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Abstract This work pertains to the simulation of an intrinsic random field of order k
with a given generalized covariance function and multivariate Gaussian generalized
increments. An iterative algorithm based on the Gibbs sampler is proposed to simulate
such a random field at a finite set of locations, resulting in a sequence of random
vectors that converges in distribution to a random vector with the desired distribution.
The algorithm is tested on synthetic case studies to experimentally assess its rate
of convergence, showing that few iterations are sufficient for convergence to take
place. The sequence of random vectors also proves to be strongly mixing, allowing
the generation of as many independent realizations as desired with a single run of the
algorithm. Another interesting property of this algorithm is its versatility, insofar as
it can be adapted to construct realizations conditioned to pre-existing data and can
be used for any number and configuration of the target locations and any generalized
covariance model.
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1 Introduction

Intrinsic random fields of order k (for short, IRF-k), that is, random fields whose
generalized increments of order k are second-order stationary, are used to model
regionalized variables that exhibit long-range dependency and/or spatially varying
mean values. Examples of such variables are the temperature, pressure, porosity and
permeability in geothermal reservoirs (Chilès and Gable 1984; Suárez Arriaga and
Samaniego 1998), the porosity, fluid saturation and geological boundaries in oil reser-
voirs (Haas and Jousselin 1976; Delfiner and Chilès 1977; Dimitrakopoulos 1990;
Bruno and Raspa 1993), the hydraulic head, conductivity, resistivity, transmissivity
and total discharge in aquifer systems (Kitanidis 1983, 1999; Dong et al. 1990; Shim
et al. 2004), the seafloor depth and the terrain elevation (David et al. 1986; Keitt 2000),
metal grades and layout of ore domains in mineral deposits (Capello et al. 1987; David
1988; Costa and Dimitrakopoulos 1998; Séguret and Celhay 2013), crop properties
(Aggelopoulou et al. 2010), soil properties (McBratney et al. 1991; Chiasson and
Soulié 1997; Buttafuoco and Castrignano 2005; De Benedetto et al. 2012) and soil
contaminants (Christakos and Thesing 1993). Other applications include the model-
ing of non-stationary time series (Hamilton 1994), as well as automatic mapping or
contouring (Dubrule 1983; Marcotte and David 1988).

Intrinsic random field of order k can be used not only for the prediction of region-
alized variables, but also for quantifying spatial uncertainty via stochastic simulation.
A review of the most widely used algorithms for simulating an IRF-k can be found
in Chilès and Delfiner (2012) and references therein. Most of these algorithms, how-
ever, suffer from practical limitations. For instance, sequential simulation produces
inaccurate results unless a unique neighborhood is used to determine the successive
conditional distributions (Emery 2008; Chilès and Delfiner 2012), which restricts its
use to small-scale problems. The same practical restriction applies to the covariance
matrix decomposition (Davis 1987a; Alabert 1987), which can be used only when the
number of points targeted for simulation is not too large (say, less than a few thou-
sands). With the Poisson dilution approach (Mandelbrot 1975; Chilès and Delfiner
2012), the reproduction of the spatial correlation structure is approximate, except for
a few specificmodels. As for the discrete spectral and circulant-embedding approaches
(Dietrich and Newsam 1993; Stein 2002; Chilès and Delfiner 2012), they are restricted
to the simulation of random fields over regular grids, which is problematical in the
presence of conditioning data at scattered locations, as the procedure used to construct
conditional realizations (kriging of residuals) requires knowing these realizations at
the data locations (Chilès and Delfiner 2012). Finally, the turning bands approach
(Dimitrakopoulos 1990; Yin 1996; Emery and Lantuéjoul 2008) only allows simu-
lating intrinsic random fields of order k with specific spatial correlation structures
(power, spline or polynomial generalized covariances).

The aim of this paper is to present an iterative simulation algorithm that avoids these
restrictions (Sect. 3), to assess its rates of convergence and mixing in a few synthetic
case studies (Sect. 4) and to extend this algorithm to the problem of conditional sim-
ulation (Sect. 5). Beforehand (Sect. 2), an overview of the IRF-k theory is given. The
reader is referred to Matheron (1973) and Chilès and Delfiner (2012) for a detailed
exposition of this theory.
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2 Concepts and Notation

2.1 Basic Drift Functions and Generalized Increments

The theory of IRF-k has been introduced to model regionalized variables with mean
values that smoothly vary in space and can be approximated by linear combinations
of known basic drift functions { f � : � = 0, . . . , L}. The first basic function (with
index 0) is constant in space, while the remaining L functions are monomials in the
coordinates. To represent a polynomial drift of degree k in the d-dimensional space,
one needs to consider 1+L = (d+k)!

k!d! basic functions (the list of such functions depends
on the degree k and on the space dimension d).

A generalized increment of order k can be defined as a set of weights and locations,
say λ = {λi , xi }i∈I , such that, for any basic drift function f �, one has

∑

i∈I
λi f

�(xi ) = 0. (1)

The minimal number of terms in a generalized increment (cardinal of I ) depends on
both the space dimension (d) and the order of the increment (k). In general, theweights
{λi : i ∈ I } depend on the spatial pattern of the locations {xi : i ∈ I } and several
sets of weights fulfilling Eq. (1) can be defined for a given set of locations (Chilès and
Delfiner 2012). In the following, the set of generalized increments of order k will be
denoted by �k .

