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Abstract Uncertainty in reservoir geological properties has a major impact in reser-
voir design and operations decision-making. To quantify the production uncertainty
and to make optimal decisions in reservoir development, flow simulation is widely
used. However, reservoir flow simulation is a computationally intensive task due to
complex geological heterogeneities and numerical thermal modeling. Normally only
a small number of realizations are chosen from a large superset for flow simulation.
In this paper, a mixed-integer linear optimization-based geological realization reduc-
tion method is proposed to select geological realizations. The method minimizes the
probability distance between the discrete distribution represented by the superset of
realizations and the reduced discrete distribution represented by the selected realiza-
tions. The proposed method was compared with the traditional ranking technique and
the distance-based kernel clustering method. Results show that the proposed method
can effectively select realizations and assign probabilities such that the extreme and
expected reservoir performances are recovered better than any of the single static
measure-based ranking methods or the kernel clustering method.

Keywords Reservoir uncertainty · Optimal realization reduction ·
Mixed-integer optimization · Static measures

S. Rahim · Z. Li (B)
Department of Chemical and Materials Engineering,
University of Alberta, Edmonton, Alberta, Canada
e-mail: zukui@ualberta.ca

J. Trivedi
Department of Civil and Environmental Engineering,
University of Alberta, Edmonton, Alberta, Canada

123



374 Math Geosci (2015) 47:373–396

1 Introduction

Reservoir geological properties are important parameters used in the design and opti-
mization of oil extraction processes from reservoirs. These parameters dictate the ease
with which oil can be extracted and also the quantity of oil that can be extracted.
Geological uncertainty exists because it is not possible to know the exact geological
properties of every section of a realistic reservoir. Techniques such as well exploration
and core holes can give an idea of the geological properties of particular areas of the
reservoir. However, the geological parameters of the areas between the exploration
wells or core holes will still be unknown. As a result, geological uncertainty will
always exist for a reservoir.

Reservoir performance can be quantified by flow simulation which provides pro-
duction parameters of interest such as the cumulative oil production (COP) rate and the
net present value (NPV). All of the production parameters depend on the geological
properties of the reservoir. It is very important to incorporate geological uncertainty in
a reservoirmodel. Otherwise, themodelmay give an incorrect prediction of production
parameters. To represent the geological uncertainty, multiple geological realizations
are usually generated using geostatistical tools so as to obtain a broad range of possible
geological properties for a reservoir. However, reservoir flow simulations cannot be
run for all of the possible realizations due to the significant computer processing time.
Therefore, in practice, only a small number of geological realizations are chosen to
perform reservoir simulations to obtain a reservoir performance model which incor-
porates geological uncertainty. Various methods for selecting geological realizations
exist in the literature and canbebroadly classified as follows: randomselectionmethod,
static measure-based ranking method, distance-based kernel clustering technique and
probability distance-based realization reduction method.

While randomly selecting a subset of realizations is the easiest method for imple-
mentation, it may result in the wrong measure of geological uncertainty especially
when the number of selected realizations is small. Many studies in the literature use
the single static measure-based ranking method to select geological realizations and to
quantify the uncertainty in reservoir performance. The rankingmethodwas introduced
byBallin et al. (1992). Ranking-based reduction arranges realizations of an easily com-
putablemeasure in an ascending/descending order and then selects the realizations that
have low, medium and high measure values. The selected realizations are then used as
input for flow simulations to obtain the reservoir production response. Deutsch (1998,
1999) developed software tools to rank realizations based on the number of connected
cells, connectivity to a well location or connectivity between multiple wells. Deutsch
and Begg (2001) proposed that ranking all of the realizations based on a measure and
then choosing a subset of equally spaced realizations result in a better representation
of uncertainty than choosing the low-, medium- and high-performance realizations.
A ranking-based method for the Steam-Assisted Gravity Drainage (SAGD) process
using a measure known as connected contained bitumen was used by McLennan
and Deutsch (2004). The connected contained bitumen was calculated using net cells
connected to the SAGD producer well. The realizations with low, medium and high
ranking measures were selected from the superset of realizations. In another study,
McLennan and Deutsch (2005) used several measures based on statistical, volumet-
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ric, global and local connectivity metrics to select a subset of realizations. Fenik et
al. (2009) used a ranking method based on connected hydrocarbon volume (CHV) to
select a subset of realizations for a SAGD application. Li et al. (2012) adopted a static
quality measure, which was a modification to the CHV measure, to rank geological
realizations. Rankings based on the static quality measure showed improved perfor-
mance over rankings based on CHV. While efforts have been made to improve static
measures for ranking, the limitation of existing ranking methods for selecting realiza-
tions is that they rely greatly on the measure used. If the measure has poor correlation
to the production performance parameter of the reservoir, then the selected realizations
will not be a good representation of the superset of realizations. Furthermore, all of
the selected realizations based on the ranking method have equal probability in the
reduced distribution.

