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Abstract This paper introduces a practical approach to interpret magnetic anomalies
related to simple geometric-shaped models such as thin dike and horizontal cylinder.
This approach is mainly based on both the deconvolution technique and on the simplex
algorithm for linear programming to best-estimate the model parameters, for example
the depth to the top or to the center of a buried structure, the effective magnetization
angle and the amplitude coefficient from magnetic anomaly profile. This approach
has been tested first on synthetic data sets corrupted by different white Gaussian
random noise levels to demonstrate the capability and the reliability of the method.
The results acquired show that the estimated parameter values derived by this approach
are close to the assumed true values of parameters. The validity of this approach is also
demonstrated using real field magnetic anomalies from the United States and Brazil.
A comparable and acceptable agreement is shown between the results derived by this
approach and those from the real field data information.

Keywords Magnetic anomaly · Thin dike-like structure · Horizontal cylinder-like
structure · Deconvolution technique · Simplex algorithm

1 Introduction

Geological structures in mineral and petroleum exploration can be approximated by
simple geological structures such as a fault, a sphere, a cylinder, or a dike. According
to this approximation, many methods have been introduced for interpreting magnetic
field anomalies due to simple geometric models in an attempt to best-estimate the
magnetic parameters values, for example, the depth to the buried body, the ampli-
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tude coefficient, and the effective magnetization angle. The interpretation methods
include matching standardized curves (Gay 1963, 1965; McGrath and Hood 1970),
characteristic points and distance approaches (Grant and West 1965; Abdelrahman
1994), monograms (Prakasa Rao et al. 1986), Hilbert transforms (Mohan et al. 1982),
Fourier transform techniques (Bhattacharyya 1965), correlation factors between suc-
cessive least-squares residual anomalies (Abdelrahman and Sharafeldin 1996), least-
squares minimization methods (Silva 1989; McGrath and Hood 1973), linearized least-
squares method (Salem et al. 2004), normalized local wave number method (Salem
and Smith 2005), analytic signal derivatives (Salem 2005), and Euler deconvolution
method (Salem and Ravat 2003).

Werner deconvolution method (1953) is designed to analyze magnetic fields of
dipping magnetized dikes by separating the anomaly due to a particular dike from
the interference of neighboring dikes. The application of the Werner deconvolution
method has been thoroughly discussed by Hartiman et al. (1971), Jain (1976), and
Ku and Sharp (1983). Ku and Sharp (1983) further refined the Werner deconvolution
method using iteration for reducing and eliminating the interference field and then
applied Marquardt’s nonlinear least-squares method to further refine automatically
the first approximation provided by deconvolution. Nabighian and Hansen (2001)
showed the extension of Euler deconvolution algorithm in order to be a generalization
and unification of two-dimensional Euler deconvolution and Werner deconvolution.
They showed that the three-dimensional extension can be realized using general-
ized Hilbert transforms. The resulting algorithm is both a generalization of extended
Euler deconvolution to three dimensions and a three-dimensional extension of Werner
deconvolution.

Recently simulated annealing methods (Gokturkler and Balkaya 2012) and deter-
ministic approaches (Mehanee 2014a, b) have been successfully used to solve similar
nonlinear inversion problems of geometrically simple idealized bodies. Alternatively,
in this paper, a practical interpretation method is introduced for interpreting magnetic
field anomalies and best-estimate of model parameters values, for example the depth
to the top or to the center of the body, the effective magnetization inclination, and
the amplitude coefficient related to a buried thin dike or a horizontal cylinder-like
structure. The method is based on the use of the deconvolution technique to avoid
the local minima where, we transformed the nonlinear programming problem, which
describes the suitable simple geometric-shaped model of structure into a linear pro-
gramming one. This linear programming problem is thereafter solved by the very
well-known algorithm in linear programming called the simplex algorithm of Dantzig
(Phillips et al. 1976). However, the use of deconvolution technique, in this paper,
allows transforming the non-convex and nonlinear mathematical program into linear
one and this linear program has been thereafter solved by the simplex method for
definitely reaching the global minima.

