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Abstract Research surveys at sea are undertaken yearly to monitor the distribution
and abundance of fish stocks. In the survey data, a small number of high fish concentra-
tion values are often encountered, which denote hotspots of interest. But statistically,
they are responsible for important uncertainty in the estimation. Thus understand-
ing their spatial predictability given their surroundings is expected to reduce such
uncertainty. Indicator variograms and cross-variograms allow to understand the spa-
tial relationship between values above a cutoff and the rest of the distribution under
that cutoff. Using these tools, a “top” cutoff can be evidenced above which values
are spatially uncorrelated with their lower surroundings. Spatially, the geometric set
corresponding to the top cutoff corresponds to biological hotspots, inside which high
concentrations are contained. The hotspot areas were mapped using a multivariate
kriging model, considering indicators in different years as covariates. The case study
considered here is the series of acoustic surveys Pelgas performed in the Bay of Biscay
to estimate anchovy and other pelagic fish species. The data represent tonnes of fish
by square nautical mile along transects regularly spaced. Top cutoffs were estimated
in each year. The areas of such anchovy hotspots are then mapped by co-kriging using
all information across the time series. The geostatistical tools were adapted for esti-
mating hotspot habitat maps and their variability, which are key information for the
spatial management of fish stocks. Tools used here are generic and will apply in many
engineering fields where predicting high concentration values spatially is of interest.
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1 Introduction

In fisheries ecology, the concept of hotspots refers to areas of high biological concentra-
tion due to particular environmental conditions shaping locally ecosystem productivity
and structure. The concept of hotspots has been applied to single species (fishing
hotspots: Yasuda et al. 2014) or species richness (biodiversity hotspots: Myers et al.
2000; Stuart-Smith et al. 2013) as well as areas of enhanced trophic interactions (San-
tora et al. 2011). The identification of hotspots is a fundamental aspect of conservation
and spatial management strategies. Fisheries management now includes more global
conservation issues and the approach developed here to define hotspots is part of such
global strategy.Nelson andBoots (2008) reviewmethods for detecting hotspots of over
abundance. Typically, a threshold is applied to differentiate between hot and non-hot
areas and this threshold can be defined globally based on the cumulative distribution
of survey data or locally using a kernel. It is more usual in fisheries ecology to define
a threshold globally. Defining a threshold is somewhat subjective and attempts have
been made to diminish subjectivity by defining thresholds based on rules. Bartolino
et al. (2011) suggest a rule for a global approach that is based on the shape of the
cumulative distribution of the data. Here, a local rule to define hotspots is suggested
that is based on a non-linear geostatistical approach. Our definition of hotspots is based
on the spatial relationship between values above a cutoff and the rest of the distrib-
ution under that cutoff. It results in defining a “top” cutoff which translates spatially
in geometric sets that can be mapped by kriging. The advantages of doing so are that
the cutoff defining hotspots is based on local transition probabilities, will vary across
years with global abundance and does not need to be fixed. In effect, the notion of
high value is relative and varies between years depending on global fish abundance.
The fisheries survey data series analyzed spanned fourteen years and showed variation
of maximum values and global abundance across years, requiring a generic approach
to defining hotspots. The resource is the anchovy in the Bay of Biscay. The fishery
has been closed in the period 2005–2010 and spatial management measures have
been tested Lehuta et al. (2010). In addition to suggesting a methodology for defining
hotspots, the present study also provides insight into the uncertainty when mapping
hotspot habitats due to interannual variability. First, it is shown how the variograms
and cross-variograms of indicators Rivoirard (1994) allow to analyze the spatial orga-
nization of geometric sets defined by a series of indicators and how these properties
can be used to define the cutoff for hotspots. The series of cutoffs along years results
in a series of indicators. Then each indicator in each year is considered as a covariate
and a linear model of coregionalization Chilès and Delfiner (2012) is used to estimate
the hotspots in each year given those in all years. The procedure is then applied on the
survey series of anchovy distribution in the Bay of Biscay. The procedure is compared
to simple thresholding to further demonstrate its appropriateness.
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2 Methods

2.1 A Geostatistical Definition of Biological Hotspots

Let Z(x) be a random function taking values at points x (which will represent anchovy
concentration for a given year). The indicator of the geometrical set Ai defined by
cutoff zi is

1Ai (x) = {1 if x ∈ Ai , Z(x) ≥ zi}
{0 if x /∈ Ai , Z(x) < zi} .