The distance-based kernel clustering method has also received lots of attention in
the past. Scheidt and Caers (2009) used simplified streamline simulation results to
compute the distance between realizations and to form a distance matrix. The uncer-
tainty associated with the distance matrix is modelled using multidimensional scaling
and kernel techniques. The superset of realizations is grouped into clusters using ker-
nel k-means clustering, and a subset of selected realizations can be extracted from the
clusters. Scheidt and Caers (2010) compared the statistics associated with the tradi-
tional rankingmethod, the kernel k-means clusteringmethod and the random selection
method. They used the bootstrap technique to compute the confidence intervals of the
P10, P50 and P90 quantiles of the reduced subset of realizations and showed that the
distance-based kernel clustering method provides the most robust results (Scheidt and
Caers 2010; Park and Caers 2011). Singh et al. (2014) used the kernel k-means cluster-
ingmethod to quantify uncertainty associatedwith various history-matched geological
models and to forecast production information. The distance matrix in the clustering
method uses oil recovery factors between realizations. These clustering methods gen-
erally rely on streamline simulations to calculate distance between realizations, which
is still computationally demanding for large reservoir models, and the problem has to
be reformulated if the number of wells or well location changes. Additionally, simpli-
fied fluid flow assumptions are used for streamline simulations, which may undermine
the geological heterogeneity of the reservoir, resulting in a poor representation of geo-
logical uncertainty (Gilman et al. (2002)). There is a need for a realization reduction
method that is computationally less expensive and provides a better representation of
the original distribution than the current ranking methods.

Apart from the ranking method and the clustering method, a probability distance-
based realization reduction/selection method associated with a scenario reduction
technique for optimization under uncertainty [Dupacova et al. 2003; Li and Floudas
2014] has been investigated recently. Following this direction, Armstrong et al. (2013)
proposed a realization reduction method based on minimizing the Kantorovich dis-
tance between distributions and applied the method to metal mining. The method
iteratively generates a random subset of realizations without replacements from the
superset of realizations until the Kantorovich distance between the distributions is
minimized. While their method relies on heuristic random searches to minimize the
Kantorovich distance, a novel method is proposed in this work for geological realiza-
tion reduction following the concept of probability distance minimization. The pro-
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posed method considers multiple static measures and geological properties to select
geological realizations. Specifically, an optimal realization reduction model is devel-
oped based on the mixed-integer linear optimization (MILP) technique. The proposed
algorithm uses reservoir geological properties and static measures to quantify the
dissimilarity between realizations and uses the Kantorovich distance to quantify the
probability distance between the superset and the subset of realizations. The objective
is to find the optimal subset that has a similar statistical distribution characteristic to
the superset of realizations.

The remainder of the paper is organized as follows: Sect. 2 provides an overview
of different static measures used in this study; Sect. 3 provides a detailed description
of the proposed optimal realization reduction algorithm; Sect. 4 provides a reservoir
case study and the results; and conclusions are presented in Sect. 5.

2 Static Measures

Static measures are simplified metrics designed to achieve a good correlation with
the reservoir production performance variable of interest. Compared to flow simula-
tion, static measure is computationally much easier for evaluation. It can be easily
computed for a large set of realizations. Static measures can be classified into the fol-
lowing categories [Deutsch and Srinivasan 1996; McLennan and Deutsch 2005]: (i)
statistical static measures which quantify the statistical average of geological parame-
ters, (ii) fractional static measures that determine the active fraction of the reservoir,
and (iii) volumetric static measures which calculate the volume of a reservoir capable
of oil transport. Details on the different static measures are given in the following
subsections.

2.1 Statistical Static Measures

Statistical static measures considered in this paper are calculated for net cells in the
reservoir. Any cell which has a porosity and permeability above a threshold value is
defined as a net cell. A binary indicator parameter I netc is used to denote whether a
cell c in the reservoir grid is net (I netc = 1) or not (I netc = 0). The idea of a net cell
stems from the fact that if a section of the reservoir rock has very low porosity and
permeability value, then that section of the rock will be unable to carry any oil through
it. As a result, that non-net section of the rock plays no role in oil recovery from the
reservoirs. Mathematically I netc is defined as

I netc =
{
1, if φc ≥ φ0 and kc ≥ k0
0, otherwise

. (1)

In Eq. (1), φc and kc denote the porosity and the permeability of cell c, respectively,
whereas φ0 and k0 denote the threshold values.

Statistical static measures are the simplest measures for ranking realizations. The
average net permeability (Knet) for each realization is given by Eq. (2)
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Knet =
∑

c kc I
net
c∑

c I
net
c

. (2)

Indicator I netc is used inEq. (2) to ensure that the average permeability is only calculated
for the net cells. Using a similar idea, the average net porosity (φnet) for each realization
is given by Eq. (3)

φnet =
∑

c φc I netc∑
c I

net
c

. (3)

The average net irreducible water saturation (Snet) for each realization is given by
Eq. (4)

Snet =
∑

c Sc I
net
c∑

c I
net
c

, (4)

where Sc is the irreducible water saturation of cell c. Similar to average permeability
and porosity, average irreducible water saturation is only calculated for the net cells.