The reliability and validity of the proposed interpretation method is demonstrated
first through using synthetic data sets corrupted by different white Gaussian random
noise levels and second through reinterpreting real field magnetic anomalies taken
from the United States and Brazil. A comparable and acceptable agreement is shown
between the results derived by this method and those obtained by other interpretation
methods.
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Moreover, the depth obtained by such a method is found to be in high accordance
with that obtained from the real field data information.

2 Method

2.1 Interpretation of Magnetic Anomaly due to a Thin Dike Model

The general expression for the magnetic anomaly (V ) at any point P(x) along the
x−axis of an arbitrary magnetized thin dike-like structure in a Cartesian coordinate
system (Fig. 1) can be given according to Atchuta Rao et al. (1980), Abdelrahman and
Sharafeldin (1996), and Gay (1963) as

V (xi ) = k
xi sin θ + z cos θ

x2
i + z2

(i = 1, . . . , N ), (1)

where z is the depth to the top of the buried thin dike body, θ is the effective magnetiza-
tion angle or the index parameter, k is the amplitude coefficient, and xi (i = 1, . . . ., N )

is the horizontal position coordinate. The values of k and θ for the vertical, horizontal
and total field anomalies for the case of thin dikes are given in Table 1. In this table,
ξ is the magnetic susceptibility contrast, I0 is the true inclination of the geometric
field, T

′
0 and I

′
0 are, respectively, the effective intensity and effective inclination of

the geometric field in the vertical plane normal to the strike of the body, tand d are,
respectively, the thickness and the dip of the dike, and α is the strike of the body
measured in the clockwise direction from magnetic north. The set of Eq. 1 consists
of N nonlinear equations in function of the parameters k, θ and z. To avoid this non-
linearity, the following proposed deconvolution technique will be used. First and for
simplification, Vi is used instead of V (xi ) (i = 1, . . . , N ) in the rest of this paper.
Multiplying the two sides of Eq. 1 by the term (x2

i + z2) and arranging them, it can
be found

Vi x2
i + Vi q1 − xi q2 − q3 = 0 (i = 1, . . . , N ), (2)

Fig. 1 Cross-sectional view of a two-dimensional thin dike model
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Table 1 Characteristic amplitude coefficient k and index parameter θ for vertical, horizontal and total
magnetic anomalies resulting from thin dikes and horizontal cylinders

Anomaly V Thin dikes Horizontal cylinders

Amplitude coefficient k Index parameter θ Amplitude coefficient k Index parameter θ

Vertical 2ξ tT
′
0 I

′
0 − d 2ξ T

′
0s I

′
0 − 90

Horizontal 2ξ tT
′
0 sin α I

′
0 − d − 90◦ 2ξ T

′
0 s

sin α
I
′
0 − 180◦

Total 2ξ tT
′
0

sin I0

sin I
′
0

2I
′
0 − d − 90◦ 2ξT

′
0s

sin I
′
0

sin I0
2I

′
0 − 180◦

Values are defined in the text

where, in Eq. 2.

q1 = z2, (3)

q2 = k sin θ, (4)

q3 = kz cos θ. (5)

The set of Eq. 2 consists of N linear equations in function of the new parameters
q1,q2, and q3, where q1 is restricted to be nonnegative variable, q2 and q3 are free
variables. To find the optimal solution (q1, q2, q3) of the set of linear Eq. 2, with
respect to the non-negativity of q1, it can be found by solving the following nonlinear
program onto the real space R3

min
q∈R3

f (q) =
N∑

i=1

(Vi x2
i + Vi q1 − xi q2 − q3)

