using that result, Eq. 10 can be
rearranged to give the flow rule

ḋi j = φs̃i j
√
ḋmnḋmn

(1 + φ + �)(−μσ) − φσνi
. (11)

Equation 10 is then contracted with ḋi j to give

− φ

(
s̃i j ḋi j + σνi

√
ḋmnḋmn

)
+ (1 + φ + �)(−μσ)

√
ḋmnḋmn = 0. (12)

When φ �= 0, the equality of the rate of doing work and the rate of dissipation requires
that � = −1. Equation 11 is then used, with � = −1, to eliminate ḋi j from Eq. 12
to produce
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−
(

φ ˜si j ˜si j
√
ḋmnḋmn

−μσ − σνi
+ φσνi

√
ḋmnḋmn

)
+ φ(−μσ)

√
ḋmnḋmn = 0; (13)

and dividing through by non-zero φ
√
ḋmnḋmn gives the yield criterion

˜si j ˜si j = (μσ + σνi )
2. (14)

Taking the negative root of the term in brackets in the above equation produces the
yield criterion in the standard form

0 =
√
s̃nm s̃nm + σνi

−μσ
− 1 (15)

for all non-zero values of φ. This includes kinematic hardening as a consequence of
the dilatancy rule. Like the original Drucker–Prager yield criterion, this yield criterion
is a cone in principal effective stress space.

5 Incorporation of Self-cancelling Shears and Dond Development

5.1 What are ‘Self-Cancelling Shears’?

It is well recognised that the volume of a granular assembly can alter if it is subjected
to shear. This is usually attributed, mainly, to a rearrangement of the granules into a
different packing. Under such a deformation regime, the granules can be regarded as
sensibly rigid. Volume change resulting from changes in pressure is usually attributed
to elastic or plastic deformation of the granules in an essentially unaltered packing
arrangement. The mechanism referred to as ‘self cancelling shears’ is envisaged as
one that can cause volume change in a granular assembly by pressure-induced granule
rearrangement. It is postulated that shears at a microscopic level cause very local very
minor damage that facilitates localised granule rearrangement into a denser packing.
It is further postulated that those shears (at the local, microscopic, level) balance out
so that there is no shear at the macroscopic level. It can be seen from the schematic
shown in Fig. 1 that this is kinematically possible. Locally, small blocks of material are
experiencing shear (the blocks are changing shape) as well as a reduction in size. The
shape of the assembly, however, has not changed (it remains square throughout) but the
area has reduced. Figures 2 and 3 illustrate the physical changes that, it is postulated,
occur at the microscopic level of the inter-granular contacts where minor damage and
shear stresses local to the granule contacts facilitate in granule rearrangement resulting
in increased density. Figure 2 shows the granule arrangement before the application
of pressure produces minor damage local to the inter-granular contacts permitting the
rearrangement and densification shown in Fig. 3.
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Fig. 1 Schematic illustrating a
notional body prior to
application of pressure (dotted
blue lines) and after localised
shear has resulted in reduced
size (solid red lines) while
retaining the original square
shape
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Fig. 2 Schematic illustrating
particles prior to application of
pressure
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5.2 Incorporation into the model

Firstly, in recognising that the particles are vulnerable to damage, the strains are further
split into those parts of the volumetric and deviatoric strain rates that are associated
only with grain rearrangement (ėR and ḋ R) and those that are associated only with
grain damage (ėD). As a consequence, the work done becomes

ẇ = si j ḋ
R
i j + σ ėR + σ ėD. (16)

Implicitly, the local deformation associated with ėD is taken to be affine, keeping the
angular relationships of the particles constant. Secondly, in addition to the macro-
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Fig. 3 Schematic illustrating
particles after the application of
pressure (shown red) overlying
their original position (shown in
blue). Minor damage local to the
contacts caused by the pressure
has permitted granules to
rearrange
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scopic deviatoric strains (dR
i j ), it is postulated that shear strains at particle level might

contribute to the dilatancy and to the dissipation rate, but cancel each other out to
produce no net macroscopic shears. These include particle rotation as well as damage.
The rate of these self-cancelling shears is denoted by the scalar α̇. The dilatancy rule
is then modified to give

ėR = νi

√
ḋ R
mnḋ

R
mn + α̇2 + 2νr (d

R
i j − dri j )ḋ

R
i j . (17)

In the hard particle model presented in Sect. 4, νi was negative. This is still the case
for compressive regimes and provides the driving force for rearrangement under pure
compression.