2.2 Fractional Static Measures

Fractional static measures use indicator parameters to calculate the fraction of cells
that are either net or locally connected to a well. These static measures provide a good
basis for understanding the quality of a reservoir and the amount of oil that can be
extracted from a reservoir.

The fraction of net cells (Fnet) of a reservoir is also known as the net to gross ratio.
It is calculated by the summation of I netc values of each cell and divided by the total
number of cells N as given in Eq. (5) below

Fnet = 1

N

∑
c

I netc . (5)

As the number of net cells in a reservoir increases, the net to gross ratio increases as
well. Therefore, a higher net to gross ratio implies that the reservoir will have better
oil production.

The fraction of locally connected cells (FLC) is the fraction of cells that are net and
are connected to a producer well. A cell c is defined as locally connected if I netc = 1
and there is a path of net cells from cell c to a producer well. Therefore, all locally
connected cells are net cells, but net cells are not necessarily locally connected cells.
Mathematically ILCc is denoted by Eq. (6)

ILCc =
{
1, if I netc = 1 and connected to producer well
0, if I netc = 0 or not connected to producer well.

(6)
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The fraction of locally connected cells is calculated using the binary variables I netc and
ILCc as given by Eq. (7)

FLC = 1

N

∑
c

I netc I LCc . (7)

Since the local connectivity calculation considers only active cells connected to a well,
it is shown to be a good indication of production parameters such as COP or NPV.

2.3 Volumetric Static Measures

Volumetric static measures incorporate the volume of each cell in its calculation and,
therefore, provide a good basis for determining the volume of oil each cell in the
reservoir can produce.

Net pore volume (PVnet) is the simplest volumetric static measure that utilizes the
volume of each cell and the corresponding porosity of that cell. The calculation of net
pore volume is only for net cells since these are the only cells that have the ability to
produce or transport oil. The net pore volume is given by Eq. (8) below

PVnet =
∑
c

Vcφc I
net
c , (8)

where Vc is the volume of cell c.
Original oil-in-place (OOIP) is calculated for all cells in the reservoir and is cal-

culated by the summation of the product of volume (Vc), porosity (φc) and the oil
saturation (1 − Sc) of cell c. OOIP is given by Eq. (9) below

OOIP =
∑
c

Vcφc(1 − Sc), (9)

where Sc is the irreducible water saturation of cell c.
Net oil-in-place (OOIPnet), which is also known as net hydrocarbon volume, is the

OOIP for the net cells of the reservoir. Therefore, in principle, OOIPnet is expected to
be a better static measure than OOIP. OOIPnet is given by Eq. (10) below

OOIPnet =
∑
c

Vcφc(1 − Sc)I
net
c . (10)

Locally connected hydrocarbon volume (CHVlocal) is the OOIP calculated for net
cells connected to the producer well (Deutsch 1998). A cell is considered to be locally
connected when an active cell pathway can be formed from the cell to a producer well
so that the oil can be transported (McLennan and Deutsch 2004). Locally connected
hydrocarbon volume is given by Eq. (11)

CHVlocal =
∑
c

Vcφc(1 − Sc)I
net
c ILCc . (11)
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3 Proposed Realization Reduction Algorithm

3.1 Dissimilarity Between Realizations

Considering two geological realizations i and i ′, a dissimilarity measure is used to
quantify the difference between them. In this work, the dissimilarity between realiza-
tions is computed using the geological properties and the static measures introduced
in the previous section. Specifically, the dissimilarity between two realizations i and
i ′ is evaluated by Eq. (12)

ci,i ′ =
∑
k

|mik − mi ′k | +
∑
c,t

γ |θict − θi ′ct | ∀i, i ′, (12)

where mik is the value of the k-type static measure for realization i , θict is the
t-type geological property value of cell c in the reservoir grid for realization i and
γ is a weight parameter which reflects the contribution of geological property data in
the dissimilarity calculation. The static measure parameters are given a larger weight
here to emphasize its importance in the dissimilarity evaluation (γ is set as 0.01 in
this work). Since static measures are easily computable for any given realization, the
dissimilarity values between any two geological realizations can be calculated very
efficiently.

3.2 Kantorovich Distance in Realization Reduction

All of the geological realizations generated from geostatistical tools form a superset
from which a subset containing a small number of realizations is to be selected for
further investigation (e.g., flow simulation). The objective of realization reduction is
that the selected subset of realizations can represent the superset of realizations very
well in terms of reservoir production performance.

In this work, the aforementioned superset and subset are considered as two discrete
probability distributions. The first distribution (also called the original distribution)
consists of the superset of realizations, and each realization i has probability porigi .

