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Abstract Bayesian modeling requires the specification of prior and likelihood mod-
els. In reservoir characterization, it is common practice to estimate the prior from a
training image. This paper considers a multi-grid approach for the construction of
prior models for binary variables. On each grid level we adopt a Markov random
field (MRF) conditioned on values in previous levels. Parameter estimation in MRFs
is complicated by a computationally intractable normalizing constant. To cope with
this problem, we generate a partially ordered Markov model (POMM) approximation
to the MRF and use this in the model fitting procedure. Approximate unconditional
simulation from the fitted model can easily be done by again adopting the POMM ap-
proximation to the fitted MRF. Approximate conditional simulation, for a given and
easy to compute likelihood function, can also be performed either by the Metropolis–
Hastings algorithm based on an approximation to the fitted MRF or by constructing
a new POMM approximation to this approximate conditional distribution. The pro-
posed methods are illustrated using three frequently used binary training images.

Keywords Markov random field · Forward–backward algorithm · Multi-grid ·
Facies modeling · Maximum likelihood

1 Introduction

Following the seminal paper of Geman and Geman (1984), Markov random fields
(MRFs) are presently used frequently as prior distributions in image analysis (Hurn
et al. 2003; Li 2009; Winkler 2003). MRF is typically used only as a token prior.
In the binary case, for example, the autologistic model (Besag 1974) is frequently
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adopted as a prior despite that this model is not reflecting the large scale properties
of the phenomenon under study. Such simple MRF priors are favored for several rea-
sons. First, efficient Markov chain Monte Carlo simulation from the corresponding
posterior distribution is usually possible and easy to implement. Second, the informa-
tion content in the data is typically sufficient to remove from the posterior unrealistic
large scale properties present in the prior. Thereby, it is only the small scale proper-
ties of the prior that significantly influence the posterior. The last, but perhaps most
important, reason for residing with a token prior is that it is computationally difficult
to construct a more realistic prior distribution. This is because discrete MRFs have
a computationally intractable normalizing constant, which makes, for example, max-
imum likelihood estimation problematic. However, the literature includes examples
(Descombes et al. 1995; Tjelmeland and Besag 1998) where the maximum likelihood
estimator is found by adopting the Markov chain Monte Carlo maximum likelihood
procedure (Geyer and Thompson 1995).

Spatial models for discrete variables are also important when modeling the
spatial distribution of rock types in petroleum reservoirs (Eidsvik et al. 2004;
Gonzalez et al. 2008; Strebelle 2002; Ulvmoen and Omre 2010). Discrete MRFs
have so far attained less popularity in this type of application, mainly because the
information content in the available data is often not sufficient to remove from the
posterior unrealistic properties of a token prior. Available data are typically well and
seismic data. Well data are exact observations of rock types in a few nodes. Seis-
mic data is heavily blurred and has a much lower signal to noise ratio than in most
image analysis applications. When using a Bayesian model formulation it therefore
becomes essential to adopt a prior that honestly represents the available prior knowl-
edge about the phenomenon under study, including the large scale properties. To
compensate for the lack of realistic MRF priors for the reservoir characterization ap-
plication, less formal prior formulations have won popularity. These are often termed
multi-point statistics (Chatterjee et al. 2012; Journel and Zhang 2006; Strebelle 2002;
Zhang et al. 2012). The prior model is defined from a training image, which is be-
lieved to be representative for the spatial phenomenon under study. This can either be
a hand drawn image by a geologist, a realization from some other stochastic model,
or based on outcrop data from an area believed to have a similar geological origin as
the area of interest. Letting t = (t (1), . . . , t (n)) denote a permutation of the integers
from 1 to n, the multi-point statistics model for the joint distribution of n variables
x1, . . . , xn is defined as a mixture distribution

p(x) =
∑

t

pt (x), (1)

where x = (x1, . . . , xn) is the vector of the n variables, the mixture component
for a permutation t is pt(x) = p(xt(1))p(xt(2)|xt(1)) · · · · · p(xt(n)|xt(1), . . . , xt (n−1)),
and the sum is over all possible permutations t . Each of the factors p(xt(i)|xt(1),