The variogram of the indicator of Ai measures the probability that a vector of distance
h has one extremity inside and the other outside the set Ai

γi (h) = P[Z(x) ∈ Ai , Z(x + h) /∈ Ai ].

It is the probability of entering into Ai when going from point x to point x + h.
Let z j > zi be another cutoff. The cross-variogram of the indicators of A j and

Ai measures the probability that a vector of distance h has one extremity inside A j

and the other outside Ai

γi x j (h) = P[Z(x) ∈ A j , Z(x + h) /∈ Ai ].

It is the probability of going from outside Ai at one point to inside A j at another point
h apart from the first one.

The ratio of γi x j (h) on γi (h) measures the transition probability of getting inside
A j when entering into Ai from distance h

γi x j (h)

γ i (h)
= P[Z(x) ∈ A j/Z(x) ∈ Ai , Z(x + h) /∈ Ai ].

An increasing ratio with distance h means that the sets A j tend to be positioned in the
middle of the sets Ai . In contrast, if the variogram ratio does not vary with distance
(i.e., stays flat), the sets A j are positioned at randomwithin the sets Ai and thus, being
in the set Ai does not inform on where sets A j are located (no edge effect within
Ai : Fig. 1). Values greater than z j are spatially uncorrelated with the geometry of Ai .
The spatial behavior within Ai of the indicator of values greater than z j , is taken in
charge by the residuals of the regression of 1

{
Z(x) ≥ z j

}
on 1 {Z(x) ≥ zi } (model

with orthogonal residuals: Rivoirard 1994). If the cutoff z j is sufficiently high, due to
the destructuration of high values (Matheron 1982), the residual will often be spatially
unstructured (pure nugget effect). The question is then to find a high enough cutoff
zi for which A j ( j > i) has no edge effect within Ai and possibly above which the
residuals are pure nugget.

Based on this property, it is suggested to consider this set Ai as representing the
hotspots of the year. Higher values are spatially uncorrelated with the geometry of Ai

and cannot be predictedwithin Ai . The cutoff zi plays the role of the topcut in themodel
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Fig. 1 Schematics showing the absence of edge effects within Ai

proposed byRivoirard et al. (2013). In practice, zi can be estimated using the following
procedure. Consider a suite of increasing cutoffs (z1 < z2 < · · · zi < z j · · · zn). The
hotspot habitat of the year is defined as the geometrical set for cutoff zi and is noted
Ai , where i in {1, 2, . . .(n−1)} is the minimum rank for which the ratio of γi x(i+1)(h)

over γi (h) is flat (the ratio does not vary with distance h) and possibly for which the
variogram of the residuals of 1

{
Z(x) ≥ z(i+1)

}
on 1 {Z(x) ≥ zi } is also flat.

2.2 Multi-Year Co-Kriging of Hotpsots

For each year, hotspots are defined by the indicator of one Ai . The cutoff rank i will
vary among years. So applying the previous procedure on a time series of P data sets
results in P indicators of hotspots. It is expected that the hotspots will show spatial
correlation over the time series and therefore the P indicators are expected to be
spatially correlated. To map hotspots in any given year k in {1, . . .P} the indicator in
each year was co-kriged with all P indicators from all years. As all P indicators are
defined on the same grid, co-kriging is homotopic and each indicator in each year was
estimated by co-kriging with the other indicators from all years Chilès and Delfiner
(2012). For that a linear model of coregionalization was fitted using the automated
fitting procedure of Desassis and Renard (2013). All computations were done with the
RGeostats package (Renard et al. 2014).