Notice that this probability value porigi is normally set as equal to 1/|I |, where I is the
superset of realizations and |I | is the set cardinality (i.e., total number of realizations).
The second distribution (also called the reduced distribution) consists of a subset of
selected realizations in which each realization i has probability pnewi . The reduced
distribution can be viewed as an updated version of the original distribution with
probabilities on each realization adjusted. All of the removed realizations have zero
probability in the reduced distribution.

The Kantorovich distance is a type of probability metric to quantify the dissimi-
larity between two probability distributions. It is defined by a transportation problem
which minimizes the transportation cost associated with moving the probability mass
from one distribution to the other distribution. The theory of optimal transportation
was first introduced by Monge (1781) and rediscovered by Kantorovich (1942). For
the realization reduction problem, the Kantorovich distance between the original dis-
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tribution and the reduced distribution is defined by the optimal objective value of the
following linear transportation problem

DKan = min
ηi,i ′

∑
i∈I

∑
i ′∈S

ηi,i ′ci,i ′

s.t.
∑
i∈I

ηi,i ′ = pnewi ′ ∀i ′ ∈ S

∑
i ′∈S

ηi,i ′ = porigi ∀i ∈ I

ηi,i ′ ≥ 0∀i ∈ I ∀i ′ ∈ S, (13)

where i and i ′ represent realizations, I is the superset and S is the selected subset,
porigi and pnewi represent the probability of realization i in the original and the reduced
distribution, respectively, ηi,i ′ is the decision variables representing the probability
mass transportation plan and ci,i ′ is the dissimilarity between realizations. Dupacova
et al. (2003) proved that the optimal objective value of the above problem is

DKan =
∑

i∈I−S

porigi di , (14)

where di = min
i ′∈S

ci ,i ′ represents the transportation cost for a removed realization

i ∈ I − S and it is the minimum dissimilarity between the removed realization i and
all of the selected realizations i ′ ∈ S. The optimal solution of pnewi ′ for problem (13)
is

pnewi ′ = porigi ′ +
∑

i∈J (i ′)
porigi ∀i ′ ∈ S, (15)

where J (i ′) = {i |i ∈ I − S, ci,i ′ ≤ ci,i ′′ ,∀i ′′ ∈ S}, meaning that a preserved realiza-
tion’s new probability is the sum of its original probability and the probability mass
that has been transported to it. A removed realization is transported to the closest
preserved realization.

3.3 Realization Reduction Algorithm

To select representative geological realizations, an optimization-based realiza-
tion reduction method is proposed in this work. The proposed realization selec-
tion/reduction method is based on a constrained mixed-integer linear optimization
technique, and it minimizes the Kantorovich distance between the original distribu-
tion and the reduced distribution as explained in previous subsection. Details on the
proposed optimization model are stated below.

First, binary variables yi are introduced to denote whether the realization i is
removed (yi = 1) or not (yi = 0). Continuous variables vi,i ′ (0 ≤ vi,i ′ ≤ 1) are

123



Math Geosci (2015) 47:373–396 381

introduced to denote the fraction of the probability mass that is transported from
realization i to realization i ′.

The objective function of the proposed realization reduction algorithm is to min-
imize the Kantorovich distance between the original distribution and the reduced
distribution, which is given in Eq. (16)

min DKan =
∑
i∈I

porigi di , (16)

where di represents the cost of removing a realization i (i.e., transporting and distribut-
ing its probabilitymass to preserved realizations). This cost is quantified by aweighted
summation of the transported probability mass, where the weight is the dissimilarity
ci,i ′ between realizations. This scheme can be modeled using Eq. (17)

di =
∑
i ′∈I

ci,i ′vi,i ′ ∀i ∈ I. (17)

Notice that the Kantorovich distance defined in problem (13) is based on a known
subset S, while the objective in the proposed algorithm here is to find the optimal
subset S that leads to the minimum Kantorovich distance. With the introduction of
variables yi and vi,i ′ , the proposed optimization model will generate the optimal S that
leads to the minimum Kantorovich distance as explained by the following constraints.
The reader is also referred to Li and Floudas (2014) for detailed proof on this.

The following set of constraints are necessary to enforce the logical relationship
between variables yi and vi,i ′ . First, if a realization i is removed (yi = 1), then all
of its probability mass should be transported (

∑
i ′∈I vi,i ′ = 1). If a realization i is

selected/preserved (yi = 0), then its probability mass should not be transported to any
realization (

∑
i ′∈I vi,i ′ = 0). The above logical relationship is reflected in Eq. (18)

∑
i ′∈I

vi,i ′ = yi ∀i ∈ I. (18)

Furthermore, if a realization i ′ is removed (yi ′ = 1), then no probability mass can be
transported to it (vi,i ′ = 0). If a realization i ′ is selected (yi ′ = 0), then the probability
mass can be transported to it (0 ≤ vi,i ′ ≤ 1). This condition is modeled in Eq. (19)
below

0 ≤ vi,i ′ ≤ 1 − yi ′ ∀i, i ′ ∈ I. (19)