. . . , xt (i−1)) is estimated from the training image. Clearly, the number of probabili-
ties p(xt(i)|xt(1), . . . , xt (i−1)) that need to be estimated is formidable, so to make the
task somewhat more manageable many of them are set equal by adopting Markov
assumptions. However, the resulting number of parameters that needs to be estimated
from the training image is still very large. We note in passing that each of the mix-
ture components in the multi-point statistics models is an instance of a partially or-
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dered Markov model (Cressie and Davidson 1998). Many of the various multiple-
point statistics models that have been proposed are quite successful in reproducing
the characteristics of a wide variety of training images. As such, they are reasonable
prior models. However, when conditioning on available data it is neither possible
to handle the posterior distribution analytically, nor to simulate from it. To see the
problem, let z denote a vector of available data and let ψ(z|x) denote the correspond-
ing likelihood function. From the Bayes theorem, we get the conditional distribution
corresponding to Eq. (1)

p(x|z) = p(x)ψ(z|x)∑
x̃ p(̃x)ψ(z|̃x)

=
∑

t

[
ψ(z|x)∑

x̃ p(̃x)ψ(z|̃x)
pt (x)

]
. (2)

Accordingly, the conditional distribution corresponding to one mixture component
pt (x) is

pt (x|z) = pt(x)ψ(z|x)∑
x̃ pt (̃x)ψ(z|̃x)

. (3)

Solving the last expression with respect to pt(x) and inserting the result into Eq. (2),
we get

p(x|z) =
∑

t

wt (z)pt (x|z), where wt(z) =
∑

x̃ pt (̃x)ψ(z|̃x)∑
x̃ p(̃x)ψ(z|̃x)

. (4)

Thus, p(x|z) is mixture of pt (x|z) over all permutations t , with a weight wt(z) asso-
ciated with pt (x|z). The problem is that the weights are computationally intractable,
which in turn makes it computationally infeasible to sample from p(x|z). The stan-
dard multi-point statistics solution to this problem is to modify the posterior expres-
sion to get a distribution from which it is easier to sample. The details of this depends
on the type of data available. For example, if only exact values in a few nodes are
observed, the most popular strategy is to restrict oneself to permutations that start
with the observed nodes. This is equivalent to using Eq. (4) with equal weights wt(z)

for all permutations t which have the observed nodes first, and to put wt(z) equal
to zero for all other permutations. This simulation strategy is in fact often quite suc-
cessful, at least as far as it is possible to evaluate from visual inspection of generated
realizations. When more complicated likelihoods are of interest, it becomes more
difficult to prescribe how to modify the posterior distribution, and in these cases one
often sees clear visual artifacts when inspecting the generated multi-point statistics
realizations.

An alternative to the multi-point statistics model is to use a partially ordered
Markov model, or POMM (Cressie and Davidson 1998). A POMM is simply the
pt (x) used in Eq. (1), but for a fixed permutation t . In contrast to what is used for
multi-point statistics models, POMM typically adopts parametric formulas for the
factors p(xt(1)), p(xt(2)|xt(1)), . . . , p(xt(n)|xt(1), . . . , xt (n−1)). The main advantage
of the POMM formulation relative to multi-point statistics models is that explicit
formulas for the prior distribution are available for the POMM. Parameter estima-
tion can thereby easily be done by adopting, for example, the maximum likelihood
strategy. Moreover, conditional simulation for POMM is possible via a Markov chain
Monte Carlo algorithm. The main problem with the POMM formulation is the fixed
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permutation order, which typically generates artifacts in realizations from the model
unless the parametric model is carefully chosen. Stien and Kolbjørnsen (2011) de-
fine a parametric POMM where this does not seem to be a problem. In the present
paper, the objective is to define a prior distribution that is both able to represent the
properties of typical training images in use, and for which posterior simulation via
Markov chain Monte Carlo is possible. For simplicity, the attention here is limited
to binary fields, but this strategy can be generalized to a situation with more than
two possible values. A POMM is adopted as prior distribution, but with the POMM
specified indirectly as an approximation to an MRF. Thereby, we avoid the artifacts
that often occur when the POMM is explicitly specified as in the multi-point statis-
tics mixture components. To approximate an MRF with a POMM, the strategy of
Tjelmeland and Austad (2012) is adopted. For this approximation procedure to be
reasonably accurate, the neighborhood size of the MRF must be reasonably small. To
be able to represent both the large and small scale properties of the training image
using MRFs with a small neighborhood size, it was necessary to adopt a multi-grid
approach. The resulting model is thereby a product of POMMs, which is again itself
a POMM.