2
, (6)

subject to q1 ≥ 0 and q2, q3 being free. The quadratic objective function f (q)of (6) is
being defined as a sum of squared linear functions in function of q, then it is convex
onto the real spaceR3. Furthermore q2and q3 are free variables, where no restrictions
exist, and then q1, q2, q3 will be changed to become as follows

q1 = p1
q2 = p2 − p4
q3 = p3 − p4

⎫
⎬

⎭ , (7)

where p1, p2, p3, p4 ≥ 0.
Introducing these new variables into (6), the following nonlinear program can be

obtained, which is subjected to non-negativity constraints on variables p1, p2, p3 and
p4

min
p∈R4

ϕ(p) =
N∑

i=1

(Vi x2
i + Vi p1 − xi p2 + xi p4 − p3 + p4)

2
, (8)

subject to p1, p2, p3, p4 ≥ 0.
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The new quadratic objective function ϕ(p)of (8) is being also defined as the sum
of squared linear functions of p, then it is convex onto the nonnegative orthant of the
real space R4. In order to find the optimal solution(p1, p2, p3, p4) ∈ R4 of (8), it is
necessary and sufficient to find the optimal solution to the following set of nonlinear
equations

pi ≥ 0 ∀i = 1, . . . , 4
pi

∂ϕ(p)
∂pi

= 0 ∀i = 1, . . . , 4
∂ϕ(p)
∂pi

≥ 0 ∀i = 1, . . . , 4

⎫
⎪⎬

⎪⎭
. (9)

Equations 9 are called the optimality conditions of Karush–Kuhn–Tuker (KKT)
according to Phillips et al. (1976). Since Eq. 9 are nonlinear, they can be easily trans-
formed into a linear optimization program by adding non-negative artificial variables
u ∈ R4 as follows

min
∑4

i=1 ui

subject to ∂ϕ(p)
∂pi

− ui = 0 ∀i = 1, . . . , 4
pi , ui ≥ 0 ∀i = 1, . . . , 4

⎫
⎪⎬

⎪⎭
. (10)

The objective function
∑4

i=1 ui of (10) is linear and consequently convex. The fol-
lowing feasible set

X =
{

p, u ∈ R4 : ∂ϕ(p)

∂pi
− ui = 0 (i = 1, . . . , 4),

and pi , ui ≥ 0 (i = 1, . . . , 4)} ,

is defined by linear equations and it is consequently convex on the nonnegative orthant
of R8. After executing the above-mentioned mathematical steps, all the conditions
needed and necessarily for the simplex algorithm are now satisfied.

Differentiating ϕ(p)as a function of p, the linear program (10) can be rewritten as
follows

min u1 + u2 + u3 + u4 subject to
(

N∑
i=1

V 2
i

)
p1 −

(
N∑

i=1
Vi xi

)
p2 −

(
N∑

i=1
Vi

)
p3 +

(
N∑

i=1
Vi (1 + xi )

)
p4 − u1 = −

(
N∑

i=1
V 2

i x2
i

)

−
(

N∑
i=1

Vi xi

)
p1 +

(
N∑

i=1
x2

i

)
p2 +

(
N∑

i=1
xi

)
p3 −

(
N∑

i=1
xi (1 + xi )

)
p4 − u2 = −

(
N∑

i=1
Vi x3

i

)

−
(

N∑
i=1

Vi

)
p1 +

(
N∑

i=1
xi

)
p2 + N p3 −

(
N∑

i=1
(1 + xi )

)
p4 − u3 = −

(
N∑

i=1
Vi x2

i

)

(
N∑

i=1
Vi (1 + xi )

)
p1 −

(
N∑

i=1
xi (1 + xi )

)
p2 −

(
N∑

i=1
(1 + xi )

)
p3 +

(
N∑

i=1
(1 + xi )

2
)

p4 − u4 =

−
(

N∑
i=1

Vi x2
i (1 + xi )