The next constraint enforces the number of selected realizations. Assume the total
number of realizations to be removed is R, then Eq. (20) ensures that R realizations
are removed

∑
i∈I

yi = R. (20)
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In the proposed realization reduction model, a subset of realizations representing the
potential best and worst performance is also considered. Equation (21) below ensures
that at least two realizations are selected from subset ISB

∑
i∈ISB

(1 − yi ) ≥ 2, (21)

where subset ISB has two realizations which are identified using the following steps.
For each static measure, the realizations corresponding to the top three highest static
measure values are identified. Those identified realizations’ IDs are combined into a
superset from which the two most frequent realizations are selected to form set ISB.
Similarly, Eq. (22) ensures that at least two realizations are selected from subset ISW
in the reduced distribution

∑
i∈ISW

(1 − yi ) ≥ 2, (22)

where subset ISW has the top twomost frequent realizations that represent the potential
worst performance. For each static measure, the realizations corresponding to the top
three lowest static measure values are identified. Those identified realizations’ IDs are
combined into a superset from which the two most frequent realizations are selected
to form set ISW.

With the selected realizations (i.e., yi ) and the probability mass transportation plan
(i.e., vi,i ′), the new probability of realizations in the reduced distribution pnewi can be
evaluated as follows

pnewi ′ = (1 − yi ′)p
orig
i ′ +

∑
i

vi,i ′ p
orig
i ∀i ′ ∈ I. (23)

Notice that if realization i ′ is removed (yi ′ = 1), then pnewi = 0. If realization i ′ is
preserved (yi ′ = 0), then its new probability mass can be calculated as the sum of all
of the probability mass that has been transported to it (

∑
i vi,i ′ p

orig
i ) and its original

probability (porigi ′ ).
Finally, the complete optimization model is composed of Eqs. (16)–(23), and it is

a MILP optimization problem. This problem can be solved using a MILP solver such
as CPLEX (IBM 2010). The complete model is given in Appendix B.

4 Case Study

To study the proposed geological realization reduction method, a three-dimensional
reservoir model with a grid size of 60 × 220 × 5 (66,000 total cells) and cell sizes of
6.096 m × 3.048 m × 0.6096 m is investigated in this section. The reservoir has one
vertical injector well placed at grid position [30 110] and four vertical producer wells
placed at [1 1], [60 1], [60 220] and [1 220]. The reservoir grid size, fluid properties and
well locations for the case study were obtained from the SPE 10 comparative solution
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Fig. 1 Three-dimensional grid structure of the mean permeability distribution of the reservoir with the
injector and producer locations

Table 1 Case study parameters
Parameter Value

Initial pressure pi 6,000 psi

Oil viscosity μo at pi 3 cp

Water viscosity μw at pi 0.3 cp

Oil density ρo 849 kg/m3

Water density ρw 1,025 kg/m3

Relative permeability exponent for oil no 2

Relative permeability exponent for water nw 2

Residual phase saturation for oil Sro 0.2

Residual phase saturation for water Srw 0.2

Relative permeability for oil kwmo at Sro 1

Relative permeability for water kwmw at Srw 1

Oil Price 100$/stb

Water production cost 10$/stb

Water injection cost 10$/stb

Discount Rate 0 %

project model 2 (Christie and Blunt 2001). Figure 1 shows the three-dimensional grid
with the mean permeability field from the superset of realizations and the locations of
the vertical injector well (I1) and the four producer wells (P1, P2, P3, P4). Detailed
fluid properties and cost data used for the simulation are provided in Table 1.

To check the performance of the realization reduction, the Matlab Reservoir Sim-
ulation Toolbox (MRST) (Lie et al. 2012) was used to perform reservoir simulations
on different geological realizations to obtain the production parameters for validation.
The production parameters evaluated in the simulator include NPV, COP and water
cut. The simulation time horizon is set as 360 days and is divided into 12 equal periods.

In this study, 100 realizations were generated for realization reduction. For each
realization, porosity values of the reservoir grid were generated in MRST using a
built-in function ‘Gaussian Field’ with a range parameter of [0.2 0.4]. The function
creates an approximate Gaussian random field by convolving a normal distributed
random field with a Gaussian filter with a standard deviation of 2.5 (Lie et al. 2012).
For illustrative purposes, the porosity distribution of the seventy-fifth realization is
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Fig. 2 Porosity distribution of the grid layers for the seventy-fifth realization from the superset

Fig. 3 Permeability (mD) distribution of the grid layers for the seventy-fifth realization from the superset

given in Fig. 2. Each subfigure represents a layer of the three-dimensional grid. From
left to right, the subfigures represent the porosity distribution of layers 1 to 5 of the
grid.

