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Abstract An inverse modeling approach was developed to characterize fracture con-
nectivity in geothermal reservoirs using an injection of a conductive fluid and time-
lapse electric potential measurements. Discrete fracture networks with sparsely con-
nected fractures were modeled and a flow simulator was used to solve electric fields
as a conductive tracer flows through the fracture networks. The electric potential dif-
ference between well pairs drops progressively in time as the conductive fluid fills
interconnected fractures along paths from the injector toward the producer. Therefore,
the fractional connected area of reservoirs could be estimated using inverse model-
ing to match the response to other fracture networks by comparing time histories of
the electric potential. This method was compared to estimating fractional connected
area using tracer return curves alone and the study showed that locations of connected
areas were estimated better using the electric potential approach. A sensitivity analysis
was performed to study the effect of fractional connected area on time-lapse electric
potential and tracer return data. The study verified the advantages of using electric
potential measurements instead of only the tracer return curves.

Keywords Fracture characterization · Time-lapse resistivity · Tracer tests ·
Inverse analysis

1 Introduction

Connectivity of fractures in both natural and enhanced geothermal systems (EGS) is
a key factor in interpreting fracture flow, to ensure adequate supply of geothermal
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fluids and efficient thermal operation of the wells. The interconnected conductive
fractures control mass and heat transport in the system and inappropriate placement
of injection or production wells can lead to premature thermal breakthrough. Such
premature thermal breakthroughs have occurred in numerous geothermal reservoirs,
as described by Horne (1983), and observed in The Geysers (Beall et al. 1994). In
previous work, chemical tracers have been used to investigate connectivity between
wells to prevent premature thermal breakthrough (Fossum and Horne 1982; Fukuda
et al. 2006). By injecting a slug of tracer, Shook (2001) showed how tracer histories
could be transformed into predicted temperature histories in heterogeneous porous
media but the method’s accuracy degraded in the presence of a strong permeability
correlation. Wu et al. (2008) predicted enthalpy production in fractured geothermal
reservoirs using a single fracture model which was also expanded to a two-phase flow
scenario in a network of multiple fractures. Analysis of tracer data yielded fracture
properties that were used to simulate the enthalpy production but the fracture network
contained only parallel vertical fractures. Other methods include using assumptions
of specific flow channels connecting injection and production wells with tracer tests
to predict premature thermal breakthrough (Axelsson et al. 2005). Such methods can
be powerful during early stages of production but more complex models are needed
where the flow mechanism is highly complicated. Thus, tracer testing is a potentially
powerful technique but accurate interpretation of tracer results in highly fractured
reservoirs can be difficult.