2.2 Intrinsic Random Fields of Order k and Representations

First definitionAn IRF-k can be defined as a random field Y = {Y (x) : x ∈ R
d}whose

generalized increments of order k have zeromean and are second-order stationary, that
is, a randomfield such that, for anyh,h′ ∈ R

d ,λ = {λi , xi }i∈I andλ′ = {λ′
j , x

′
j } j∈J ∈

�k , one has (Chilès and Delfiner 2012)

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

E

{∑
i∈I

λi Y (xi + h)

}
= 0

cov

{
∑
i∈I

λi Y (xi + h),
∑
j∈J

λ′
j Y (x′

j + h′)
}

exists and only depends on h − h′.
(2)

If Y ′ is another random field that differs from Y by a polynomial of degree less than
or equal to k, then

∑

i∈I
λi Y

′(xi ) =
∑

i∈I
λi Y (xi ). (3)

This identity holds because generalized increments of order k filter out the polynomials
of degree less than or equal to k, as per Eq. (1), thus Y and Y ′ are indistinguishable if
one only considers generalized increments of order k.
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Second definition Based on the previous statements, one can extend the definition of
an IRF-k to an equivalence class of random fields that differ by a (deterministic or
random) polynomial of degree less than or equal to k and from which one member
of the class (a representation) is an IRF-k in the sense of the first definition [Eq. (2)].
This simplifies to define an IRF-k as a linear mapping Y of the class of generalized
increments of order k into a Hilbert space of zero mean and finite variance random
variables, such that

∀λ ∈ �k, Y(λ) =
∑

i∈I
λi Y (xi ) (4)

is a second-order stationary random field. To avoid confusion, the first definition will
be modified as follows (Matheron 1973; Chilès and Delfiner 2012)

• {Y(λ) : λ ∈ �k} is an IRF-k; this abstract random field, defined on�k , corresponds
to an equivalence class of random fields defined on R

d that generate the same
generalized increments of order k;

• {Y (x) : x ∈ R
d}, as a particular member of the equivalence class, is a representation

of the IRF-k.

2.3 Generalized Covariance Functions

For any IRF-k, there exists a generalized covariance function, hereafter denoted as
K (h) and defined up to an even polynomial of degree less than or equal to 2k, such that
the covariance between any two generalized increments of order k, say λ = {λi , xi }i∈I
and λ′ = {λ′

j , x
′
j } j∈J , can be expressed as (Chilès and Delfiner 2012)

cov{Y(λ),Y(λ′)} = cov

⎧
⎨

⎩
∑

i∈I
λi Y (xi ),

∑

j∈J

λ′
j Y (x′

j )

⎫
⎬

⎭ =
∑

i∈I

∑

j∈J

λiλ
′
j K (xi − x′

j ).

(5)

Therefore, one can calculate the covariance between two generalized increments of
order k as if therewere a stationary covariance function, but by substituting the general-
ized covariance for this hypothetical stationary covariance function. Common models
of generalized covariance functions include all ordinary covariance functions, as well
as the power and spline models (Emery and Lantuéjoul 2008), respectively, defined as

• Power of exponent θ : K (h) = (−1)p+1|h|θ for p ∈ {0, . . . , k} and θ ∈ ]2p, 2p+
2[;

• Spline of exponent 2k : K (h) = (−1)k+1|h|2k ln(|h|).

2.4 Intrinsic Kriging

Let Y = {Y (x) : x ∈ R
d} be a representation of an IRF-k with generalized covariance

K (h) and {x1, . . . , xp} a set of locations at which Y is known. The intrinsic kriging
predictor at location x0 is

123



Math Geosci (2015) 47:955–974 959

Y ∗(x0) =
p∑

α=1

λα(x0)Y (xα), (6)

where the weights {λα(x0) : α = 1, . . . , p} are subject to the constraint that the
prediction error is a generalized increment of order k, with zero expectation and
minimum variance. They are found by solving a system of linear equations similar
to that of universal kriging, except that the ordinary covariance or the variogram is
replaced by the generalized covariance (Chilès and Delfiner 2012). One property of
intrinsic kriging is that the prediction error is not correlated with any generalized
increment of the data.

To ensure that the coefficient matrix of the kriging equations is nonsingular, the
basic drift functions must be linearly independent at the data locations, that is

∑

�

c� f
�(xα) = 0 ∀α = 1, . . . , p if and only if c� = 0 ∀� = 0, . . . , L . (7)

2.5 Distribution of Generalized Increments

Hereafter, only the case of an IRF-k with multivariate Gaussian generalized incre-
ments, for which the finite-dimensional distributions of the generalized increments
are characterized by the generalized covariance function, will be considered. Exam-
ples of such random fields are the well-known fractional Brownian motions (one-
dimensional) or surfaces (two-dimensional) with Hurst exponent H ∈ ]0, 1[, which
correspond to IRF-0 with Gaussian increments and generalized covariance function
K (h) = −ω|h|2H with ω > 0 (Chilès and Delfiner 2012).