The extra dissipation rates are incorporated into the dissipation function to give

Ḋ ≡
√

(c − μσ)2ḋ R
mnḋ

R
mn + (ėD)2l2 + k2α̇2 (18)

where c, l and k are measures of the resistance at the particle to particle contacts
associated with sliding, crushing and rotation and, hence, have units of stress. To
better understand how they function, it is helpful to consider an assembly of solid
grains that is in the densest packing arrangement that can be achieved by rearrangement
alone. Further densification can only occur as a consequence of significant crushing
or squashing at the particle contacts or by particle disintegration. Further densification
of this type is controlled entirely by the parameter l. If, however, the particles were not
in their densest packing arrangement, further densification by rearrangement would
be facilitated by damage at the particle contacts, even if that damage were very small.
This process is controlled by the parameter k.

The resistance to sliding is controlled by c and μ. It follows that c, l and k are
all influenced by bond development, but only c is solely dependent on the increasing
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bond strength that arises as more bonding material is deposited, or the strength of the
bonding material itself develops. If the bond breaks, c can be set to zero such that
the resistance to sliding at the particle to particle contact depends only on the friction
parameter, μ. l reflects the increase in particle to particle contact area, which comes
from a combination of particle contact crushing and increase in the area of the bonding
material at the particle to particle contacts. It also includes any increase in the number
of contacts.

As the contact area (and l) increases, the load that can be supported at the contact
also increases, which is true even in the absence of bond material. The ability of the
particle to particle contacts to resist rotation is influenced by the area of the contacts,
as the larger the contact area, the more they are able to resist rotation. Bond material
influences such resistance, but some resistance remains even in an unbonded assembly.

At first sight, it might appear that compaction by hydrostatic pressure alone could be
captured by the parameter l. Any attempt to do so, however, would produce a vertex in
the yield surface when s̃i j s̃i j = 0. The incorporation of self cancelling shears removes
this vertex. As the self-cancelling shears cancel out macroscopically, they induce no
additional work through si j ḋ R

i j , but only via σ ėR as they contribute only to the volume
strain rate. This behaviour relies on the result (Bishop and Hill 1951) that the work
done can be determined by knowing only the volume averages of the components of
stress and strain. The same process as was used in Sect. 4, and the short-hand defined
in Eq. 9, is then used to write the Lagrangian concisely as

L = Ḋ − φ(ẇ − Ḋ) − �(Ḋ0 − Ḋ) − κ ḋ R
mm (19)

and more expansively as

L = (1 + φ + �)

√
(c − μσ)2ḋ Rḋ R + l2(ėD)2 + k2α̇2

−φ
(
s̃ḋ R

i j + ėDσ + σνi

√
ḋ R
i j ḋ

R
i j + α̇2

)
− κ ḋ R

mm; (20)

while its partial derivatives are

∂L

∂ ḋ R
i j

= (1 + φ + �)
(c − μσ)2ḋ R

i j

Ḋ
− φ

⎛
⎝s̃i j + σνi ḋ R

i j√
ḋ R
i j ḋ

R
i j + α̇2

⎞
⎠ − κδmm = 0, (21)

∂L

∂ ėD
= (1 + φ + �)

l2ėD

Ḋ
− φσ = 0, (22)

and

∂L

∂α̇
= (1 + φ + �)

k2α̇

Ḋ
− φ

⎛
⎝ σνi α̇√

ḋ R
i j ḋ

R
i j + α̇2

⎞
⎠ = 0. (23)
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OncontractingEq. 21with δi j , it is immediately apparent that againκ = 0.Multiplying
Eq. 21 by ḋ R

i j , Eq. 22 by ė
D and Eq. 23 by α̇ and adding the results gives L = 0; and so

again � = −1, as all the work done is being dissipated, and φ can take any non-zero
value.

For α̇ �= 0, Eqs. 21–23 reduce to

ḋ R
i j = Ḋ

s̃i j
(c − μσ)2 − k2

, (24)

ėD = D
σ

l2
, (25)

and √
ḋ R
i j ḋ

R
i j + α̇2 = Ḋ

σνi

k2
. (26)

Note that Eq. 26 has been used in obtaining Eq. 24. Substituting the above into the
Lagrangian gives

s̃i j s̃i j Ḋ

(c − μσ)2 − k2
+ Ḋ

σ 2ν2i

k2
+ Ḋ

σ 2

l2
− Ḋ = 0, (27)

leading to

0 =
√

s̃i j s̃i j
(c − μσ)2 − k2

+ σ 2ν2i

k2
+ σ 2

l2
− 1, (28)

for Ḋ �= 0. Eq. 28 is a yield surface and forms a smooth cap (see Fig. 4). Note that,
when s̃i j s̃i j = 0