Application of geophysical methods has been useful for obtaining physical para-
meters of the earth system including temperature, elastic properties, density, magnetic
susceptibility, and electric conductivity. Conventional wellbore-based techniques for
characterizing flow in the subsurface include core sample analysis and well logging.
These techniques can give information about the rock type, porosity, and temperature
but do not provide information about key controls on overall subsurface flow behavior
in fractured reservoirs. Seismic surveys have been used to identify boundaries between
flow units in aquifer systems (Chen et al. 2010; Parra et al. 2006) but depth constraints
were necessary to reduce uncertainty. Thus, seismic surveys can be useful to study
shallow aquifers but it is challenging to detect small-scaled fractures at greater depths.
Jeannin et al. (2006) detected fractures in rocks using ground-penetrating radar (GPR)
that uses electromagnetic radiation to detect reflected signals from subsurface struc-
tures but the antennae reached a maximum penetration of 20 m. Garg et al. (2007)
described how self-potential, magnetotelluric and direct current surveys were all used
to explore the Beowawe geothermal field in the Basin and Range Province of the west-
ern USA. These exploration techniques are commonly used to find hidden geothermal
resources that lack hydrothermal surface features, identify promising drilling targets
and to help designing recovery strategies appropriately (Harthill 1978; Hochstein and
Hunt 1970). They can provide valuable information regarding properties in the subsur-
face but the relationship between hydraulic and geophysical properties might not be
known. In addition, when these geophysical surveys are performed at the surface they
do not offer a high level of resolution when exploring deeper portions of the reservoirs,
making it challenging to characterize fractures that are small-scaled as compared to
the size of the reservoir.
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A variety of approaches have been attempted to combine multiple geophysical
methods to better quantify hydrological properties in the subsurface (e.g., Garambois
et al. 2002). Other approaches include using time-dependent geophysical data that
can indirectly measure time-varying hydrologic parameters (Hubbard et al. 2001).
Electrical resistivity has been shown to be sensitive to changes in fluid conductiv-
ity and water content in reservoirs (Binley et al. 2002; Yeh et al. 2002), and the
concentration of a conductive tracer can be mapped from field measurements of resis-
tance using cross-well electrical resistivity tomograpy (ERT) (Singha and Gorelick
2006). A number of studies have demonstrated the potential of ERT for monitoring
tracer migration in soil (Binley et al. 1996; Koestel et al. 2008; Olsen et al. 1999;
Slater et al. 2002), and in shallow aquifers (Cassiani et al. 2006; Oldenborger et al.
2007; Singha and Gorelick 2005; Singha et al. 2007). In these studies, usually many
electrodes were used to obtain the resistivity distribution for the whole field under
study at each time step and then this resistivity distribution was ompared to the dis-
tribution without any tracer to observe resistivity changes in each block visually.
Using this approach for a whole reservoir would require a massive parameter space
and likely not be solvable, xcept at very low resolution. Day-Lewis et al. (2003)
demonstrated the benefits of time-lapse inversion of geophysical data over the pre-
viously mentioned conventional snapshot approach. Lambot et al. (2004) showed
how ground-penetrating radar (GPR) was used with hydrodynamic inverse model-
ing to identify effective hydraulic properties of sand in laboratory conditions. Irving
and Singha (2010) have demonstrated an attempt to use Bayesian Markov-chain-
Monte-Carlo (McMC) methodology to jointly invert dynamic cross-well and surface
resistivity data with tracer concentration data to estimate hydraulic conductivities in
heterogeneous geological environments. They concluded that using resistivity data
instead of tracer data alone was worth the most where flow was controlled largely
by highly connected flow paths (i.e., paths with mean hydrolic conductivity equal to
100 m/d). These methods provided a potential framework for estimating hydraulic
properties but none of them was used to characterize fracture networks represent-
ing common geothermal reservoirs, which is the focus of the work presented in this
paper.

The objective of this study was to find ways to characterize fracture connectivity
that could be used to increase the efficiency of fractured geothermal systems and
prevent thermal breakthrough. Electrodes were placed inside the wells to measure the
resistivity more accurately in the deeper part of the reservoir. The electric potential
difference, which corresponds to apparent resistivity, was measured and plotted as
a function of time while a conductive tracer was injected into the reservoir. That
response, that is potential difference versus time, as the conductive fluid flows through
the fracture network, was then used in an inverse modeling process to estimate the
connectivity of the reservoir.

Various approaches have been attempted to quantify fracture connectivity, for exam-
ple using percolation theory (Berkowitz 1995) or the connectivity index approach
(Xu et al. 2006). Field studies by Rouleau and Gale (1985) suggest that fracture con-
nectivity is dependent on fracture orientation, spacing and fracture length data but
connectivity has also been quantified by the size of a group of linked fractures, known
as a cluster (Stauffer 1985). The cluster size is measured by the length of the largest
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connected group of fractures as a proportion of the total fracture length in the net-
work (Odling 1997). Alternatively, the connectivity can be defined by the fractional
connected area (FCA) which is the fraction of the total area that is connected by clus-
ters, as described by Ghosh and Mitra (2009). In this project, the connectivity was
characterized by the FCA because it provides a good indicator of the overall fracture
density and does not relate the cluster size to only the connectivity within the largest
cluster.

Aside from estimating connected areas another key difference between this and
previously related efforts is the small number of electrodes that would be used. One
electrode was placed inside each well, so a total of four electrodes were used to estimate
the connectivity of a two-dimensional plane. A three-dimensional model could be
necessary to model the flow through natural three-dimensional fracture patterns but
due to computational complexity it was not considered in this study. If a fracture
connecting an injector and a producer is inclined with respect to a two-dimensional
plane, only a part of the fracture would be included in the two-dimensional plane.
However, the electric current would flow through the most conductive path and indicate
a connection between the injector and the producer. Thus, the electric measurements
would correspond to the true fracture pattern in the reservoir but the two-dimensional
plane under study might not be represented correctly.