3 Application

3.1 Anchovy Survey Data Series

The data consist of anchovy concentration expressed in tonnes per nautical mile square
(tons/nm2). The sampling design is the same in all years and is made of transects
perpendicular to the coast across the French continental shelf of the bay of Biscay.
Transects are regularly spaced (Fig. 2)with an inter-transect distance of twelve nautical
miles (nm). The sample values are aligned along the transects with an inter-sample
distance of one nm. Fish concentration is derived by combining echo-sounding records
along the transect lines with trawl haul catches, which allow to identify echotraces
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Fig. 2 Design of the PELGAS surveys showing transects and sample locations. Year 2002 examplifies
how high fish concentration values are located relatively to lower ones

(Doray et al. 2010). Though the same transects are sailed each year their start and
end are not exactly located at the same position and therefore the data locations along
the transects are not positioned exactly at the same points in all years. To allow for
co-kriging, the indicators of hotspots were positioned at the same points in all years.
For that the data in each year were migrated on one single sampling grid for all years.
The grid was made of the transects where the start was the mean start position over
the years and the number of samples per transect was the mean number of samples
per transect. The average difference between grid and survey sample point number
along transects was 2 % only. The inter-sample distance along transects was one nm.
In each year, the grid node was attributed the nearest data sample.

The data sets in the different years vary over one order of magnitude in the global
mean and show important differences in their aggregation pattern (Table 1; Fig. 3).
The larger the global mean, the greater the maximum value, the smaller the slope of
the curve Q(z) (smaller contribution of small values to the global mean).

3.2 Definition of Hotspots in Each Year

The spatial organization was analyzed with the following suite of eight cutoffs (ranked
from 1 to 8), which encompassed the range of values across years: 0.01, 10, 50, 100,
200, 400, 600, 800. The procedure defined in Sect. 2.1 was applied in each year (Table
2). In most years, the hotspot indicator corresponded to the last structured indicator.
Figure 4 illustrates the variograms in this situation for year 2002. Table 2 is based
on the analysis of such variograms, for all years. In 2008 and 2012 where abundance
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Table 1 Basic statistics of the
data on the single sampling grid

Years are ranked by the mean
Mean simple data average, CV
coefficient of variation, p0
percent of zero values, Max
maximum data value

Year Mean CV p0 Max

2005 0.94 4.82 0.81 51

2003 2.52 4.46 0.47 275

2009 3.11 3.64 0.62 161

2007 3.33 3.13 0.54 160

2006 3.47 4.06 0.67 161

2004 4.58 5.26 0.73 420

2013 6.85 2.50 0.50 214

2010 7.04 5.08 0.73 845

2011 8.41 4.62 0.27 756

2001 9.55 4.42 0.48 635

2008 10.51 4.16 0.61 375

2000 10.89 2.27 0.28 252

2002 11.23 3.99 0.50 701

2012 17.03 3.99 0.47 1197

Fig. 3 Selectivity curves Q(z) for years 2000–2013, where Q(z) is the summed percent biomass as a
function of fish concentration values z

was high, the cutoff immediately succeeding the hotspot cutoff was also structured but
higher values were positioned without border effect in the hotspot. This demonstrates
the importance of using the variogram ratio to define hotspots. Table 3 shows the
relation of hotspot’s cutoff and area to the global mean. The hotspot cutoff increased
with the global mean. The hotspots varied in area occupied from one to nine percent
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Table 2 Hotspot cutoffs and indicator variograms which served to define the cutoffs

Hospot Ai Vario i Vario (i + 1) Vario i × (i + 1)/ i Vario resid (i, i + 1)