Permeability values were further generated from the porosity values using the
Carman–Kozeny relationship (Lie et al. 2012)

kc = 1

2τ A2
v

φ3
c

(1 − φc)2
. (24)

In Eq. (24), kc is the permeability of cell c, φc is the porosity of cell c, Av is the surface
area of spherical uniform grains with a constant diameter of 10×10−6 m and τ is the
tortuosity with a value of 0.81 (Lie et al. 2012). The irreducible water saturation (Sc)
values for each cell c were generated next from the porosity and permeability values
using the Wyllie and Rose equation as given in Eq. (25)

kc =
[
100φ2.25

c

Sc

]2

. (25)

The permeability distribution of the seventy-fifth realization based on the above cal-
culation is given in Fig. 3.

To evaluate the static measures for different geological realizations in this case
study, the threshold porosity is set as φ0 = 0.25 and the threshold permeability is
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Table 2 Realizations selected
using the proposed method Realization ID Probability NPV ($) COP (m3/day)

3 0.04 43,207,700 114,482

8 0.2 50,161,200 124,532

20 0.11 46,223,000 118,840

41 0.14 51,491,500 126,455

64 0.01 55,497,500 132,245

76 0.15 47,146,400 120,175

79 0.05 53,198,600 128,922

80 0.01 43,664,800 115,143

85 0.19 49,291,600 123,274

99 0.1 48,695,600 122,414

set as k0 = 1 × 10−13 m2 to determine whether a cell is net or not. In this case
study, the realization reduction results from the proposed method are compared to the
traditional ranking method, kernel k-means clustering method and random selection
method. A subset of 10 realizations was selected from the superset of 100 realizations
to investigate the effectiveness of the proposed method.

4.1 Proposed Method

Based on the generated geological realizations, different static measures stated in
Sect. 2 were calculated first. Those measures were further used to compute the dis-
similarities between realizations as defined in Eq. (12). The proposed MILP model
was built next, which has 100 binary variables corresponding to each realization in
the superset. The optimization problem was solved using the CPLEX solver in a desk-
top computer with a 3.2 GHz processor and 8 GB memory in less than 1 s. The
solution of the optimization problem includes the selected realizations’ IDs and their
new probabilities. For comparison purposes, the selected realizations’ IDs, probabil-
ities, NPV and COP values associated with the selected realizations are reported in
Table 2.

4.2 Ranking Method

The static measure-based ranking method was applied next to obtain a subset of 10
selected realizations from the superset of 100 realizations. In the ranking-based meth-
ods, all of the 100 realizations in the superset were sorted in ascending order based
on the static measure values. Ten realizations were evenly selected from the sorted
list corresponding to ranks of 1, 12, 23, 34, 45, 56, 67, 78, 89 and 100. In this study,
nine different static measures were used to perform realization reduction using the
ranking-based method.

Results from the ranking method are just the realizations’ IDs. The probabilities of
the selected realizations are assumed to be equal (i.e., 0.1 in this case). The selected
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Table 3 Realizations selected
using kernel k-means clustering Realization ID NPV ($) COP (m3/day)

19 49,887,900 124,137

99 48,695,600 122,414

78 51,281,700 126,152

66 50,017,000 124,324

70 45,745,300 118,150

92 53,209,000 128,937

30 50,347,000 124,801

87 51,628,000 126,652

37 49,306,000 123,296

24 47,640,100 120,888

realizations’ IDs, the corresponding static measure values, COP and NPV value from
flow simulation are reported in Table 6 of Appendix A.

4.3 Kernel k-Means Clustering Method

The kernel k-means clustering method proposed by Scheidt and Caers (2010) was
applied to this case study. The workflow is as follows:

1. Computation of the dissimilarity matrix. While the literature generally uses sim-
plified flow simulation results to calculate the dissimilarity, the same dissimilarity
values used by the proposed method were used for clustering in this study.

2. ClassicalMultidimensional Scaling (MDS)was used to transform the dissimilarity
matrix into reduced dimensional data in Euclidean space.

3. Conversion of the Euclidean space to a feature space using a Gaussian kernel
(radial basis function) given by Eq. (26)

Kmn = κ(xm, xn) = exp

[
−‖xm − xn‖

2σ 2

]
. (26)

In the Gaussian kernel function, a kernel width, σ , value between 10 and 20 % of
the range of the distance measures was used based on the recommendation by Shi
and Malik (2000). σ = 2,000 was used in this study.

4. Ten clusters were generated using k-means clustering. The realization ID closest
to the centroid of each cluster was chosen as the representative realization from
the kernel k-means clustering.

The realization ID, NPV and COP values from the 10 selected realizations using
kernel k-means clustering are given in Table 3. All of the selected realizations of the
clustering method have equal probabilities.
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Table 4 Realizations selected
using random selection Realization ID NPV ($) COP (m3/day)

12 52,791,900 128,334

15 49,003,702 122,859

44 49,679,300 123,836

36 51,044,700 125,809

51 50,191,100 124,575

2 49,371,500 123,391

81 49,966,000 124,250

61 52,327,100 127,663

75 48,834,300 122,614

67 48,086,500 121,534

4.4 Random Selection

A subset of realizations was selected randomly to compare with the proposed method.
Random permutation was used to generate 10 realization IDs from the superset. The
realization ID, NPV and COP values from 10 equiprobable randomly selected real-
izations are given in Table 4.