The following section first describes how fractal fracture networks that represent
the fracture dominated flow in geothermal reservoirs were generated and how a flow
simulator was used to simulate the flow of a conductive tracer through the reservoirs.
The flow simulator was applied to solve the electric fields at each time step by uti-
lizing the analogy between Ohm’s law and Darcy’s law. Then, the results are given
for when the reservoir response was compared to a library of responses of fracture
networks in an inverse analysis to estimate the FCA, by finding the fracture net-
work that matches the reservoir response when time-lapse electric potential data are
compared. The relationship between the fracture network and the reservoir response
was investigated by comparing the FCA and by visually comparing the similarities
between the best match and the true fracture pattern. This approach was also com-
pared to only using tracer data at the producers. In addition, the effects of FCA on
both time-lapse electric potential and tracer return curves were studied in a sensitivity
analysis.

2 Methodology

A series of simulations were conducted on fractal fracture networks using the general
purpose research simulator (GPRS) developed at Stanford University (Cao 2002).
GPRS was first used to solve the flow of a conductive tracer and then applied to
solve the time-varying electric field. The objective was to investigate the influence
of connectivity on the electric potential between well pairs to study the possibility
of using changes in electric potential with conductive tracer injection to characterize
fracture connectivity. In this section, properties used in GPRS simulation are provided
and the generation of fractal fracture networks is described. The definition of FCA is
given and the inverse analysis process used in this study is explained.
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2.1 Simulation Using GPRS

The GPRS was used to simulate the flow of a conductive tracer through discrete fracture
networks (DFN). A DFN approach introduced by Karimi-Fard et al. (2003) was used to
create realistic fracture networks where unstructured control volume finite-difference
formulation was used with element connections assigned using a connectivity list.
Commonly, the physical properties of the fracture networks are upscaled to numerical
blocks but this study focused on DFN simulations to avoid volume averaging that
would not represent the fracture flow system accurately. Generally, DFN can capture a
wider range of transport phenomena. For example, the flow behavior in a matrix with
a small number of large-scale fractures which may dominate the flow is represented
better with a discrete fracture network (DFN) because the fracture permeability would
be underestimated when averaged over grid blocks.

The computational grid was formed using Triangle, a triangular mesh gener-
ator developed by Shewchuk (1996). The conductive tracer was chosen to be a
NaCl solution and the resistivity of the solution was calculated using a three-
dimensional regression formula established by Ucok et al. (1980). Then, the resis-
tivity of the water saturated rock, ρ, was calculated using Archie’s law (Archie
1942),

ρ = aφ−bρw (1)

where φ is the porosity of the rock and a and b are empirical constants. Archie
(1942) concluded that for typical sandstones of oil reservoirs the coefficient a
is approximately 1 and b is approximately 2 but Keller and Frischknecht (1996)
showed that this power law is valid with varying coefficients based on the rock
type. In this case, a was set as 0.62 and b as 1.95, which corresponds to
well-cemented sedimentary rocks with porosity 5–25 % (Keller and Frischknecht
1996).

For the fracture network examples used in this study, one injection and three pro-
duction wells were modeled. Water was injected at the rate of 10 kg/s and tracer was
22 wt% of the water injected. The fractures were modeled to be filled with water
before any tracer was injected into the reservoir so the initial tracer mass was set to
0.05 wt%. The production well was modeled to deliver against a bottom-hole pressure
of 106 Pa with a productivity index of 4 × 10−12 m3. The initial pressure was set to
106 Pa and the temperature to 25 ◦C. The porosity of the fractures was defined as 0.9
and the permeability was determined by

k = w2

12
(2)

where w is the aperture of the fractures. The matrix blocks were given a porosity
value of 0.1 and the permeability was set as 1 × 10−10 m2. After using GPRS to solve
for the tracer flow, the analogy between Darcy’s law and Ohm’s law (Muskat 1932)
was utilized and GPRS used to also solve the electric field as demonstrated earlier by
Magnusdottir and Horne (2012).
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2.2 Fractal Fracture Networks