)

p1, p2, p3, p4, u1, u2, u3, u4 ≥ 0

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

(11)
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The linear program (11) is then solved by the Simplex algorithm in order to find the
optimal values of (p1, p2, p3, p4, u1, u2, u3, u4) ∈ R8, which are satisfying the KKT
optimality conditions (9) for the nonlinear program (8). This solution is surely a global
minima, and consequently the optimal valuesof (q1, q2, q3) ∈ R3 can be obtained
by using Eq. 7. For more details about the simplex algorithm of Dantzig for linear
programming optimization, readers are referred to Phillips et al. (1976), Hillier and
Lieberman (1986) and Bradley et al. (1977). It is useful to mention here that the linear
program (11) cannot be solved by one of the unconstrained mathematical optimization
algorithms as the steepest descent algorithm, conjugate gradients algorithms, Hooke
and Jeeves’s algorithm, and the simulated annealing algorithms, but it should be solved
using one of the constrained mathematical optimization algorithms as the simplex
algorithm and the interior point algorithms.

After obtaining the optimal values of q1, q2 and q3, the best-estimate of the depth
to the top of the buried thin dike body (z) can be easily found using Eq. 3 as

z = √
q1. (12)

The best-estimate of the effective magnetization angle (θ) and the amplitude coefficient
(k) can be obtained using simultaneously Eqs. 4 and 5 as

θ = arctan

(
z

q2

q3

)
, (13)

k = ∓
√

q2
2 + q2

3

z2 . (14)

The sign of kcan be assigned depending on the statistical criterion of preference
called the root mean square error (RMSE) (Collins 2003). The RMSE is based on the
minimal value between the field data anomaly and the computed one and also by using
the estimated values of z,θ and kcalculated before. The mathematical formula of this
criterion is given as

RMSE =
√∑N

i=1 (Vi (Observed) − Vi (Computed))2

N
,

where Vi (Observed) and Vi (Computed) (i = 1, . . . , N ) are the observed and the
computed values at the point xi (i = 1, . . . , N ), respectively.

2.2 Interpretation of a Synthetic Magnetic Anomaly due to a Thin Dike Model with
different Levels of Gaussian Random Noise

A synthetic magnetic anomaly V (xi ) (i = 1, . . . , N ) due to a thin dike-like structure
is generated from Eq. 1 using the following values of model parameters: depth to the
top of the structure z = 15 unit length, effective magnetization angle θ = 60◦, and
amplitude coefficient k = 1,500 nT.m. Based on this generated synthetic anomaly,
two additional magnetic anomalies are regenerated, by perturbing them with different
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Table 2 Interpretation of a synthetic magnetic anomaly due to a thin dike model with different maximum
levels of Gaussian random noise

Model parameters True values of
model parameters

Estimated values of
model parameters with
maximum 7 % random
noise

Estimated values of
model parameters with
maximum 10 % random
noise

z (unit length) 15 14.89 13.90

θ◦ 60 60.34 59.15

k (nT.m) 1,500 1,526.6 (1,520.3) 1,410.1 (1,396.2)

RMSE (nT) – 2.407 (2.397) 3.78 (3.746)

The values within the brace are the results obtained using Eqs. 12, 13, and 15, to estimate the multiplier
parameter kand the suitable RMSE preference factor
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Fig. 2 Diagram for the computed anomaly and synthetic data set with adding a maximum of 10 % random
noise

Gaussian random noise maximum levels of 7 and 10 %, respectively. Both regenerated
magnetic anomalies are consequently interpreted by the new proposed method, where
the estimated model parameters values are shown in Table 2 and Fig. 2.

The results presented in Table 2 show that the estimated parameter values, derived
by this interpretation method, are very close to the true values of parameters, which
clearly indicate the efficiency and the capability of the proposed interpretation method.
Moreover, it is noticed from Table 2 that the parameter k (the amplitude coefficient) are
more influenced and exhibits more sensibility to the random noise. Being ka multiplier
factor, that explains such a sensibility. To minimize the big deviation between the
estimated and the true values of the multiplier parameterk, when the field data is more
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contaminated by gross random noise, it is therefore advisable to estimate kby the
following equation instead of Eq. 14

k =
∑N

i=1 Viαi∑N
i=1 α2

i

, (15)

where αi = xi sin θ+z cos θ

x2
i +z2 (i = 1, 2, . . . , N ).