3 Non-conditional Simulation by Gibbs Sampling

3.1 Case of a Gaussian Random Vector

Let us consider a Gaussian random vector Y with n components, zero mean and
variance–covariance matrix C. In the following, it is assumed that C is strictly pos-
itive definite, that is, its eigenvalues are positive (if C has a zero eigenvalue, one or
more components ofY are linear combinations of the other components and should be
removed to obtain a strictly positive definite variance–covariance matrix). Numerous
algorithms are currently available for generating realizations of Y, the most popu-
lar ones being the decomposition of the covariance matrix, sequential Gaussian and
iterative algorithms based on Markov chains (Ripley 1987; Gentle 2009; Chilès and
Delfiner 2012, and references therein). For the first two algorithms (matrix decompo-
sition and sequential), some approximations are needed when the size of the vector
to simulate is large, which become critical when these algorithms are applied to the
simulation of non-stationary random fields (Emery 2008, 2010; Emery and Peláez
2011).
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In view of a further generalization to the simulation of an IRF-k with Gaussian
generalized increments, let us consider the following iterative algorithm proposed by
Lantuéjoul and Desassis (2012), based on an idea by Galli and Gao (2001).

Algorithm 1 (Gibbs Sampler for Gaussian Random Vectors)

(1) Initialize the simulation by an arbitrary vector Y(0).
(2) For j = 1, 2, . . . , J :

(a) Split the set {1, . . . , n} into two disjoint subsets, the first one (hereafter denoted
by S1( j)) containing n− p indices and the second one (denoted by S2( j)) con-
taining the remaining p indices. Any strategy can be used to select the indices
belonging to S2( j), provided that every element of {1, . . . , n} is selected as
many times as desired for sufficiently large J .

(b) Split the current vectorY( j−1) into two sub-vectors, namelyY( j−1)
S1( j)

andY( j−1)
S2( j)

,
with n − p and p components, respectively. Likewise, split the vector to sim-
ulate Y into two sub-vectors YS1( j) and YS2( j).

(c) DefineC( j)
12 as the covariancematrix betweenYS1( j) andYS2( j), andC

( j)
22 as the

variance–covariance matrix ofYS2( j). Note thatC
( j)
12 andC( j)

22 are sub-matrices
of C (variance–covariance matrix of Y) and do not depend on the particular
distribution of current vector Y( j−1). Like C, C( j)

22 is strictly positive definite.

(d) Find out a symmetric square root A( j) of C( j)
22 (this can be principal square

root of C( j)
22 or its Cholesky factor, see Golub and Van Loan 1996), such that

C( j)
22 = A( j)(A( j))T. (8)

(e) Define Y( j) by putting

{
Y( j)

S2( j)
= A( j)V( j)

Y( j)
S1( j)

= Y( j−1)
S1( j)

+ [Y( j)
S1( j)

]∗ − [Y( j−1)
S1( j)

]∗, (9)

where V( j) is a standard Gaussian random vector independent of Y( j−1)

and with p independent components, [Y( j−1)
S1( j)

]∗ = C( j)
12 (C( j)

22 )−1Y( j−1)
S2( j)

is the simple kriging predictor of YS1( j) from Y( j−1)
S2( j)

, and [Y( j)
S1( j)

]∗ =
C( j)
12 (C( j)

22 )−1Y( j)
S2( j)

is the simple kriging predictor of YS1( j) from Y( j)
S2( j)

.

(3) Return Y(J ).

The way to obtain Y( j)
S2( j)

at step (2e) is nothing but the covariance matrix decompo-
sition algorithm (Davis 1987a; Alabert 1987). This algorithm is straightforward for
simulating a vector of small size (here, a sub-vector with p components), but may not
be applicable to directly simulate the complete vector Y if its number n of compo-
nents is larger than a few thousands. In contrast, the proposed Gibbs sampler is able
to simulate Y irrespective of its size.
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It can be shown that the sequence {Y( j) : j ∈ N} converges in distribution to
a Gaussian random vector with zero mean and variance–covariance matrix C (Lan-
tuéjoul andDesassis 2012). Based on experimental observations, these authors suggest
using a vector of zeros at the initialization stage (Y(0) = 0), as this yields a faster
convergence than, for example, using a random vector Y(0) with independent compo-
nents (in such a case, as the initial state is unstructured, one usually has to increase the
number J of iterations to obtain a final random vectorY(J ) with the desired variance–
covariance matrix). For an experimental analysis of the rate of convergence, the reader
is referred to Arroyo et al. (2012).

3.2 Case of an IRF-k with Gaussian Generalized Increments

Consider now the problem of simulating an IRF-k, {Y(λ) : λ ∈ �k}, with gener-
alized covariance function K (h) and multivariate Gaussian generalized increments,
at a finite set of locations X = {x1, . . . , xn}. Since this IRF-k is determined up to
a polynomial of degree k, the problem actually consists in simulating one specific
representation {Y (x) : x ∈ R

d}, that is, simulating the random vector Y = Y (X) =
(Y (x1), . . . ,Y (xn))T.