Several field studies performed on fault systems at different length scales have demon-
strated that fracture populations can follow a power-law length distribution (Shaw and
Gartner 1986; Main et al. 1990). Therefore, the length distribution of the fractures can
be described by the fractal equations (Nakaya et al. 2003),

N (l) = Bl−c (3)

c = lim
l→0

log N (l)

log(1/ l)
(4)

B = (lmax)
c (5)

where c is the power-law exponent for the fracture length distribution, lmax is the
maximum fracture length, and N (l) is the cumulative fracture length distribution, that
is the number of fractures with lengths larger or equal to l. Thus, l is equal to lmax
when N (l) is equal to 1.

The relationship between the fractal dimension D within an L × L square domain
and N (r), the number of boxes of size r that include the center point of fractures, can
also be represented by a fractal equation using the box-counting approach (Barton and
Larsen 1985),

D = lim
r→0

log N (r)

log(1/r)
(6)

where r = L/k (k = 1,2,3,. . . ). The spatial fractal dimension can also be estimated
using different techniques such as the sand-box technique. In the sand-box method, the
number of fracture center points located inside a circle with a specific center is counted.
Then, the size of the circle is increased and the same procedure continued. Similar
to the box-counting method, the number of fracture center points is plotted against
the size of the circle on logarithmic axes and the slope of the straight line yields
the fractal dimension (Bunde and Havlin 1995). The sand-box technique measures
different fractal characteristics and might yield different values than the box-counting
method (Babadagli 2001). In addition, the spatial fractal dimension can be calculated
using the distribution of fractures, or fracture intersections, instead of the fracture
center points. Then, for the box-counting method, the number of fractures or the
number of fracture intersections inside different-sized boxes is counted. Similarly, for
the sand-box method, the number of fractures or fracture intersections inside different-
sized circles is counted.

A total of 600 DFN with fractal dimensions ranging from D = 1.0 to 1.8 with 0.1
increments were created using a method described by Nakaya et al. (2003). The mirror
images of the networks were used as well so a total of 1,200 different fracture networks
were included in the library of networks. The positions of the fracture centers were
selected according to the spatial fractal dimension D using the box-counting approach.
At the i th iteration (i = 1,2,3,. . . ), 2Di boxes (rounded to the nearest integer) out of
4i equally sized boxes were selected randomly. Thus, at the first iteration for D =
1.4, 21.4×1 = 3 boxes were selected. Then, the procedure was repeated for i = 2, but
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only the boxes selected during the previous iteration were available for selection in
the successive iterations. In this study, four iterations were conducted and then the
midpoints of all the boxes chosen during that last iteration were defined as fracture
centers. As a result, the fracture centers form a self-similar structure and a Sierpinski
gasket is obtained (Peitgen et al. 1990; Sierpinski 1915).

The dimension of the reservoirs was set as 1,000 × 1,000 m2 and the fracture
lengths were determined according to the power-law exponent c and the maximum
fracture length lmax using Eqs. (3)–(5). The power-law exponent was defined as 2.4
and the maximum fracture length was set as 600 m. The angles normal to the fractures
were chosen to have two different distributions, both equally as likely to be chosen.
The angles had a normal distribution with the mean either as 45◦ or as 135◦, and with
a standard deviation of 5◦. The fracture aperture was defined by,

w = Cle (7)

where w is the aperture and C is a constant. Olsen (2003) describes how this power-law
equation was used to fit various fracture datasets of different sizes, usually with e equal
to 0.4. Here, e was set as 0.4 and C as 0.002 m3/5. Thus, the variation in fracture aperture
is low, it varies by a factor close to 2 (depending on the spatial fractal dimension) and
consequently the permeability calculated in Eq. (2) varies by a factor close to 4.