Equation 15 is easily derived from the minimization of the L2 Euclidean distance,
between the field data anomaly and the computed one, taking into consideration the
computed values of the depth to the top of the body (z) and the effective magnetization
angle (θ) by Eqs. 12 and 13.

2.3 Interpretation of Magnetic Anomaly due to a Horizontal Vylinder Model

The general expression for the magnetic anomaly (V ) observed at a point P(x) along
the x-axis due to an infinitely extended horizontal cylinder in a Cartesian coordinate
system (Fig. 3), is given by Prakasa Rao et al. (1986) as

V (xi ) = k
(z2 − x2

i ) cos θ + 2xi z sin θ

(x2
i + z2)2

(i = 1, . . . , N ). (16)

The notations in this expression have the same meaning as those presented in Eq.
1 except z is the depth to the center of the buried structure. The values of k and θ for
the vertical, horizontal and total field anomalies for the case of horizontal cylinders
are also given in Table 1. In this table, sis the cross-sectional area of the horizontal
cylinder. Multiplying the two sides of Eq. 16 by the term (x2

i + z2)2 and arranging
them, it can be found

Vi x4
i + 2Vi x2

i q1 + Vi q2 + x2
i q3 − 2xi q4 − q5 = 0 (i = 1, . . . , N ), (17)

Fig. 3 Geometry of the horizontal cylinder magnetized by induction in the Earth’s field
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where, in Eq. 17

q1 = z2, (18)

q2 = z4, (19)

q3 = k cos θ, (20)

q4 = kz sin θ, (21)

q5 = kz2 cos θ, (22)

The optimal solution (q1, q2, q3, q4, q5)of the set of linear equations (17), with respect
to the non-negativity of q1and q2, it can be found by solving the following nonlinear
program onto the real spaceR5

min
q∈R5

f (q) =
N∑

i=1

(Vi x4
i + 2Vi x2

i q1 + Vi q2 + x2
i q3 − 2xi q4 − q5)

2
. (23)

Subject to q1 ≥ 0, q2 ≥ 0 and q3, q4, q5 being free.
Furthermore q3, q4, q5 are free variables, no restrictions exist, and then

q1, q2, q3, q4, q5 will be changed as follows

q1 = p1
q2 = p2
q3 = p3 − p6
q4 = p4 − p6
q5 = p5 − p6

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

, (24)

where p1, p2, p3, p4, p5, p6 ≥ 0.

Introducing those new variables into (23), it can be obtained the following
nonlinear program which is subjected to non-negativity constraints on variables
p1, p2, p3, p4, p5 and p6

min
p∈R6

ϕ(p)

=
N∑

i=1

(Vi x4
i + 2Vi x2

i p1 + Vi p2 + x2
i p3 − 2xi p4 − p5 + (−x2

i + 2xi + 1)p6)
2
,

Subject to p1, p2, p3, p4, p5, p6 ≥ 0. (25)

The KKT optimality conditions (9) for the nonlinear program (25) are satisfied through
solving the following linear program
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min u1 + u2 + u3 + u4 + u5 + u6 subject to

4
(∑N

i=1 V 2
i x4

i

)
p1 + 2

(∑N
i=1 V 2

i x2
i

)
p2 + 2

(∑N
i=1 Vi x4

i

)
p3 − 4

(∑N
i=1 Vi x3

i

)
p4 − 2

(∑N
i=1 Vi x2

i

)

p5 + 2
(∑N

i=1 Vi x2
i (−x2

i + 2xi + 1)
)

p6 − u1 = −2
(∑N

i=1 V 2
i x6

i

)

2
(∑N

i=1 V 2
i x2

i

)
p1 +

(∑N
i=1 V 2

i

)
p2 +

(∑N
i=1 Vi x2

i

)
p3 − 2

(∑N
i=1 Vi xi

)
p4 −

(∑N
i=1 Vi

)

p5 +
(∑N

i=1 Vi (−x2
i + 2xi + 1)