To specify the representation to be simulated, consider a set of locations U =
{u0, . . . ,uL } such that the basic drift functions { f � : � = 0, . . . , L} are linearly
independent [Eq. (7)], and consider the representation that vanishes at these locations,
that is, Y (U) = 0. The set U can be chosen freely and does not need to be a subset of
X or to intersect X; it is just used to identify the representation of the IRF-k that will
be simulated. Any other representation can be obtained by adding a polynomial of the
coordinates.

The chosen representation {Y (x) : x ∈ R
d} is a so-called internal representation

(Matheron 1973; Chilès and Delfiner 2012) and actually possesses a covariance func-
tion. Indeed, since Y (U) = 0, one has

Y (x) = Y (x) − Y ∗(x), (10)

where Y ∗(x) = ∑L
α=0 λα(x)Y (uα) = 0 is the intrinsic kriging predictor of Y (x) from

Y (U) [Eq. (6)]. Thus, as an intrinsic kriging error, Y (x) is a generalized increment:
its distribution is Gaussian and has a finite variance. Moreover, any pair (Y (x),Y (x′))
has a bivariate Gaussian distribution and a finite covariance and, more generally, any
linear combination of the components of {Y (x) : x ∈ R

d} is Gaussian, which implies
that {Y (x) : x ∈ R

d} is a Gaussian random field and Y is a Gaussian random vector.
To simulate Y, one could, therefore, think of applying Algorithm 1. However,

{Y (x) : x ∈ R
d} is not stationary, so that the calculation and storage of the variance–

covariance matrix of Y may be time- and/or memory-consuming when Y has many
components. To avoid these drawbacks, a generalization of Algorithm 1 is proposed
next.

Algorithm 2 (Gibbs Sampler for IRF-k with Gaussian Generalized Increments)

(1) Initialize the simulation by an arbitrary vector, for example, a vector of zeros:
Y(0) = 0.
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(2) For j = 1, 2, . . . , J :
(a) Split the set {1, . . . , n} into two subsets S1( j) and S2( j) containing n − p and

p indices, respectively (the same selection strategy as for Algorithm 1 can be
used).

(b) Split the set of locationsX into two subsetsXS1( j) andXS2( j) containing n− p
and p locations, respectively.

(c) Define as YS1( j) and YS2( j) the sub-vectors associated with XS1( j) and XS2( j),
and as Y3 the sub-vector associated with U : YS1( j) = Y (XS1( j)),YS2( j) =
Y (XS2( j)) and Y3 = Y (U) = 0.

(d) Calculate the variance–covariance matrix C( j)
22 of the intrinsic kriging errors,

when kriging YS2( j) from Y3. Since it is the variance–covariance matrix of a

real-valued vector,C( j)
22 is symmetric positive semi-definite and has a symmet-

ric square root A( j) such that (Golub and Van Loan 1996)

C( j)
22 = A( j)(A( j))T. (11)

(e) Define Y( j)
S2( j)

by putting

Y( j)
S2( j)

= [YS2( j)]∗ + A( j)V( j), (12)

where [YS2( j)]∗ is the intrinsic kriging predictor of YS2( j) from Y3 (in the
present case, it is a vector of zeros, since Y3 = 0), and V( j) is a stan-
dard Gaussian random vector with p independent components, independent
of Y( j−1).

(f) Define Y( j)
S1( j)

by putting

Y( j)
S1( j)

= Y( j−1)
S1( j)

+ [Y( j)
S1( j)

]∗∗ − [Y( j−1)
S1( j)

]∗∗, (13)

where [Y( j−1)
S1( j)

]∗∗ is the intrinsic kriging predictor ofYS1( j) from (Y( j−1)
S2( j)

,Y3),

[Y( j)
S1( j)

]∗∗ is the intrinsic kriging predictor of YS1( j) from (Y( j)
S2( j)

,Y3).

(3) Return Y(J ).

It can be shown (Appendix) that the sequence of random vectors {Y( j) : j ∈ N}
converges in distribution toY = Y (X), that is, the joint distribution ofY( j) converges
pointwise to a multivariate Gaussian distribution with the same mean and variance–
covariancematrix asY, as j tends to infinity (recall thatY is a Gaussian randomvector,
as the representation to simulate is a Gaussian random field). This property is stronger
than just the convergence in distribution of the generalized increments generated from
the simulated random vector Y( j).

3.3 Rate of Convergence

The components of the vector Y( j) obtained at steps (2e) and (2f) of Algorithm 2 are
linear combinations of vectors V( j) and Y( j−1), which in turn is a combination of
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vectors V( j−1) and Y( j−2), and so on. Given that Y(0) = 0, it is seen that the com-
ponents of Y( j) are linear combinations of the independent Gaussian random vectors
V(1), . . . ,V( j). Therefore, at each iteration j = 1, . . . , J , the simulated vector Y( j)

is a Gaussian random vector. In particular, its generalized increments are multivari-
ate Gaussian, that is, Y( j) is a representation of an IRF-k with multivariate Gaussian
increments.