2000 A4 1 0 0 0

2001 A4 1 0 0 0

2002 A4 1 0 0 0

2003 A2 1 0 0 0

2004 A2 1 0 0 0

2005 A2 1 0 0 0

2006 A3 0 0 0 0

2007 A2 1 0 0 0

2008 A4 1 1 0 0

2009 A3 1 0 0 0

2010 A4 1 0 0 0

2011 A4 0 0 0 0

2012 A4 1 1 0 1

2013 A3 1 0 0 0

Symbol “1” indicates that the variogram was structured while “0” indicates it was a pure nugget
Ai hotspot defined by cutoff of rank i . Vario i variogram of the indicator of cutoff i . Vario (i +1) variogram
of the indicator of the immediately succeeding cutoff (i +1). Vario i × (i +1)/ i variogram ratio giving the
spatial transition probability from cutoff i to i + 1. Vario resid (i, i + 1) variogram of the indicator residual
when regressing cutoff (i + 1) on i

of the study area as computed from the mean of their indicator. The occupied area of
hotspots was larger for low hotspot cutoffs. Complete destructuration was observed
within the hotspots (pure nugget effect of the residuals to higher cutoffs), with an
exception for 2012, the richest year (residuals were structured from rank 4 defining
the hotspots to rank 7, and were pure nugget effect only beyond this).

3.3 Co-Kriging Hotspots Across Years

The single variograms of the indicators of hotspots were computed in each year. No
anisotropy was identified. Based on the behavior of single variograms, the coregional-
ization model was fitted with three predefined structural components: a nugget effect
and two spherical models. The fit was performed using the model.auto() function
(Desassis and Renard 2013) implemented in the RGeostats package (Renard et al.
2014), which estimates both the sills and ranges of the structures (ranges were 13
and 52 nm). Table 4 shows the years where hotspots are co-regionalized (sills of
cross-variograms greater than 0.002 and 0.001 in absolute value for the two struc-
tured components, respectively). The hotspot areas showed consistency and variability
across years. Some years (in particular 2001, 2006, 2009–2011) were very different
from the others, being correlated to a few years only. In contrast a group of years
(2002–2004, 2007, 2012, 2013) correlated with many years. Co-kriging the indicators
resulted in probability maps of hotspots in each year (Figs. 5, 6, 7). The same neigh-
borhood parameters were used in each year (maximum search distance of twice the
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Fig. 4 Variograms in year 2002 allowing to define the hotspot cutoff. The hotspot geometric set retained
is A4. I4 variogram of the indicator of cutoff ranked 4 (100 tons per nm2). I5 variogram of the indicator of
cutoff ranked 5 (200 tons per nm2). I4 × 5/I4 variogram ratio representing the spatial transition probability
from 4 to 5. IR(4, 5) variogram of the residuals of the regression of 5 on 4

inter-transect distance, minimum and maximum of samples of 5 and 10). The mean of
these maps provided the fourteen year average (2000–2013) occurrence probability of
a hotspot (Fig. 7). The location and extent of hotspots varied across years as shown by
the differences in annual maps and as a result the maximum probability on the mean
map was 0.24 only. Yet, there were three main areas of hotspots: off Gironde estuary,
at the coast south of Gironde and on mid-shelf off Landes.

4 Conclusions

The paper shows how geostatistical non-linear indicator tools can be used to define
hotspots in fisheries ecology as well as how interannual variability can be handled
with multivariate geostatistics. A single cutoff was not satisfactory to define hotspots
because the global mean varied across years making the concept of high value rela-
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Table 3 Basic statistics on
hotspots

Years are ranked by the mean
concentration of the year

Hotspot Area proportion Mean concentration

2005 A2 0.029 0.94

2003 A2 0.053 2.52

2009 A3 0.010 3.11

2007 A2 0.091 3.33

2006 A3 0.020 3.47

2004 A2 0.090 4.58

2013 A3 0.034 6.85

2010 A4 0.014 7.04

2011 A4 0.012 8.41

2001 A4 0.017 9.55

2008 A4 0.026 10.51

2000 A4 0.013 10.89

2002 A4 0.028 11.23

2012 A4 0.032 17.03

Table 4 Non-zero cross-correlation between the indicator of hotspots across years