The paper is organized as follows. In Sects. 2 and 3, the definition and some ba-
sic properties of POMMs and MRFs, are reviewed. In Sect. 4, how to find a POMM
approximation to a given MRF is discussed. Thereafter, how such a POMM approx-
imation can be used in an optimization algorithm to find the maximum likelihood
estimator of the MRF for a given training image is described. In Sect. 5, the multi-
grid MRF is defined and the POMM approximation is adapted to this situation. In
this section, how to define a POMM approximation to a conditional multi-grid model
is also discussed. Finally, Sect. 6 presents simulation examples and evaluations of the
proposed procedures, and Sect. 7 provides concluding remarks.

2 Binary Partially Ordered Markov Models (POMM)

A complete introduction to POMMs can be found in Cressie and Davidson (1998).
In the following only the basic concepts necessary to understand the POMM approx-
imation to binary MRFs are introduced. Here, it is assumed that we have an n × m

rectangular lattice and let S = {(i, j), i = 1, . . . , n, j = 1, . . . ,m} be the set of lattice
nodes. To each node (i, j) ∈ S, we associate a so-called adjacent lower neighbor-
hood Nij ⊆ S \ {(i, j)}. These adjacent lower neighborhoods are required so that
there exists a complete ordering of the lattice nodes from 1 to mn so that all nodes
included in Nij are ordered before node (i, j). Note that this requirement implies
that at least one node (i, j) ∈ S has Nij = ∅. It should be noted that the total or-
dering does not need to be unique and is not a part of the POMM specification. To
each node (i, j) ∈ S of the lattice, we associate a binary variable xij ∈ {0,1} and let
x = (xij , (i, j) ∈ S) ∈ Ω = {0,1}mn. In the rest of this paper, the standard notations
xA = (xij , (i, j) ∈ A) for A ⊆ S, x−A = xS\A and x−(i,j) = x−{(i,j)} are also used.
Letting θ denote a vector of model parameters, the joint distribution of the POMM is

pθ(x) =
∏

(i,j)∈S

pθ (x(i,j)|xNij
). (5)
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To evaluate the likelihood pθ(x) for a given image x is straight forward from Eq. (5).
In particular, the normalizing constants of the conditional distributions are readily
available as these are distributions for binary variables. To sample from pθ(x) is also
easily done by simulating each xij in turn following a complete ordering as discussed
above.

3 Binary Markov Random Fields

General introductions to MRFs can be found in Besag (1974), Kindermann and Snell
(1980) and Cressie (1993). Here, an introduction is given to binary MRFs defined on
a rectangular lattice. As in the previous section, we assume that we have an n × m

rectangular lattice and denote the set of lattice nodes by S = {(i, j), i = 1, . . . , n, j =
1, . . . ,m}. To each node (i, j) ∈ S a set of neighbor nodes ∂(i, j) ⊆ S\{(i, j)} is asso-
ciated, where the neighborhood is required to be symmetric in that (i, j) ∈ ∂(r, s) ⇔
(r, s) ∈ ∂(i, j) for any distinct pairs (i, j), (r, s) ∈ S. Following common practice
(i, j) and (r, s) are declared neighbors whenever (r, s) ∈ ∂(i, j). A set C ⊆ S is said
to be clique if (r, s) ∈ ∂(i, j) for all distinct pairs (i, j), (r, s) ∈ C. We let C denote
the set of all cliques. As in the above a binary variable xij ∈ {0,1} is associated to
each (i, j) ∈ S and we let x = (xij , (i, j) ∈ S) ∈ Ω = {0,1}mn. Again letting θ denote
a vector of model parameters, x is then said to be a binary MRF with respect to the
given neighborhood system if the joint distribution pθ(x) > 0 for all x ∈ Ω , and the
full conditionals fulfill the Markov assumption

pθ(xij |x−(i,j)) = pθ(xij |x∂(i,j)), (6)

for all x ∈ Ω . The positivity condition pθ(x) > 0 ensures that there exists an energy
function Uθ(x) so that the joint distribution pθ(x) can be expressed as

pθ(x) = c(θ) exp
{−Uθ(x)