σ 2 = k2l2

ν2i l
2 + k2

, (29)

allowing the definition

p∗ =
√

k2l2

ν2i l
2 + k2

, (30)

where p∗ is the highest pressure on the yield surface.
For the case where α̇ = 0, Eqs. 21 and 22 become

ḋ R
i j = Ḋs̃i j

(c − μσ)2 − σνi Ḋ/

√
ḋ R
mnḋ

R
mn

, (31)

and
ėD = D

σ

l2
. (32)

The first of these, when contracted with itself, yields

√
ḋ R
mnḋ

R
mn = Ḋ

√
s̃i j s̃i j + σνi

(c − μσ)2
, (33)
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Fig. 4 Sections in the (−σ/p∗), (
√si j si j /p

∗) plane through two yield surfaces: a cone at low pressure
and a cap at higher pressure, with no inter-particle bonding. The solid line shows the yield surface presented
in Eq. 35 while the broken line shows that presented in Eq. 28. (See Table 2, for parameter values: c = 0,
νr = 0; dgi j = 0.)

which, upon substitution, reduces Eq. 31 to

ḋ R
i j = s̃i j Ḋ

√
s̃i j s̃i j + σνi√

s̃i j s̃i j (c − μσ)2
. (34)

Elimination of ḋ R
i j and ė

D in the energy balance (ẇ = Ḋ) gives, for Ḋ �= 0, the yield
criterion

0 =
√

(
√
s̃i j s̃i j + σνi )2

(c − μσ)2
+ σ 2

l2
− 1. (35)

As shown in Fig. 4, this relationship forms a curved cone (the solid green line) and
meets smoothlywith the cap (the red dashed line) when α̇ = 0. If the cap (when α̇ �= 0)
was not used, but the cone was permitted to continue, it would form a vertex where√
s̃i j s̃i j = 0, as can be seen in the figure. Avoiding prediction of this non-physical

behaviour is one of the principal justifications for the development of self-cancelling
shears.

When the mean stress is tensile (negative pressure), then the previous tendency to
compact on shear, when subject to positive pressure, changes to a tendency to dilate.
This state is reflected in the model as a switch to a positive value of νi . In the yield
surfaces presented here, this is simply the negative of the value of νi used in the
compressive regime, although other values might be used if appropriate. The change
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Fig. 5 Sections in the (−σ/p∗), (
√si j si j /p

∗) plane through two yield surfaces: a cone at low pressure
and a cap at higher pressure, with inter-particle bonding. The solid line shows the yield surface presented
in Eq. 35 while the broken line shows that presented in Eq. 28. (See Table 2 for parameter values: c = 0.5;
νr = 0; dgi j = 0.)

in the value of νi produces a kink in the yield surface when σ = 0, as can be seen in
Fig. 5.

6 Evolution Equations

The parameter l, which is positive, is assumed to evolve in accordance with

l = l0

(
exp

(
(VR − V )

λ

)
− 1

)
(36)

where l0 is a measure of the grain strength, V is the current specific volume of the
granular assembly (bonded or unbonded) and VR is a reference-specific volume. This
reference volume is the volume that the assembly would occupy if it were in an
imaginary state in which all the particles retained their current relative positions and
orientations, but were returned to their initial, undamaged, shape. It follows that, if
VR − V is very small, very little squashing or crushing has occurred at the particle
contacts.λ is amaterial constant such that l0λ contributes to the stiffness of the granular
assembly.

For each increment of load, V and VR are updated using

V = V (1 + ė) (37)
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and
VR = VR(1 + ėR). (38)

The parameter k is maintained at a constant multiple of l, while the evolution of νi
and νr is governed by

νi = −c2

(
VR − VD

VD

)
(39)

and

νr = c3

(
VL − VR

VD

)
(40)

where c2 and c3 are material constants that can be determined from shear tests (c1
controls the shear strain, and c2 the density, at the critical state) and VD and VL are the
densest and loosest specific volumes that the assembly can achieve at low pressure.
Guidance on how to determine, from geotechnical tests, the values of most of the
parameters used for the models presented in this paper can be found in other work by
the authors (Sands and Chandler 2011).