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013

2000 X

2001 X

2002 X X

2003 X X

2004 X X X X

2005 X X X

2006 X X X

2007 X X X X X X X

2008 X X X

2009 X X

2010 X X X X

2011 X

2012 X X X X X X X

2013 X X X X X X X X X X

tive. Variograms and cross-variograms of indicators were used to estimate transition
probabilities, which allowed to define hotspots in relative terms as the areas within
which higher values occurred unpredictably. This definition is close in concept to the
topcut model of Rivoirard et al. (2013). The geostatistical definition of hotspots and
their mapping over time using co-kriging allowed to show convincing results on the
anchovy in the Bay of Biscay. The procedure is generic and thus applicable to other
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Fig. 5 Probabilitymaps of hotspots in years 2000–2005. The arithmetic color scale is the same in Figs. 5, 6,
7 (blue zero, redmaximumat 0.66). The along transect data are superposed as red bubbles. Ai (i in{1, . . ., 4})
denotes the hotspot geometric set (Table 3)

fish survey data and fish species. But variability of the global mean across years and
its consequence on hotspots is expected to vary between species because of specific
behaviors and aggregation patterns. Here, on anchovy, the global mean of the year
had important consequences on the spatial organization of fish concentrations. When
the global abundance was greater/smaller, destructuration occurred less/more rapidly
and hotspots were warmer/colder with higher/lower threshold defining the hotspots.
Hotspots varied in location and extent over the years (Figs. 5, 6, 7; Table 3). Yet consis-
tent areas over time for hotspots were identified, which is useful for the conservation
of habitats.

Themethodology used here to define hotpsots was compared to simple thresholding
in each year. Bartolino et al. (2011) suggested to select a threshold based on the cur-
vature of the cumulative distribution function (cdf) of z(x)/max(z(x)). The threshold
is defined as the largest value of z(x)/max(z(x)) where the tangent to the cdf equals
unity. The cdf shows a curvature because low concentration values occupy large areas
(high increase of the cdf) while high concentration values occupy small areas (low
increase of the cdf). Thus, the threshold is defined at the switch point. The treshold
obtained by this procedure was systematically lower than that with our non-linear
geostatistical procedure (Table 5), resulting in larger and colder hotspots. In contrast
to simple thresholding, the non-linear approach used here is bivariate. It considers the
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Fig. 6 Probabilitymaps of hotspots in years 2006–2011. The arithmetic color scale is the same in Figs. 5, 6,
7 (blue zero, redmaximumat 0.66). The along transect data are superposed as red bubbles. Ai (i in{1, . . ., 4})
denotes the hotspot geometric set (Table 3)

Fig. 7 Probability maps of hotspots in years 2012–2013 and mean map for the entire series 2000–2013.
The arithmetic color scale is the same in Figs. 5, 6, 7 (blue zero, red maximum at 0.66). The along transect
data are superposed as red bubbles. Ai(i in{1, . . ., 4}) denotes the hotspot geometric set (Table 3)

behavior of higher values within the areas defined by a lower cutoff and thus results
in selecting hotspots with a larger cutoff and smaller areas.

In spring during the survey period, fishing is usually located on transects 1 to
4 starting from the south (Figs. 5, 6, 7), which corresponded to the most southern
hotspots identified. High abundance is an important driver of the fishing process but it
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Table 5 Comparison of hotspot
cutoffs resulting from a simple
thresholding method with that
obtained by this paper’s
non-linear geostatistical method

Years are ranked by the mean
concentration of the year

Simple thresholding Nonlinear geostatistics

2005 2.7 10

2003 18 10

2009 15 50

2007 14 10

2006 10 50

2004 27 10

2013 26 50

2010 61 100

2011 55 100

2001 47 100

2008 29 100

2000 40 100

2002 62 100

2012 90 100

is not the only one. Fish length, schooling at small scale, distance to harbor, selling price
depending on harbor, fleet and social behavior are other factors that make fishermen
select some hotspots rather than others. The identification of hotspots is of interest in
a conservation approach to spatially manage fisheries but may also help inform on the
drivers of fishing.
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