}
, (7)

where c(θ) is a normalizing constant. As indicated in the notation, the normalizing
constant c(θ) will be a function of θ . The Hammersley–Clifford theorem (Besag
1974; Clifford 1990) states that given the Markov property in Eq. (6) the most general
form the energy function can take is

Uθ(x) =
∑

C∈C
VC(xC, θ), (8)

where the potential function VC(xC, θ) ∈ (−∞,∞) is an arbitrary function of xC

and θ .
Simulation from a given MRF pθ(x), both unconditionally and conditioned on

observed data, is relatively straight forward by the Metropolis–Hastings algorithm,
see for example the references given above. Estimation of the parameter vector θ

from one or more training images is computationally a lot more problematic. The
main reason for this is the computationally intractable normalizing constant c(θ).
Clearly,

c(θ) =
[∑

x∈Ω

exp
{−Uθ(x)

}]−1

, (9)
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but the number of terms in this sum is typically much too large to be used to compute
c(θ). Thereby, for example, numerical maximization of the likelihood function to
find the maximum likelihood estimator (MLE) for θ is not directly possible. It is,
however, possible to find an approximate MLE from a set of Markov chain Monte
Carlo samples (Geyer and Thompson 1995).

4 Forward–Backward Algorithm and the POMM Approximation

In this section, an exact forward–backward algorithm (Künsch 2001; Pettitt et al.
2003; Scott 2002) for a binary MRF pθ(x) is described. As this exact procedure
is practical only for MRFs defined on small lattices and with small neighborhoods,
the corresponding approximate algorithm of Tjelmeland and Austad (2012), which
produces a POMM approximation p̃θ (x) to the MRF is reviewed. Finally, how real-
izations from p̃θ (x) can be used in an optimization algorithm to find the maximum
likelihood estimate of θ for a given image x is discussed.

4.1 The Exact Forward–Backward Algorithm

Bartolucci and Besag (2002), Friel and Rue (2007) and Friel et al. (2009) de-
fine forward–backward algorithms that can be run for binary MRFs whenever both
the neighborhoods and one of the lattice dimensions are sufficiently small. These
forward–backward algorithms are based on an ordering of the lattice nodes from 1
to mn. Let ρ(i, j) denote the number assigned to node (i, j) and let ρ−1(·) be the
corresponding inverse mapping so that k = ρ(i, j) ⇔ (i, j) = ρ−1(k). For example,
one may use the lexicographical ordering where ρ(i, j) = (i − 1)n + j . The forward
part of the forward–backward algorithm sequentially computes

pθ(x{ρ−1(l), l=k,...,mn}) for k = 2, . . . ,mn, (10)

by summing out xρ−1(k), k = 1, . . . ,mn−1 in turn. It should be noted that the Markov
property of the original pθ(x) induces a Markov property also in Eq. (10). In partic-
ular xρ−1(k) is connected only to xAk

for a subset Ak ⊆ {ρ−1(l), l = k + 1, . . . ,mn},
so that Eq. (10) can be decomposed into a product

pθ(x{ρ−1(l), l=k,...,mn}) = gθ (xρ−1(k), xAk
)hθ (x{ρ−1(l), l=k+1,...,mn}). (11)

When summing out xρ−1(k) from Eq. (10) the hθ (·) factor can be put outside the
summation sign. Thereby, the computational complexity of this step of the algorithm
becomes 2|Ak |+1, where |Ak| is the number of elements in the set Ak . From Eq. (10),
the conditional distribution

pθ(xρ−1(k)|x{ρ−1(l), l=k+1,...,mn}) = pθ(x{ρ−1(l), l=k,...,mn})
pθ (x{ρ−1(l), l=k+1,...,mn})

∝ gθ (xρ−1(k), xAk
)

(12)

for k = 1, . . . ,mn − 1 is readily available. Thus, we have the decomposition

pθ(x) = pθ(xρ−1(mn))

mn−1∏

k=1

pθ(xρ−1(k)|x{ρ−1(l), l=k+1,...,mn}). (13)
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It should be noted that Eq. (13) is now expressed as a POMM where the lower ad-
jacent neighborhood to node (i, j) is Aρ(i,j). In particular, computation of the like-
lihood pθ(x) for a given image x is straight forward and simulation from pθ(x) is
easily done by sampling xρ−1(mn), xρ−1(mn−1), . . . , xρ−1(1) in turn.