2.3 Fractional Connected Area

Fractional connected area is defined by the summed area of all clusters within a fracture
network divided by the total sample area. The area of a cluster is delineated by the
simplest polygon around the extremities of a fracture cluster (Fig. 1). Ghosh and Mitra
(2009) concluded that FCA combined with a distribution of cluster sizes provides a
complete measure of the connectivity of fractures within the system. FCA is also
a good indicator of the overall fracture density and does not relate the cluster size
to only the connectivity within the largest cluster as seen in other methods (Odling
1997). In fractured reservoirs, the connected area has high influence on the heat and
mass transport in the system. Larger connected areas result in good connection and
wider connected range with fluid traveling faster toward the producers, while fewer
or smaller connected areas result in a poorer connection.

2.4 Inverse Analysis

An inverse analysis was used with the time history of the electric potential to esti-
mate the connectivity of the fracture network. In inverse modeling the results of actual
observations are used to infer the values of the parameters characterizing the system
under investigation. In this study, the output parameters were the potential differences
between wells as a function of time and the input parameter was the FCA of the reser-
voir. The objective function measures the difference between the model calculation
(the calculated voltage difference between the wells) and the corresponding observed
data measured at the reservoir, as illustrated in Fig. 2. An optimization algorithm
was used to find the network with the most similar characteristics by proposing new
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Fig. 1 Fractured reservoir with fractures shown in black and connected area in red

parameter sets that improve the match iteratively. In this case, a synthetic reservoir
was compared to a library of 1,200 fracture networks to find the best match. A grid
search algorithm was used due to the relatively small number of fracture networks so
the reservoir response was compared to that of all the fracture networks in the library
of networks. The best match was found using least squares, where the sum of the
squared deviations between the electric curves for the true reservoir and the electric
curves for the fracture networks is minimized. For every well pair in the reservoir, the
following least squares criterion was calculated,

Q j =
n∑

i=1

[yi − fi ]2 (8)

where yi is the electric potential difference between well pair j in the reservoir at time
i and fi is the corresponding electric potential for a fracture network in the library
of networks. Then, the sum of Q j for all well pairs was minimized to find the best
match that has the lowest sum of Q j . The relationship between the best match and the
true fracture pattern was investigated by visually comparing the networks as well as
by comparing the FCAs.

3 Results

3.1 Inversion of Time-Lapse Electric Potential Data

Conductive tracer simulations were performed and electric fields calculated for all
the fractal fracture networks in the library of networks. For each of the networks, an
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Fig. 3 a True reservoir, b electric potential difference between wells, c the best match for the true reservoir,
and d electric potential difference for the best match

inverse analysis was performed to find the best match when comparing time-lapse
electric potential data between all well pairs. As an example, GPRS was used to
calculate the electric potential distribution for the reservoir in Fig. 3a. An electric
current was set equal to 1 A at the injector and as −1 A at Producer 1 and the potential
field was calculated based on the resistivity of the field at each time step. Then, the
same procedure was repeated for all the other well pairs, with results shown in Fig. 3b.
The electric potential curves calculated between the injector and Producer 1, injector
and Producer 2, and injector and Producer 3, drop once the tracer is injected into
the reservoir due to the low resistivity of the fluid injected. The fluid reaches the
area between the other well pairs later so the corresponding electric potential curves
decrease slower at the start. Then, the curve between the injector and Producer 1 drops
relatively quickly and correctly indicates a good connection toward Producer 1.

Another interesting observation is that the curve between Producer 2 and Producer
3 drops relatively slowly despite a good connected area between these wells. That
can be explained by looking at the tracer distribution,as shown in Fig. 4. Substantial
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Fig. 5 a Tracer return curves for the true reservoir and b tracer return curves for the best match