)
p6 − u2 = −

(∑N
i=1 V 2

i x4
i

)

2
(∑N

i=1 Vi x4
i

)
p1 +

(∑N
i=1 Vi x2

i

)
p2 +

(∑N
i=1 x4

i

)
p3 − 2

(∑N
i=1 x3

i

)
p4 −

(∑N
i=1 x2

i

)

p5 +
(∑N

i=1 x2
i (−x2

i + 2xi + 1)
)

p6 − u3 = −
(∑N

i=1 Vi x6
i

)

−4
(∑N

i=1 Vi x3
i

)
p1 − 2

(∑N
i=1 Vi xi

)
p2 − 2

(∑N
i=1 x3

i

)
p3 + 4

(∑N
i=1 x2

i

)
p4 + 2

(∑N
i=1 xi

)

p5 − 2
(∑N

i=1 xi (−x2
i + 2xi + 1)

)
p6 − u4 = 2

(∑N
i=1 Vi x5

i

)

−2
(∑N

i=1 Vi x2
i

)
p1 −

(∑N
i=1 Vi

)
p2 −

(∑N
i=1 x2

i

)
p3 + 2

(∑N
i=1 xi

)

p4 + N p5 −
(∑N

i=1 (−x2
i + 2xi + 1)

)
p6 − u5 =

(∑N
i=1 Vi x4

i

)

2
(∑N

i=1 Vi x2
i (−x2

i + 2xi + 1)
)

p1 +
(∑N

i=1 Vi (−x2
i + 2xi + 1)

)
p2 +

(∑N
i=1 x2

i (−x2
i + 2xi + 1)

)

p3 − 2
(∑N

i=1 xi (−x2
i + 2xi + 1)

)
p4 −

(∑N
i=1 (−x2

i + 2xi + 1)
)

p5 +
(∑N

i=1 (−x2
i + 2xi + 1)2

)

p6 − u6 = −
(∑N

i=1 Vi x4
i (−x2

i + 2xi + 1)
)

p1, p2, p3, p4, p5, p6, u1, u2, u3, u4, u5, u6 ≥ 0

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

(26)

The linear program (26) is then solved by the Simplex algorithm to find the optimal val-
ues of (p1, p2, p3, p4, p5, p6, u1, u2, u3, u4, u5, u6) ∈ R12 which are satisfying the
KKT optimality conditions (9) for the nonlinear program (25). This solution is surely
a global minima, and consequently, the optimal values of (q1, q2, q3, q4, q5) ∈ R5 can
be obtained by using Eq. 24. After obtaining the optimal values of q1, q2,q3,q4and q5,
the best- estimate of the depth to the center of the buried horizontal cylinder body (z)
can be easily found using simultaneously Eqs. 18 and 19 as

z = 1

2

(
q

1
2

1 + q
1
4

2

)
. (27)

The best-estimate of the effective magnetization angle (θ) and the amplitude coefficient
(k) can easily be obtained using simultaneously Eqs. 20, 21 and 22 as

θ = arctan
1

2

(
1

z

q4

q3
+ z

q4

q5

)
, (28)

k = ∓
√√√√1

2

(
q2

3 + 2
q2

4

z2 + q2
5

z4

)
. (29)

It is worth noting that, the sign of k can be also assigned depending on the statisti-
cal criterion of preference (RMSE). The RMSE is based on both the minimal value
between the field data anomaly and the computed one and also on the use of the
estimated values of z,θ and k calculated before.

Moreover, when the field data are more contaminated by gross random noise, it is
therefore advisable to estimate the multiplier parameter kby the following equation
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instead of Eq. 29

k =
∑N

i=1 Viβi∑N
i=1 β2

i

, (30)

where βi = (z2−x2
i ) cos θ+2 xi z sin θ

(x2
i +z2)2 (i = 1, 2, . . . , N ).

Equation 30 is also derived from the minimization of theL2-Euclidean distance,
between the field data anomaly and the computed one, taking into consideration the
computed values of the depth to the center of the body (z) and the effective magneti-
zation angle (θ) by Eqs. 27 and 28.