4.2 The Approximation

As mentioned above, the exact forward–backward algorithm is practical only for
MRFs with small neighborhoods on small lattices, as otherwise most of the sets
A1, . . . ,Amn−1 become so large that the algorithm is infeasible. Tjelmeland and Aus-
tad (2012) define an approximate forward–backward algorithm that is possible to run
also for larger neighborhoods and lattice sizes. The approximate algorithm follows
the same structure as the exact one. First one defines p̃θ (x) = pθ(x) and sequen-
tially for l = 2, . . . ,mn computes approximations p̃θ (x{ρ−1(l), l=k,...,mn}) to Eq. (10).
To compute p̃θ (x{ρ−1(l), l=k+1,...,mn}) from p̃θ (x{ρ−1(l), l=k,...,mn}), one uses the same
type of decomposition as in Eq. (11). Assuming xρ−1(k) in p̃θ (x{ρ−1(l), l=k,...,mn}) is
connected only to xÃk

for Ãk ⊆ Ak , an exact marginalization is performed whenever
|Ãk| ≤ κ , where κ is an input parameter to the algorithm. Thus, when |Ãk| ≤ κ , we
have

p̃θ (x{ρ−1(l), l=k+1,...,mn}) =
1∑

x
ρ−1(k)

=0

p̃θ (x{ρ−1(l), l=k,...,mn}). (14)

If |Ãk| > κ , an approximation is introduced to reduce the computational complex-
ity of the marginalization operation. First, a sum of squares approximation for
ln p̂θ (x{ρ−1(l), l=k,...,mn}) to ln p̃θ (x{ρ−1(l), l=k,...,mn}) is defined where xk in p̂θ (·) is
restricted to be connected only to a set Âk of κ other variables. The details of this
approximation procedure are described in Tjelmeland and Austad (2012). Thereby,
we get a decomposition of p̂θ (xρ−1(l), l=k,...,mn) corresponding to Eq. (11)

p̂θ (xρ−1(l), l=k,...,mn) = ĝθ (xρ−1(k), xÂk
)̂hθ (xρ−1(l), l=k+1,...,mn). (15)

Thereafter, p̃θ (x{ρ−1(l), l=k+1,...,mn}) is defined as in Eq. (14), but with
p̃θ (xρ−1(l), l=k,...,mn) substituted by the new approximation p̂θ (xρ−1(l), l=k,...,mn).
From the approximate distributions p̃(xρ−1(l), l=k,...,mn) an approximate joint dis-
tribution p̃θ (x) is defined by following the same structure as in Eqs. (12) and (13).
Thus,

p̃θ (x) = p̃θ (xρ−1(mn))

mn−1∏

k=1

p̃θ (xρ−1(k)|x{ρ−1(l), l=k+1,...,mn}), (16)

where

p̃θ (xρ−1(k)|x{ρ−1(l), l=k+1,...,mn})

= p̃θ (x{ρ−1(l), l=k,...,mn})
p̃θ (x{ρ−1(l), l=k+1,...,mn})

∝ p̃θ (x{ρ−1(l), l=k,...,mn}) (17)



390 Math Geosci (2013) 45:383–409

for k = 1, . . . ,mn − 1. As for the exact decomposition in Eq. (13), p̃θ (x) is here
expressed as a POMM, where the lower adjacent neighborhood for node (i, j) is
Ãρ−1(i,j). Both sampling from Eq. (16) and computation of the likelihood for a given
image x is thereby straight forward. For an observed image x, it may also be tempt-
ing to try to find an approximation to the maximum likelihood estimator by opti-
mizing numerically p̃θ (x) with respect to θ . However, this may become problematic
as the approximation p̃θ (x) is not continuous or differentiable as a function of θ .
Thereby, such a numerical optimization procedure may quickly become stuck in a
local maximum induced by the approximation. Below the maximization of pθ(x),
and in particular how the POMM approximation can be used to bypass the problem
with the computationally intractable normalizing constant c(θ) in pθ(x), is consid-
ered.