However, because Algorithm 2 is stopped after finitely many iterations, the
variance–covariance matrix ofY(J ) may not match that ofY (thematch is only asymp-
totical, as J tends to infinity). For want of theoretical results that allow quantifying the
mismatch for a given total number of iterations J , the analysis of a few synthetic case
studies will be held in the next section to gain an insight into the rate of convergence
of the proposed Gibbs sampler.

4 Numerical Experiments

4.1 Description

In the following subsections, X is a set of n = 4,225 locations forming a two-
dimensional regular grid with 65×65 nodes, origin (1, 1) andmesh 1×1.Algorithm 2
will be applied to simulate a representation of an IRF-k on this grid, that is,Y = Y (X),

such that Y (U) = 0, where U is a set of 1+ L locations that do not belong to the grid.
It is of interest to experimentally assess the rates of convergence and mixing of the
algorithm, as explained hereafter.
Convergence Let C be the variance–covariance matrix of the Gaussian random vector
Y to simulate, which is equal to the variance–covariance matrix of the errors made
when kriging Y (X) from Y (U), and let C( j) be the variance–covariance matrix of
Y( j) (Gaussian random vector obtained at iteration j of Algorithm 2). The sequence
of Gaussian random vectors {Y( j) : j ∈ N} converges in distribution to Y if the
following index tends to zero as j increases (Emery and Peláez 2011)

η j = ‖C( j) − C‖
‖C‖ , (14)

where ‖ · ‖ stands for the Frobenius norm.
MixingAssume thatAlgorithm2 has converged at iteration j , that is,Y( j) is aGaussian
random vector with the same variance–covariance matrix asY, and letC( j, j+q) denote
the covariance matrix between Y( j) and the Gaussian random vector Y( j+q) obtained
after q additional iterations of the algorithm. Strong mixing (Bradley 2005) occurs
when the two Gaussian random vectors Y( j) and Y( j+q) are asymptotically indepen-
dent, that is, when C( j, j+q) tends to the null matrix as q increases or, equivalently,
when the following index tends to zero as q increases (Arroyo et al. 2012)

νq = ‖C( j, j+q)‖
‖C‖ . (15)

When η j ≈ 0 and νq ≈ 0, the successive vectors Y( j),Y( j+q),Y( j+2q) . . . can be
viewed as independent realizations of the randomvectorY. Therefore,with a single run
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of the chain {Y( j) : j ∈ N}, one can generate as many independent realizations ofY as
desired. If the chain is not mixing, or if the rate of convergence of νq to zero is slower
than that of η j , an alternative to obtain several independent realizations of Y is to run
the chain several times, using different seeds for the generation of random numbers.

In the following, it is of interest to assess the rates of convergence of η j and νq ,
as j and q increase. Computing both indices requires computing matrices C,C( j)

and C( j, j+q), which can be done when knowing the generalized covariance function
K (h) of the underlying IRF-k, similarly to what is presented in Arroyo et al. (2012)
for stationary random fields. The experiments will be sensitized to the size (p) of
sub-vector Y2, the strategy to select its components, the visiting sequence and the
generalized covariance function.

4.2 Sensitivity to Blocking Strategy

The blocking strategy refers to the way to select the p indices of {1, . . . , n} at step (2a)
of Algorithm 2. In the following, the case when p = 100 components is considered
and three strategies are compared: (i) a random blocking, for which the indices are
randomly selected; (ii) a rectangular blocking, for which the indices are associated
with adjacent positions of the grid, forming a rectangle of 20 × 5 locations; and
(iii) a square blocking, by considering a set of 10 × 10 adjacent locations. In all the
cases, the generalized covariance function is an isotropic power model of exponent
1.5 (corresponding to an IRF-0) and U is restricted to a single point with coordinate
(32.55, 32.55). Figure 1 shows the evolution of η j and νq as a function of j and q,
respectively, and Table 1 gives their values for j = q = 500. Although convergence
and mixing take place in every case (indices η j and νq always quickly tend to zero),
one clearly observes faster rates of convergence andmixingwhen using the rectangular
and square blockings, in comparison with the random blocking, the square blocking
yielding slightly faster rates than the rectangular blocking.

Fig. 1 Standardized Frobenius norms of a, C( j) − C and b, C( j, j+q) for three blocking strategies
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Table 1 Standardized Frobenius norms of C( j) − C and C( j, j+q) for three blocking strategies and j =
q = 500

Covariance model Blocking strategy Standardized norm
of C( j) − C

Standardized norm
of C( j, j+q)

Power 1.5 Random 4.99 × 10−5 3.20 × 10−5

Power 1.5 Rectangular 8.01 × 10−9 2.30 × 10−6

Power 1.5 Square 2.52 × 10−9 2.26 × 10−7

4.3 Sensitivity to Updating Strategy

Consider a rectangular or square blocking strategy, each block being identified by
the grid node located at the bottom-left corner. The updating strategy refers to the
way these grid nodes are visited, also known as visiting sequence. In the following,
three strategies are considered: random sweep, deterministic updating and random
permutation (Galli and Gao 2001), using the same generalized covariance model as in
the previous subsection and a square blocking with p = 100. It is seen (Fig. 2; Table 2)
that the rate of convergence and mixing is slightly faster with the random permutation
strategy compared to the random sweep strategy, and much faster compared to the
deterministic updating.