amount of tracer flows toward Producer 1 because of the good connected area between
the injector and Producer 1, and the tracer travels slower toward Producer 2 because
there are no fractures in that area. After 25 days (Fig. 4a), the tracer has reached areas
between all well pairs, but very little tracer has reached the area between Producer 2 and
Producer 3, resulting in a slower drop in electric potential difference between these
wells. After 47 days, the electric curves show similar electric potential differences
between Producer 1 and Producer 3, and between Producer 2 and Producer 3. At that
point, considerable amount of tracer has reached the fractures leading toward the area
between Producer 2 and 3 (Fig. 4b). The simple tracer return curves at the producers
were examined as well, shown in Fig. 5a. The tracer return curves also indicate a
good connection toward Producer 1, with tracer in Producer 1 increasing after about
4 days. In addition, a poor connection is indicated toward Producer 2 with no tracer
in Producer 2 until after about 16 days. The tracer reaches Producer 3 sooner, or after
12 days, because of the fractures located from the middle of the reservoir toward the
lower right corner in Fig. 3a.
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Next, the inverse analysis compared the time histories of the electric potential
difference between well pairs for the true reservoir (Fig. 3a) to 1,200 other fracture
networks. The fractal dimensions of the networks were ranging from D = 1.0 to 1.8
but other variables such as the size of the network, two principal fracture orientations,
and relationship used for aperture were the same as for the true reservoir. A grid search
algorithm was used to find the best match by minimizing the least squares criterion
explained in Sect. 2.4. The chosen network (Fig. 3c) has curves for the electric potential
(Fig. 3d) showing very similar behavior to the curves for the true reservoir (Fig. 3b).
However, the tracer return curves for the best match show somewhat different behavior
than for the true reservoir (Fig. 5).

The FCA of the network in Fig. 3c was compared to the FCA of the true reservoir.
The results were FCA = 26.5 % for the reservoir, and FCA = 27.0 % for the best
match. Thus, FCA matches very well for these two networks, indicating that FCA can
be predicted in this example using this electric potential method.

The location of the connected areas is another similarity that can be seen between
the best match and the true reservoir. In both cases, the connected fractures are located
similarly in the upper left corners of Fig. 3a, c and the connected area reaching from
the middle of the reservoir toward the area between Producer 2 and Producer 3 was
also predicted correctly. However, the fracture network in Fig. 3c also has a connected
area in the lower right corner of the figure, which is different from the true reservoir.
The tracer travels from the injector toward the producer and might never reach the
corners of the reservoir, so the electric potential gives very limited information about
these areas.

Overall, the connected areas in Fig. 3a, c are similar, and the drops in electric
potential between the well pairs correspond to the locations of the connected areas.
These results indicate a good possibility of using electric potential calculations while
injecting a conductive tracer into reservoirs to predict FCAs well as the locations of the
connected area. In addition, the fractal dimensions of the two networks were similar,
D = 1.2 for the real reservoir and D = 1.1 for the best match. Thus, it would be of
interest to also investigate the possibility of using this method to predict the fractal
dimension of fractal fracture networks.

3.2 Inversion of Tracer Return Data at Producers

Inverse analysis was performed again for the reservoir in Fig. 3a, but this time the
objective function measured the difference between the model calculation of just the
simple tracer return curves and the corresponding tracer return curves for the true
reservoir. The objective was to compare the performance results of using the electrical
approach to predict connected areas instead of only using tracer return curves. The
best match when comparing the tracer return curves using a grid search algorithm
is shown in Fig. 6. The time histories of the electric potential difference between he
wells do not match as well as before when they were used to find the best match.
However, in this case the tracer return curves (Fig. 7) match better than before. The
fractal dimension is the same as for the reservoir, D = 1.1, but the estimated FCA for
the network is 22.6 %, thus relatively smaller than for the true reservoir where FCA is
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Fig. 7 Tracer return curves for
the best match when using tracer
return curves to find the best
match
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equal to 26.5 %. The fracture network (Fig. 6a) does have a connected area between
the injector and Producer 1, but instead of having a connected area from the middle
of the figure toward the lower right corner, this network has a connected area from the
middle toward the lower left corner. Thus, tracer return curves indicate a connection
in the middle toward Producer 3 but fail to determine the overall location of the largest
connected area in the reservoir.

The same observation was also valid for another case studied previously
(Magnusdottir and Horne 2013) and other examples shown in Fig. 8. The connected
area for the reservoir in Fig. 8a is predicted well using electric potential curves (Fig. 8b)
but the best match when using tracer return curves has more connected area to the left
(Fig. 8c) instead of to the right (Fig. 8a). In addition, for the reservoir in Fig. 8d,
the fracture network predicted using electric potential curves (Fig. 8e) is very similar
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to the reservoir but the tracer return results fail to predict the location of some of
the connected areas correctly (Fig. 8f). These examples illustrate that the location of
connected areas is predicted better using the electric potential measurements instead
of using only the tracer return curves. The advantages of using the electric measure-
ments include having more extensive data and being able to see the changes as the
conductive fluid flows through the network even before it has reached the production
wells.