7 Discussion of Yield Surfaces

Let us investigate some properties of the two yield functions developed in Sects. 4 and
5. To better understand Eq. 35 and how it combines with Eq. 15, it may be helpful to
consider Figs. 4, 5, 6, 7, 8 and 9. If νr = 0, the yield surface has an axis of symmetry
about the hydrostatic axis, as shown in Figs. 4, 5 and 6. When νr �= 0, the model will
predict kinematic hardening and a distorted yield surface. When the principal axes of
the effective stress tensor and the tensor with components (dR

i j − dri j ) coincide, then
this distorted yield surface can be plotted in principal stress space as shown in Fig. 7.
It should be noted that the section cut through this yield surface by a constant pressure
plane is still circular. In the even more restrictive case of proportional loading from
an isotropic state, where si j ∝ (dR

i j − dri j ), the yield surface can be plotted on the
(−σ/p∗), (√si j si j/p∗) plane as shown in Fig. 9.

If the value of c is set to zero, the model mimics an unbonded granular assembly.
Figure 4 shows a section through the composite yield surface for such an unbonded
granular assembly using the parameters shown in Table 2. It can be noted that the yield
surface is in twoparts,whichmerge seamlessly together so that, apart fromat the origin,
vertices are absent and there is continuity of the first derivative though not of the second
derivative. Figure 5 shows a similar section for a bonded granular assembly, with all
other material parameters unchanged. Figure 6 shows the yield surface for the bonded
granular assembly, decorated with flow vectors indicating the immediate direction of
any plastic flow in principal stress space for the material parameters shown in Table
1. Figure 7 shows the yield surface for the bonded granular assembly after kinematic
hardening has developed. It is decorated with flow vectors indicating the immediate
direction of any plastic flow in principal strain space. The material parameters are
shown in Table 1 (note that dgi j = dR

i j − dri j ).
In addition, it should be noted that c, k and l are the only material parameters with

the dimensions of stress, and it should be recalled that l is kept proportional to k. So,
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Fig. 6 Yield surface in dimensionless principal stress space decorated with flow vectors for a bonded
granular assembly. View not down the hydrostatic axis. (See Table 2 for parameter values: c = 0.5; νr = 0;
dgi j = 0.)

Fig. 7 Yield surface in dimensionless principal stress space decorated with flow vectors for a bonded
granular assembly after kinematic hardening. View not down the hydrostatic axis. (See Table 2 for parameter
values: c = 0.5; νr = 0.25; dgi j �= 0.)
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Table 1 Notation

Symbol Definition

σi j Component of the macroscopic effective stress tensor

ei j Component of the macroscopic strain tensor

si j Component of the deviatoric stress tensor

di j Component of the deviatoric strain tenor

σ Mean effective stress

ėR Volumetric strain rate (or increment) associated with grain rearrangement

ėD Volumetric strain rate (or increment) associated with grain damage

dRi j Component of the deviatoric strain tensor associated with grain rearrangement

ḋi j Component of the deviatoric strain rate (or increment) tensor

δ̇ Kronecker delta

ẇ Rate of doing work

Ḋ Rate of dissipation

Ḋ0 Nominal rate of dissipation

νi Coefficient of isotropic dilatancy

νr Coefficient of rotational kinematic dilatancy

α̇ Rate (or increment) of ‘self cancelling shears’

L Lagrangian

φ, � , κ Lagrangian multipliers

μ Friction coefficient

l Parameter controlling densification by grain damage

k Parameter controlling densification by grain rearrangement

c Bond strength parameter

Guidance on how to determine, from geotechnical tests, the values of most of the parameters used for the
models presented in this paper can be found in other work by the authors (Sands and Chandler 2011)

if μ, νi and νr are held constant and c is also proportional to k, the size of the yield
function shown in Fig. 7 scaleswith k. Thismodel is intended to simulate the behaviour
of granular materials with relatively small specific volumes, so the sum νi + μ is kept
positive, preventing the collapse of unbonded assemblies that can otherwise occur at
low positive pressures.

If
√
s̃i j s̃i j = 0, then themodel including self-cancelling shears predicts compaction

with no shape change. For the case where νr = 0, the model predicts that this occurs
under hydrostatic compression. To cope with the full range of pressure from zero to
p∗ (defined in Eq. 30), the yield surface produced by Eq. 28 must be augmented by
the yield surface where α̇ = 0 given by Eq. 35. When νr �= 0 and dgi j �= 0, the cone
swings about the origin, as can be seen from Figs. 7 and 9. However, the cone merges
smoothly with the cap (as can be seen from Fig. 4) and continuity of the yield surface
and its first derivative are maintained. Note that an applied hydrostatic stress no longer
simply produces a smaller yield surface, instead a change in the shape of the yield
surface is predicted.
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Table 2 Material parameters