4.5 Comparison

Histograms and cumulative distribution function (CDF) plots were generated for the
reduced subset of realizations obtained using the proposed method and the complete
superset of realizations. The reduced subset of realizations obtained using the pro-
posed method was compared to the reduced subset of realizations obtained from the
traditional ranking method, kernel k-means clustering method and random selection
method.

Figures 4 and 5 present the histogram and CDF plot showing the NPV distribution
of the original superset of 100 realizations and the selected subset of 10 realizations
using the proposedmethod, respectively. The shapes of the histogram in Fig. 4 between
the superset of realizations and the selected subset of realizations obtained using the
proposed method confirms similarities in the statistical characteristics between the
two distributions. In comparison, the histograms of the selected realizations obtained
by k-means clustering, Knet-based ranking and random selection have a significantly
different shape than the histogram from the superset. In addition to the CDF plot of the
proposed method, Fig. 5 also has the CDF plots of the selected realizations obtained
by random selection, k-means clustering and Knet-based ranking. It is evident from
the CDF plots that the selected subset of realizations using the proposed method
contains the realizations which have the maximum and minimum NPV values among
the superset of realizations.Distributions obtained from the subset of realizations using
random selection and k-means clustering are a poor representation of the superset.

Figure 6 shows the COP versus time plot for 10 realizations selected from the
proposed method, kernel k-means clustering, random selection and Knet ranking.
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Fig. 4 Histograms using NPV for a superset of 100 realizations (top) and 10 selected realizations using
b the proposed method, c kernel k-means clustering, d Knet ranking and e random selection

Fig. 5 CDF plot comparison

Plots for the reduced realizations are all superimposed over the COP versus time
plots for all 100 realizations from the original set of realizations. Figure 6 confirms
that the selected subset of realizations from the proposed method generates a dis-
tribution that is a good representation of the distribution of the original superset as
the selected realizations evenly cover the entire range of the original superset of
realizations.

To check the quality of the selected realizations, expected production parameters
are also calculated for comparison. The expected COP is the sum of all of the products
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Fig. 6 COP versus time plot for 10 realizations selected from a the proposed method, b kernel k-means
clustering, c Knet ranking and d random selection

between the probability of selecting a realization and the corresponding COP values
of that realization as given by the following equation

COPexp =
∑
i

COPi .pi , (27)

where pi is the probability of a selected realization i and COPi is the corresponding
COP value of that selected realization. The expected COP for the subset of realizations
obtained using the proposed method is calculated using Eq. (27). All of the selected
realizations using the random selection, clustering and static measure-based ranking
methods have equal probabilities of being selected, and therefore, the expectedCOP for
the subset of realizations is the average of the COP values for the selected realizations.
Using a similar idea, the expected NPV is calculated using Eq. (28)

NPVExpected =
∑
i

NPVi .pi , (28)

where pi is the probability of a selected realization i and NPVi is the corresponding
NPV value. The expected COP and NPV were calculated for the selected subset of
realizations using different methods. Themaximum, minimum and expected NPV and
COP values for the different realization reduction methods are given in Table 5. The
proposed method selects realizations to preserve the characteristics of the superset,
and this is verified by the small difference between the expected NPV value of the
selected realizations by the proposed method (i.e., 4.901×107) and the expected NPV
from all of the realizations (i.e., 4.907 × 107). The expected COP from the selected
subset of realizations using the proposedmethod (1.229×107) is also very close to the
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Table 5 Reservoir simulation results of all realizations and selected realizations

NPVmax
(×107)

NPVmin
(×107)

NPVexp
(×107)

COPmax
(×105)

COPmin
(×105)

COPexp
(×105)

All realizations 5.550 4.321 4.907 1.322 1.145 1.230

Proposed
method

5.550 4.321 4.901 1.322 1.145 1.229

Ranking

Knet 5.550 4.366 4.920 1.322 1.151 1.231

φnet 5.550 4.366 4.941 1.322 1.151 1.234

Siw,net 5.550 4.366 4.958 1.322 1.151 1.237

Fnet 5.550 4.366 4.900 1.322 1.151 1.229

FLC 5.550 4.491 5.007 1.322 1.169 1.244

PVnet 5.550 4.366 4.895 1.322 1.151 1.228

OOIP 5.550 4.366 4.926 1.322 1.151 1.232

OOI Pnet 5.550 4.366 4.895 1.322 1.151 1.228

CHVlocal 5.550 4.491 5.007 1.322 1.169 1.244

Clustering 5.321 4.575 4.978 1.289 1.182 1.240

Random 5.279 4.809 5.013 1.283 1.215 1.245

NPVmax, NPVmin and NPVexp are the maximum, minimum and expected NPV from all/selected realiza-
tions, respectively; COPmax , COPmin and COPexp are the maximum, minimum and expected COP from
all/selected realizations, respectively

expected COP from the superset of realizations (1.230× 107). The proposed method
leads to results containing the realization with the maximum and minimum NPV and
COP values from the original full set of realizations as can be seen in Table 5. The
other realization reduction methods’ results generally do not contain the realizations
representing the maximum and minimum NPV and COP values.