4.3 Maximum Likelihood Estimation by Importance Sampling

To cope with the computationally intractable normalizing constant c(θ) in pθ(x), im-
portance sampling is used. The general strategy is outlined in Geyer and Thompson
(1995) and a more detailed algorithm is given in Tjelmeland (1996), both in a situ-
ation where Markov chain Monte Carlo is used to generate dependent samples from
the distribution in question. As independent samples from the POMM approximation
p̃θ (x) can be generated, the situation considered here is somewhat simpler than in
the two references just cited. To simplify notation, let ϕθ (x) = exp{−Uθ(x)} so that
pθ(x) = c(θ)ϕθ (x). Using that c(θ) is given by Eq. (9), we get for a fixed parameter
vector θ0

p̃θ0(x)

pθ (x)
= p̃θ0(x)

ϕθ (x)

∑

z∈Ω

ϕθ (z) = p̃θ0(x)

ϕθ (x)

∑

z∈Ω

[
ϕθ (z)

p̃θ0(z)
p̃θ0(z)

]

= p̃θ0(x)

ϕθ (x)
E

[
ϕθ (z)

p̃θ0(z)

]
, (18)

where the expectation is given with respect to z ∼ p̃θ0(·). Thereby, for any value of
the parameter vector θ , an unbiased estimate of p̃θ0(x)/pθ (x) is

̂p̃θ0(x)

pθ (x)
= p̃θ0(x)

ϕθ (x)
· 1

R

R∑

r=1

ϕθ (z
r )

p̃θ0(zr )
, (19)

where z1, . . . , zR are independent realizations from p̃θ0(·). One should note that the
reason for considering p̃θ0(x)/pθ (x) and not the inverse quantity, is that no unbiased
estimate of the inverse quantity is available. Having Eq. (19) available, it is tempting
to find an approximate maximum likelihood estimate for θ by numerically minimiz-
ing Eq. (19) with respect to θ . However, this is not a recommendable procedure be-
cause for parameter vectors θ far away from the fixed θ0, the Monte Carlo variance
of Eq. (19) may become very large. The numerical optimization of Eq. (19) should
therefore be stopped whenever the (estimated) variance of the decrease obtained by
doing the next step of the optimization algorithm becomes too large compared to the
estimated decrease itself. The θ0 should then be redefined to take the value of θ at
this point in the optimization procedure and a new POMM approximation should be
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constructed with new realizations z1, . . . , zR generated to obtain a new estimate of
Eq. (19) with lower variance close to the current value of θ . An unbiased estimate of
the decrease of the function p̃θ0(x)/pθ (x) when going from θ to θ ′ is

̂p̃θ0(x)

pθ (x)
− ̂p̃θ0(x)

pθ ′(x)
= 1

R

R∑

r=1

[
p̃θ0(x)

p̃θ0(zr )

ϕθ (z
r )

ϕθ (x)
− p̃θ0(x)

p̃θ0(zr )

ϕθ ′(zr )

ϕθ ′(x)

]
, (20)

and the corresponding empirical variance of each term in this sum is

σ̂ 2(θ, θ ′) = 1

R − 1

R∑

r=1

[
p̃θ0(x)

p̃θ0(zr )

ϕθ (z
r )

ϕθ (x)
− p̃θ0(x)

p̃θ0(zr )

ϕθ ′(zr )

ϕθ ′(x)

−
(

̂p̃θ0(x)

pθ (x)
− ̂p̃θ0(x)

pθ ′(x)

)]2

. (21)

Assuming the estimate in Eq. (20) to be negative, the optimization procedure should
then be stopped whenever the absolute value of the estimated decrease is larger than
some given multiple, γ say, of