4.4 Sensitivity to Block Size

The following experiments consider a square blocking and random permutation strat-
egy, but varying block sizes: p = 1, 25, 100 or 400. To get a fair comparison of the
rates of convergence, the indices η j and νq are now plotted as a function of the CPU

Fig. 2 Standardized Frobenius norms of a, C( j) − C and b, C( j, j+q), for three updating strategies
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Table 2 Standardized Frobenius norms of C( j) − C and C( j, j+q) for three updating strategies and j =
q = 500

Covariance model Updating strategy Standardized norm
of C( j) − C

Standardized norm
of C( j, j+q)

Power 1.5 Random sweep 3.49 × 10−6 4.61 × 10−6

Power 1.5 Deterministic updating 3.82 × 10−1 3.79 × 10−1

Power 1.5 Random permutation 2.52 × 10−9 2.26 × 10−7

Fig. 3 Standardized Frobenius norms of a, C( j) − C and b, C( j, j+q), for four block sizes

Table 3 CPU times to construct 100 realizations and standardized Frobenius norms of C( j) − C and
C( j, j+q) for four block sizes and j = q = 500

Covariance model Block size CPU time (s) Standardized norm
of C( j) − C

Standardized norm
of C( j, j+q)

Power 1.5 1 3.51 0.0294 0.0123

Power 1.5 25 13.28 0.0054 5.24 × 10−4

Power 1.5 100 43.99 2.52 × 10−9 2.26 × 10−7

Power 1.5 400 179.18 3.47 × 10−12 ≤10−17

time in seconds. It is seen (Fig. 3; Table 3) that convergence is the fastest with large
blocks (p = 400) and the slowest with p = 1.

4.5 Sensitivity to the Generalized Covariance Model

In this subsection, four isotropic covariancemodels are considered: power of exponent
0.5, power of exponent 1.5, power of exponent 3 and spline of exponent 2. The first

123



Math Geosci (2015) 47:955–974 967

Fig. 4 Standardized Frobenius norms of a, C( j) − C and b, C( j, j+q), for four generalized covariance
models

Table 4 Standardized Frobenius norms of C( j) −C and C( j, j+q) for four generalized covariance models
and j = q = 500

Covariance model Standardized norm of C( j) − C Standardized norm of C( j, j+q)

Power 0.5 2.24 × 10−8 1.46 × 10−6

Power 1.5 2.52 × 10−9 2.26 × 10−7

Power 3 5.64 × 10−10 2.15 × 10−8

Spline 2 5.84 × 10−10 4.33 × 10−8

two models correspond to an IRF-0 and use only one point with coordinates (32.55,
32.55) to constrain the realizations. In contrast, the last two models correspond to an
IRF-1 and use a set of three points U = {(0, 0), (32.55, 0), (66, 66)} to constrain the
realizations. Here, the rates of convergence and mixing turn out to be comparable for
all covariance models (Fig. 4; Table 4).

5 Conditional Simulation

5.1 Simulation Algorithm

Consider now the case when some data on the IRF-k are available, so that it is of
interest to simulate Y = Y (X) conditionally to Y (U′) = y for a given set of locations
U′. This can be solved straightforwardly by substituting U′ for U and Y3 = y for
Y3 = 0 at step (2) of Algorithm 2. If the number of locations in U′ is less than 1+ L ,
or if the basic functions { f � : � = 0, . . . , L} are not linearly independent at these
locations [(Eq. (7)], one should complete U′ with extra locations where the simulated
values are constrained to be zero.
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5.2 Experiments

To illustrate this variant of Algorithm 2 for conditional simulation, consider the case
of an IRF-k with k = 0 or k = 1 on a regular grid G with 200 × 200 nodes, with 15
scattered data at fixed positions as conditioning data. For practical implementation,
square blocks of p = 100 components and a random permutation strategy are used,
and the algorithm is stopped after J = 40,000 iterations.

Each experiment consists of the following steps:

1. Construct a set of conditioning data Y3. To this end:
(a) Among the 15 data locations, select 1+ L locations and set the associated data

values to zero.
(b) Calculate the kriging prediction and the variance–covariancematrix of intrinsic

kriging errors at the remaining 14 − L data locations.
(c) Simulate the values at these locations using the square root decomposition of

the previous variance–covariance matrix.
2. Use Y3 in Algorithm 2 to construct a conditional realization over grid G.
3. Repeat the process with other realizations of Y3 at step (1). Therefore, only the

positions of the conditioning data are the same in all the realizations, whereas the
conditioning data values vary from one realization to another.

5.2.1 Example 1: Simulation of a Fractional Brownian Surface

Consider the simulation of fractional Brownian surfaces with Hurst exponents 0.25
and 0.75, corresponding to representations of IRF-0 with multivariate Gaussian incre-
ments and generalized covariance function K (h) = −0.01|h|0.5 and −0.01|h|1.5,
respectively. Here, the proposed simulation algorithm is validated by examining the
experimental variograms of a set of 100 realizations: on average, these experimental
variogramsmatch the prior variogrammodel, as expected (Fig. 5a, b, corresponding to
the power generalized covariance of exponents 0.5 and 1.5, respectively). Realizations
in which the 15 conditioning data are set to zero (for illustrative purposes) are shown
in Fig. 6a, b.