4 Sensitivity Analysis

A sensitivity analysis was performed for all the well pairs in the reservoir to study the
effect of FCA on the electric potential curves. Figure 9 shows the electric potential
curves and the FCA represented by color for all well pairs. The electric potential
difference between the injector and the other wells (Fig. 9a–c) drops quickly in the
beginning because conductive tracer flows through the area between these wells as
soon as it is injected at the injector. A correlation between the FCA and the electric
potential differences between the injector and Producer 1 (Fig. 9a) is not clear and the
same applies for the injector and Producer 2 (Fig. 9b). The electric potential depends
on the local flow behavior between these wells and, therefore, depends on whether
fractures happen to be located between these wells or not. Moreover, the following
scenarios could occur causing the electric potential curves to not represent the FCA
correctly:

(i) Fractures in the reservoir increase the size of a connected area but the fractures
are oriented perpendicular to the flow direction so they do not increase the flow
rate of the tracer toward the producers.

(ii) Fractures are oriented in the flow direction but do not intersect other fractures.
Thus, the fractures contribute to the flow but do not increase the FCA.

However, a clear trend can be seen in the data for the well pair consisting of the
injector and Producer 3, shown in Fig. 9c. The electric curves for high FCA (in red)
are more likely to drop faster than electric curves for low FCA (in blue). High FCA
corresponds to better connected reservoir with tracer likely to travel faster toward
the producers, causing the electric potential to drop. This well pair covers almost the
entire reservoir and, therefore, represents the regional connectivity of the reservoir
better than the previous well pairs that represent more of a local flow behavior. Similar
trends can be seen between the other wells in the reservoir (Fig. 9d–f), that is between
Producers 1 and 3, Producers 2 and 3, and Producers 1 and 2. The time it takes for
the tracer to reach the areas between these wells depends on the connectivity from
the injector toward these areas. Thus, the electric differences depend not only on the
fractures between the well pairs but also on the fractures forming paths from the
injector toward these areas. In the inversion of the electric curves, all well pairs are
used and the overall trend in the sensitivity analysis has shown a good correlation
between the electric curves and FCA. A sensitivity analysis was also performed for
the tracer return curves at the producers, as shown in Fig. 10 with color representing
FCA. The tracer return curves were plotted for all the fracture networks in the library

123



100 Math Geosci (2015) 47:85–104

Fig. 9 FCA (color) with electric curves between a injector and Producer 1, b injector and Producer 2,
c injector and Producer 3, d Producer 1 and Producer 3, e Producer 2 and Producer 3, and f Producer 1 and
Producer 2

of networks to study the effect of FCA on the tracer return curves in comparison to the
effects on the electric curves previously illustrated in Fig. 9. There is no clear trend for
the tracer return curves at Producer 1 and Producer 2. There are curves with high FCA
(in red) and with low FCA (blue) showing similar behavior because some fractures
can be located between the injector and these producers despite the FCA being low.
The tracer return curves at Producer 3 are more affected by the fractures in the whole
reservoir and a slight trend with red curves (high FCA) increasing faster than blue
curves (low FCA) can be noted.
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Fig. 10 FCA (color) with tracer return curves at a Producer 1, b Producer 2, and c Producer 3

5 Conclusion

The FCA of a hypothetical, fractured geothermal reservoir was estimated using elec-
trical resistivity measurements with conductive fluid injection. Inverse analysis was
used to match the time histories of the electric potential between the wells to the time
histories of a library of fracture networks to find the best match. The reservoir and
the best match had similar FCA and the connected areas had similar locations. For
comparison, the inverse analysis was also performed matching the tracer return curves
at the producers. The best match when using only the tracer return curves had a dif-
ferent FCA and the locations of the connected areas were somewhat different from
the true reservoir. The same observation was made in other examples not included
here.

A sensitivity analysis was performed to study the effects of FCA on the electric
curves in comparison to the tracer return curves. The study demonstrated the feasibility
of using time-lapse electric potential data with conductive fluid injection to estimate
the connected area of the reservoir and its advantages over using only the tracer return
curves.
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