The plots showing the expected COP values for the selected subset of realizations at
different time periods using the proposedmethod, clusteringmethod, random selection
and ranking method are shown in Fig. 7. A magnified part of the plot around the tenth
timeperiod shows that the expectedCOPof the selected realizations using the proposed
method is closest to the expected COP of the full set of realizations. The expected COP
values of the subset of realizations selected using random selection and kernel k-means
clustering significantly deviate from the expected COP of the full set of realizations.
Compared to the single static measure-based ranking method, the proposed method
provides an expected COP value which is closer to that of the original superset of
realizations.

Thewater cut versus the time period plot for the selected realizations using different
realization reduction methods is given in Fig. 8. To see how similar the distribution of
the reduced realization is to that of the original superset of realizations, the water cut
plots of selected realizations are superimposed over the water cut plots of all of the
realizations in the superset. Amagnified version of thewater cut plots around the fourth
time period is provided in Fig. 9 to show the details. The water cut plots confirm that
the reduced subset of realizations from the proposed method is a good representation
of the superset of realizations. Specifically, the maximum and minimum water cuts at
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Fig. 7 Expected COP plots of the different realization reduction methods; the figure inside is a magnified
version of the plot to show the details

Fig. 8 Water cut plots for 10 realizations selected from a the proposedmethod, b kernel k-means clustering,
c Knet ranking and d random selection. The bottom figure is a magnified version of the plots to show the
water breakthrough time

each time period are recovered very well by the proposed method, while the selected
realizations using random selection, k-means clustering or Knet-based ranking do not
cover the entire range of water cut plots for all of the realizations in the superset.
It is evident from the magnified part of the water cut plot that the proposed method
incorporates realizations which have the highest and lowest water breakthrough time
among the superset of realizations.

The results demonstrate that the proposed method generates a subset of realizations
which gives a good representation of the superset of realizations in local criterion such
as water cut.
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Fig. 9 Water cut profiles around the fourth period

5 Conclusions

In this study, a mixed-integer linear optimization model is proposed to reduce the
geological uncertainty in reservoir simulations by selecting a small subset of realiza-
tions from a larger superset of realizations. The proposed realization reductionmethod
minimizes the probability distance between the original distribution of the superset
of realizations and that of the reduced subset of realizations. The proposed method
not only selects a smaller subset of realizations, but also assigns a new probability
to each of those realizations. The proposed method is efficient and computationally
inexpensive compared to other simplified flow-based methods. As a result, the pro-
posed method is a good candidate for complex realistic reservoirs. The case study
demonstrated that the selected realizations from the proposed method have very close
statistical characteristics to the distribution of the superset. The proposedmethod leads
to a distribution which is a better representation of the original distribution of all of the
realizations than the distributions from the ranking method, kernel k-means clustering
method or random selection. The selected realizations from the proposed method have
a good coverage of the superset of realizations in terms of the maximum, minimum
and expected performance. The proposed method will be very useful for quantifying
uncertainty in reservoir performance and reservoir development decision-making.
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Appendix A: Result of the traditional ranking method using single static
measure
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Appendix B. Proposed optimization model for realization reduction

The complete optimization model for realization reduction is given as follows

min DKan =
∑
i∈I

porigi di .

Subject to

di =
∑
i ′∈I

ci,i ′vi,i ′∀i ∈ I

∑
i ′∈I

vi,i ′ = yi∀i ∈ I

0 ≤ vi,i ′ ≤ 1 − yi ′∀i, i ′ ∈ I∑
i∈I

yi = R

∑
i∈ISB

(1 − yi ) ≥ 2

∑
i∈ISW

(1 − yi ) ≥ 2

pnewi ′ = (1 − yi ′)p
orig
i ′ +

∑
i

vi,i ′ p
orig
i ∀i ′ ∈ I

yi ∈ {0, 1}∀i ∈ I.

Input Parameters

R the total number of realizations to be removed
porigi the original probabilities of realizations, i , is normally set as equal to porigi =

1/|I |, where |I | is the size of the set I
ci,i ′ the distance between two geological realizations

Variables

yi binary variables which denote whether a realization is removed (yi = 1) or not
(yi = 0)

vi,i ′ continuous variables (vi,i ′ ∈ [0, 1]) which denote the fraction of its probability
mass that is transported from realization i to realization i ′

pnewi continuous variables (pnewi ∈ [0, 1])which denote the new probabilities of real-
izations i after optimal probability mass transportation. Notice that if pnewi = 0,
it means that realization i is removed
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