5.2.2 Example 2: Simulation of an IRF-1

In this case, the validation relies on the generalized variogram of order 1, which is
defined as (Chilès and Delfiner 2012)


(h) = 1

6
E{[Y (x + 2h) − 2Y (x + h) + Y (x)]2}. (16)

This generalized variogram can be expressed as a function of the generalized covari-
ance (Chilès and Delfiner 2012)


(h) = K (0) − 4

3
K (h) + 1

3
K (2h). (17)
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Fig. 5 Experimental generalized variograms of 100 realizations of an IRF-k (green dashed lines), average
of experimental generalized variograms (blue stars) and theoretical generalized variograms (solid black
lines)

Experimentally,
(h) can be estimated for each realization {y(x) : x ∈ G} by replacing
the expectation in Eq. (16) by an average of the form


̂(h) = 1

6

∑
x∈G∩G−h∩G−2h

[y(x + 2h) − 2y(x + h) + y(x)]2

card{G ∩ G−h ∩ G−2h} , (18)

whereG−h andG−2h stand for the gridG shifted by vector−h and−2h, respectively.
In the following, two generalized covariance models are considered: a power model
of exponent 3 (Fig. 5c) and a spline model of exponent 2 (Fig. 5d). In these figures, it
is seen that, on average over the realizations, the experimental generalized variograms
[Eq. (18)] match the theoretical generalized variogram, as given by Eq. (17). Examples
of realizations inwhich the 15 conditioning data are set to zero are depicted inFig. 6c, d.

5.3 Discussion

Apart from generating realizations that reproduce the desired spatial correlation struc-
ture, the proposed Gibbs sampling algorithm (Algorithm 2) stands out for its ver-
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Fig. 6 Realizations of IRF-k with a, b, c power generalized covariance of exponent 0.5, 1.5 and 3, and d
spline generalized covariance of exponent 2. The conditioning data are set to zero and their positions are
indicated with circles

satility: (i) it is applicable to any type of generalized covariance function, not only
power models; (ii) it can be used for simulation conditional to scattered data, as
shown in the previous subsections; and (iii) because of its iterative nature, it can be
adapted to incorporate complex conditioning constraints, such as interval constraints,
using annealing procedures or restricting the transition matrix of the algorithm
(Emery et al. 2014). As a drawback, it is not directly applicable in the pres-
ence of too many conditioning data: kriging cannot be performed exactly if sub-
vector Y3 is large and, when it is performed within a moving neighborhood, the
sequence of simulated vectors may not converge in distribution any more (Emery
et al. 2014). However, in such a case, a two-step approach can be used: first,
simulate the random field at the data and target locations via Algorithm 2 (non-
conditional simulation), then perform kriging of the residuals to convert the sim-
ulation into a conditional one (here, a moving neighborhood can be used as an
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approximation, without propagating errors, insofar as the conditioning process is not
iterative).

6 Conclusions

TheGibbs sampler presented inAlgorithm2 offers a convenient solution to simulate an
IRF-k at a finite set of locations, for the following reasons: (i) it produces realizations
with multivariate Gaussian generalized increments; (ii) it can be extended to condi-
tional simulation problems, when pre-existing data (hard data or interval constraints)
need to be reproduced; and (iii) it is applicable for any number and configuration of
the locations targeted for simulation and for any generalized covariance model.

Because the algorithm is stopped after finitely many iterations, the variance–
covariance matrix of the simulated vector may differ from the desired one. How-
ever, numerical experiments held on specific case studies suggest that the difference
is imperceptible after few iterations, as the norm η j [Eq. (14)] quickly tends to zero
when j increases (especially if one uses a square or a rectangular blocking with large
blocks and a random permutation strategy). If several realizations are needed, one can
restart the algorithm with another seed for generating random numbers or, based on
themixing property, consider the successive random vectorsY( j),Y( j+q),Y( j+2q) for
some j and q such that η j and νq [Eqs. (14) and (15)] are close to zero.

Acknowledgments This research was funded by the FONDECYT program of the Chilean Commis-
sion for Scientific and Technological Research (CONICYT), through projects CONICYT/FONDECYT/
POSTDOCTORADO/N◦3140568 and CONICYT/FONDECYT/REGULAR/N◦1130085.

Appendix: Convergence of Algorithm 2

The sequence of successive random vectors {Y( j) : j ∈ N} obtained with Algorithm 2
forms a homogeneous Markov chain. According to Tierney (1994) and Lantuéjoul
(2002), this chain converges in distribution if and only if the following three proper-
ties are satisfied: (i) aperiodicity, (ii) irreducibility and (iii) existence of an invariant
distribution for the transition matrix of the chain.

The first property (aperiodicity) holds because the chain can loop at one state
(Lantuéjoul 2002), that is, one can have Y( j) = Y( j−1). Indeed, it suffices to have
Y( j)

S2( j)
= Y( j−1)

S2( j)
at step (2e), which is possible because the vector V( j) defined at this

step can take any value in R
p.