3 Applications

Two field magnetic anomalies over various geological structures are interpreted by the
proposed method and discussed below.

3.1 Interpretation of a Field Magnetic Anomaly due to a Thin Dike Model

Figure 4 shows a magnetic field anomaly resulted from a profile of 750 m-long over
the Pima Copper mine, Arizona; United States (Abdelrahman and Sharafeldin 1996;
Gay 1963). This magnetic anomaly has been reinterpreted by the proposed method
with considering a priori that the source which causes this anomaly is due to a thin
dike model. Using Eqs. 12, 13 and 14 the estimated values of the model parameters
are obtained as

z = 64.1 m, θ = −44.7◦, k = 42,700 nT.m, RMSE1 = 32 nT.

The depth to the top of the thin dike (z = 64.1 m) is found to be in very good
agreement with that obtained from drilling (z = 64 m). The computed magnetic
anomaly has been drawn according to these estimated values of model parameters
as shown in Fig. 4. The comparison between field and computed anomalies clearly
indicates the close agreement between them, which attests the capability and the
validity of the method. The results acquired by the presented method are shown in
Table 3 and Fig. 4, which include also the results derived using the standardized curves
method previously reported by Gay (1963), the results obtained using the least-squares
minimization (Abdelrahman and Sharafeldin 1996), and the results obtained using the
Fair function minimization (Tlas and Asfahani 2011a). The magnetic anomaly has also
been reinterpreted by the proposed method with considering a priori that the source
which causes this anomaly is due to a horizontal cylinder model. Using Eqs. 27, 28
and 29 the estimated values of the model parameters are obtained as

z = 496.9 m, θ = −88.9◦, k = 3.9 × 107 nT.m2, RMSE2 = 213.7 nT.

From the calculation of RMSE1 and RMSE2, it is clear that, the value of RMSE2
is greater than the value of RMSE1. Hence, it is not absolutely preferable to model
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Fig. 4 Magnetic field anomaly over the Pima copper deposit in Arizona, United States. The computed
anomaly by the proposed interpretation method is also shown

Table 3 Interpretation of the Pima copper mine anomaly, Arizona, United States

Model parameters Gay (1963) Abdelrahman and
Sharafeldin (1996)

Tlas and Asfahani
(2011a)

Present method

z (m) 70 66 71.25 64.1

θ◦ −50 −53 −47.58 −44.7

k (nT.m) – 39,369 41,154.71 42,700 (39,190)

RMSE (nT) – – – 32 (26)

The values within the brace are results obtained using Eqs. 12, 13, and 15, to estimate the multiplier
parameter kand the suitable RMSE preference factor. The values of k and RMSE show clearly that the field
data are not more contaminated by gross random noises

the source which causes this anomaly as a horizontal cylinder but it is better to be
modeled as a dike.

3.2 Interpretation of a Field Magnetic Anomaly due to a Horizontal Cylinder Model

Figure 5 shows a magnetic field anomaly measured over a profile of 24.64 m-long
above a Mesozoic diabase intruded into Paleozoic sediment from the Parnaiba basin,
Brazil (Abdelrahman and Sharafeldin 1996; Silva 1989). This magnetic anomaly has
been reinterpreted by the proposed method with considering a priori that the source
which causes this anomaly is due to a horizontal cylinder model. The specificity of
this field anomaly is that the upper part of the body was weathered and the magnetite
presence was oxidized, where most of its magnetic property have been lost, according
to Silva (1989). This geological situation indicates that the magnetic anomaly is largely
affected by gross random noise levels. The model parameter values could therefore be
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Fig. 5 Magnetic field anomaly over an outcropping horizontal cylinder in the Parnaiba basin, Brazil. The
computed anomaly by the proposed interpretation method is also shown

Table 4 Interpretation of the Parnaiba anomaly, Brazil

Model parameters Silva (1989) Abdelrahman and
Sharafeldin (1996)