∗ No kinematic hardening,
+ with kinematic hardening

Parameters Value

μ 1.0

νi 0.15

νr 0.0∗/0.25+
c 0.0∗/0.5+
k 0.3

l 1.35

dg11 1.0+

dg22 −0.5+

dg33 −0.5+

Figures 8 and 9 are projections onto the plane of (−σ/p∗), (√si j si j/p∗). The
precise nature of this projection requires some further explanation, particularly with
respect to Fig. 9. Recall that

s̃i j ≡ si j + 2νr (d
R
i j − dri j )σ. (41)

An appropriate section to take in stress space is one in which

si j = λ(dR
i j − dri j ). (42)

This section through the yield surface can then be written using the shorthand dgi j ≡
di j − dri j as

0 =

√√√√
(√

si j si j + 2νrσ
√
dgi j d

g
i j

)2

(c − μσ)2 − k2
+ σ 2

l2
+ σ 2ν2i

k2
− 1. (43)

for the case when α̇ = 0 and, simultaneously, α̇ �= 0.

8 Simulation of Pressure Induced Compaction

Figure 10 shows the results (redrawn) of experiments in isostatic compression byMiura
(1979) and Miura et al. (1984) on Toyoura sand, reproduced by Pestana et al. (2002b).
The results of experiments on initially loose, medium dense and dense packing are
shown as diamonds, squares and circles, respectively. Simulations of those experi-
ments, produced using the model presented here with the parameter values given in
Table 3, are shown as chain, solid and dotted lines, respectively. This shows the capac-
ity of the model to simulate isostatic compaction at moderate to high pressures taking
the initial packing of the sand grains into account.
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Fig. 8 Sections in the (−σ/p∗), (
√si j si j /p

∗) plane through yield surface (including inter-particle bond-

ing) decorated with flow vectors. (See Table 2 for parameter values: c = 0.5; νr = 0; dgi j = 0.)
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Fig. 9 Sections in the (−σ/p∗), (
√si j si j /p

∗)plane through yield surface (including inter-particle bonding
and kinematic hardening) decorated with flow vectors. (See Table 2 for parameter values: c = 0.5; νr =
0.25; dgi j �= 0)
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Fig. 10 Simulations (lines) of experiments carried out by Miura (1979) and Miura et al. (1984) [and
represented by Pestana et al. (2002b)] on soils with different initial packing densities (diamonds loose,
squares medium dense and circles dense—redrawn). See Table 3 for parameter values

Table 3 Parameters for Fig. 10
Parameter Value

μ 1.0

c1 8.5

c2 1.3

c3 30.6

l/k 1.7

l0 1.45 GPa

VL 1.995

VD 1.58

V (initial) 1.82/1.75/1.58

VR (initial) 1.82/1.75/1.58

λ 4.0

9 Conclusions

This paper successfully extends an existing hard particle model by introducing particle
bonding in addition to particle damage.A feature of the hard particlemodel is that there
are two contributions to the rate of volume change: (1) a continuing densification with
shear deformation; and (2) a developing tendency to dilate. These two cancel each other

123



Math Geosci (2016) 48:439–461 459

out at the critical state when the volume remains constant, but on reversal of straining
they reinforce each other to produce the dramatic densification seen in experiments.

The model presented here keeps these essential concepts intact but includes parti-
cle damage and particle bonding. Particle damage is introduced in two forms: (1) an
affine compaction such that the angular relationships of the particles remains constant,
and (2) a non-affine contribution that permits those relationships to alter and, hence,
incorporates the densification tendency developed in the hard particle model. Parti-
cle bonding is introduced via a modification to the frictional term in the dissipation
function.

The combination of damagemechanisms used in themodel presented here produces
a smooth cap that merges perfectly with the curved cone and avoids a vertex in the
cap. The model is successfully tested on experimental data from pressure-induced
compaction of sands of different initial densities.

In work presented elsewhere (Chandler and Sands 2007a, b; Sands and Chandler
2010, 2014; Sands et al. 2010, 2011), the authors have developed evolution equations
for νi and νr . Further work is planned to develop evolution equations for c and k
(the ratio of k/ l will continue to be kept constant). Similarly, a relatively simple
dissipation function that predicts a circular cone (akin to the Drucker–Prager model)
has been presented here. The authors have shown elsewhere (Chandler and Sands
2009) how a different dissipation function would predict a cone with the traditional
Mohr–Coulomb shape and others will predict the Matsuoka-Nakai or Lade-Duncan
yield surfaces.
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