The second property (irreducibility) implies that it is possible to go from each state
to every other state in one or more iterations. To establish this property, let us assume
that the chain is in a given state at iteration j , sayY( j) = y.At iteration j+1, it is easy
to see that Y( j+1)

S2( j+1) can take any value in R
p, with an appropriate choice of V( j+1)

[Eq. (12)], while the value of Y( j+1)
S1( j+1) will linearly depend on Y

( j+1)
S2( j+1), yS2( j+1) and

yS1( j+1) [Eq. (13)]. Similarly, at iteration j + 2, the value of Y( j+2)
S1( j+2)∩S2( j+1) will

linearly depend on Y( j+2)
S2( j+2),Y

( j+1)
S2( j+2) and Y

( j+1)
S1( j+2)∩S2( j+1); since this last vector (of
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sizem j+2 ≤ p) is a sub-vector ofY( j+1)
S2( j+1), it can take any value inR

m j+2 .Adding the

fact that Y( j+2)
S2( j+2) can take any value in R

p, the augmented vector Y( j+2)
S2( j+1)∪S2( j+2)

can take any value in R
p+m j+2 . Through recursive reasoning, at iteration j + h, it is

seen that the vector Y( j+h)

S( j,h), with S( j, h) = ⋃h
i=1 S2( j + i), can take any value in

R
card(S( j,h)). As the selection strategy is such that every element of {1, . . . , n} will

belong to S2( j + i) for some positive integer i , one finally has S( j, h) = {1, . . . , n}
for sufficiently large h, meaning that every state of Rn can be reached by the chain in
a finite number of iterations.

As for the third property (existence of an invariant distribution), let {Y (x) : x ∈
R
d} be a representation of an IRF-k with generalized covariance function K (h)

and multivariate Gaussian generalized increments, such that Y (U) = 0. Further
assume that, for some j ≥ 1, Y( j−1) has the same distribution as Y (X), that is,

(Y( j−1)
S1( j)

,Y( j−1)
S2( j)

)
d=(YS1( j),YS2( j)), where YS1( j) and YS2( j) stand for Y (XS1( j)) and

Y (XS2( j)), respectively. Then,

• YS2( j) can bewritten as the sum of two terms: (i) its intrinsic kriging [YS2( j)]∗ from
Y (U) and (ii) the associated kriging error YS2( j) − [YS2( j)]∗. As Y (U) = 0, the
former is a vector of zeros, while the latter is a zero-mean Gaussian random vector
with variance–covariance matrix C( j)

22 . Because A( j) is a symmetric square root

of C( j)
22 , the vector A

( j)V( j) defined in Eq. (12) is also Gaussian with zero mean

and variance–covariance matrix C( j)
22 (Davis 1987b), that is, A( j)V( j) d=YS2( j) −

[YS2( j)]∗. Hence, Y( j)
S2( j)

d=YS2( j).
• Likewise, YS1( j) is the sum of two terms: (i) its intrinsic kriging [YS1( j)]∗∗ from
YS2( j) and Y (U), and (ii) the associated kriging error, εS1( j) = YS1( j)−[YS1( j)]∗∗.
On the one hand, these two terms have the same distributions as the kriging predic-
tor [Y( j)

S1( j)
]∗∗ and kriging error ε

( j−1)
S1( j)

= Y( j−1)
S1( j)

− [Y( j−1)
S1( j)

]∗∗ defined in Eq. (13),

respectively, insofar as YS2( j)
d=Y( j)

S2( j)
and (YS1( j),YS2( j))

d=(Y( j−1)
S1( j)

,Y( j−1)
S2( j)

).

On the other hand, because V( j) is independent of Y( j−1), [Y( j)
S1( j)

]∗∗ and ε
( j−1)
S1( j)

are independent. The same happens for [YS1( j)]∗∗ and εS1( j): the latter is inde-
pendent of any generalized increment of YS2( j), thus it is independent of YS2( j)

itself [recall that the components of YS2( j) are already generalized increments
(Eq. (10))] and, as a consequence, independent of [YS1( j)]∗∗. In summary, one has

{
YS1( j) = [YS1( j)]∗∗ + εS1( j)

Y( j)
S1( j)

= [Y( j)
S1( j)

]∗∗ + ε
( j−1)
S1( j)

(19)

with [YS1( j)]∗∗ d=[Y( j)
S1( j)

]∗∗, εS1( j)
d= ε

( j−1)
S1( j)

, [YS1( j)]∗∗ independent of εS1( j), and

[Y( j)
S1( j)

]∗∗ independent of ε
( j−1)
S1( j)

. It follows that YS1( j) and Y( j)
S1( j)

are equally

distributed, that is, YS1( j)
d=Y( j)

S1( j)
.
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Therefore, it has been shown that, if Y( j−1) d= Y (X), then Y( j) d= Y (X). The dis-
tribution of the chosen representation of the IRF-k (the representation vanishing at
U) is invariant for the transition matrix of the chain. This completes the proof for the
convergence of Algorithm 2, given that the three necessary properties (aperiodicity,
irreducibility and existence of an invariant distribution) have been established: the
sequence of random vectors {Y( j) : j ∈ N} converges in distribution to Y = Y (X).
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