Tlas and Asfahani
(2011)

Present method

z (m) 3.5 3.5 3.36 3.4

θ◦ – 33.3 46.83 41.3

k (nT.m2) – −717.9 −552.3 −645.6 (−4,007.6)

RMSE (nT) – – – 38 (131)

The values within the brace are the results obtained using Eqs. 27, 28, and 29, to estimate the multiplier
parameter k and the suitable RMSE preference factor. The values of k and RMSE show clearly that the field
data are more contaminated by gross random noises

estimated using Eqs. 27, 28 and 30, where the estimated values are

z = 3.4 m, θ = 41.3◦, k = −645.6 nT.m2, RMSE1 = 38 nT.

The depth to the center of the horizontal cylinder (z = 3.4 m) is found to be in very
good agreement with that reported by both Silva (1989), using the M-fitting technique
and Abdelrahman and Sharafeldin (1996), using the least-squares minimization tech-
nique (z = 3.5 m). The computed magnetic anomaly has been drawn according to
the estimated values of model parameters as shown in Fig. 5. The results acquired by
the presented method are shown in Table 4 and Fig. 5, which include also the results
derived using the M-fitting technique previously reported by Silva (1989), the results
obtained using the least-squares minimization (Abdelrahman and Sharafeldin 1996),
and the results derived using the deconvolution technique (Tlas and Asfahani 2011).
The magnetic anomaly has been also reinterpreted by the proposed method with con-
sidering a priori that the source which causes this anomaly is due to a thin dike model.
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The simplex algorithm indicates that the linear program (11) is unbounded and the
calculated value of RMSE2 was very high. Hence, it is not absolutely recommended to
model the source which causes this anomaly as a thin dike but it is better to be modeled
as a horizontal cylinder. Finally, it is useful to mention here that there is no loss of
generality in assuming the source geometry is known a priori, in addition, it does
not impose any restrictions on the generality of the proposed interpretation method.
However, in the case of any magnetic field anomaly, where its source geometry is
unknown, the next two steps are to be followed.

First, the magnetic field anomaly is interpreted with considering the source geom-
etry as a thin dike, where the root mean square error RMSE1 is computed between the
observed field anomaly and the computed one. Second, the magnetic field anomaly is
re-interpreted with considering the source geometry as a horizontal cylinder, where
the root mean square error RMSE2 is computed between the observed field anomaly
and the computed one. The comparison between the two values RMSE1 and RMSE2
allows selecting minimal value of RMSE, which exactly determines the suitable source
geometry related to the treated field anomaly.

4 Conclusions

Herewith a new approach is proposed in this paper for the interpretation of magnetic
anomalies due to simple geometric-shaped models such as thin dike, and horizontal
cylinder. The proposed method is based on both the deconvolution technique to avoid
the local minima and on the simplex algorithm for linear programming to best-estimate
the model parameters values, for example the depth to the top or to the center of the
buried structure, the effective magnetization angle and the amplitude coefficient from
magnetic anomaly profile. The reliability and capability of this interpretation method
have been first demonstrated through testing and corrupting the synthetic data sets by
different white Gaussian random noise levels of 7 and 10 %. The synthetic modeling
results acquired show that the estimated parameter values derived by this new method
are very close to the assumed true values of parameters. The validity of this method is
also demonstrated through reinterpreting real field magnetic anomalies taken from the
United States and Brazil. A comparable and acceptable agreement is shown between
the results derived by the proposed method and those obtained by other interpretation
methods. Moreover, the depth obtained by such a method is found to be in high
accordance with that obtained from the real field data information.

This interpretation method can be easily put in a MATLAB code. Furthermore,
the method is being based on the familiar algorithm in linear programming, called
the simplex algorithm of Dantzig, the convergence towards the best estimation of
parameters values is assured and rapidly reached. This new methodology is therefore
recommended for routine analysis of magnetic anomalies in an attempt to determine
the best-estimate values of parameters related to thin dikes and horizontal cylinder-like
structures.
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