√
σ̂ 2(θ, θ ′)/R. Our experience is that it is beneficial

to start out with a large value for γ and then gradually decrease this value as one
approaches the maximum likelihood estimate. To save computation time, it is also
natural to start with a small number of realizations R and later increase this num-
ber. Suggestions for a detailed procedure for how to change γ and R can be found
in Tjelmeland (1996). One should note that a requirement for the above optimiza-
tion algorithm to be successful in finding the maximum likelihood estimate is that
the POMM approximation is accurate enough to give a sufficiently small variance
σ̂ 2(θ, θ ′) at least when θ and θ ′ is close to θ0, as otherwise the optimization pro-
cedure will become stuck. In practice, the above optimization algorithm can thereby
only be used for MRFs with reasonably small neighborhoods and, as also discussed in
Sect. 1, an MRF with a small neighborhood is typically not able to represent both the
small and large scale properties of frequently used training images. To cope with this
complication, we next introduce a multi-grid version of MRFs and adapt the POMM
approximation to such a situation. Whenever a numerical optimization algorithm is
run, there is a risk of getting trapped in a local optimum. To test for this in the sim-
ulation examples in Sect. 6, for each optimization problem multiple optimizations
with different starting values are run. These optimizations for all cases resulted in the
same optimum, thus confirming that this potential complication turned out not to be
relevant for these examples. However, there is clearly no guarantee that the same will
happen for other training images.

5 Multi-grid MRF and POMM Approximation

In this section, a general multi-grid MRF is defined and adapted to the POMM ap-
proximation defined in Sect. 4.2, and applied to this situation. Thereafter, how to
construct a POMM approximation to a corresponding conditional distribution is dis-
cussed, before the parameter estimation procedure discussed in Sect. 4.3 is adapted
to the multi-grid MRF situation.
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Fig. 1 Illustration of the
splitting of node set S for a 7 × 7
lattice into three sub-lattices
S1, S2, and S3. The white nodes
are in S1, the gray nodes in S2,
and the black nodes in S3

5.1 Multi-grid MRF

In the multi-grid approach, the nodes in our rectangular lattice S are split into a
series of an odd number, T say, of sub-lattices S1, . . . , ST . Figure 1 illustrates this
process when T = 3. The first sub-lattice, S1, is a rectangular lattice of dimensions
n1 × m1 say, where n1 < n and m1 < m. The next sub-lattice, S2, is an (n1 − 1) ×
(m1 − 1) rectangular lattice where the nodes in S2 are placed between the nodes
in S1, as illustrated in Fig. 1. The nodes in the sub-lattice S3 are placed between
the nodes in S1 ∪ S2, again illustrated in the same figure. One should note that the
nodes in S3 do not form a rectangular lattice, but if we look at the nodes at a 45◦
angle they are still organized into rows and columns. If T ≥ 5, the sub-lattice S4 is
a 2(n1 − 1) × 2(m1 − 1) rectangular lattice where the nodes are placed between the
nodes in S1 ∪ S2 ∪ S3, corresponding to how the nodes in S2 are placed between
the nodes in S1. The nodes in S5 are placed between the nodes in S1 ∪ S2 ∪ S3 ∪ S4

corresponding to how the nodes in S3 are placed between the nodes in S1 ∪ S2. This
structure is then continued up to sub-lattice ST . The number of nodes in the various
sub-lattices become |S1| = n1m1, |St | = 2t−2(n1 − 1)(m1 − 1) when t is even, and
|St | = 2t−2n1m1 + (2(t−3)/2 − 2t−2)(n1 + m1) + 2t−2 − 2(t−3)/2+1 when t > 1 is
odd. The joint distribution for x = (x(i,j), (i, j) ∈ S) is specified by the marginal
distribution for xS1 and, for each t = 2, . . . , T , the conditional distribution for xSt

given xS1:t−1 , where S1:t−1 = S1 ∪ · · · ∪ St−1. A separate parameter vector is adopted
for each of these T distributions, denoted by θ1, . . . , θT , respectively. Thereby, we
have

pθ(x) = pθ1(xS1)

T∏

t=2

pθt (xSt |xS1:t−1), (22)

where θ = (θ1, . . . , θT ). For the marginal distribution pθ1(xS1) an MRF exactly as
discussed in Sect. 3 is adopted, whereas for each of pθt (xSt |xS1:t−1) an MRF where
the conditioning variables are included as covariates is adopted. It should be noted
that the normalizing constant in the model pθt (xSt |xS1:t−1) becomes a function of not
only the parameter vector θt , but also the conditioning variables xS1:t−1 . In Sect. 6.1,
the neighborhood structure and parametric form of the potential functions used in
the simulation examples are specified. Now the focus is on how to apply the POMM
approximation to pθ1(xS1) and each of pθt (xSt |xS1:t−1).
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5.2 POMM Approximations for the Multi-grid MRF

To get a POMM approximation to the multi-grid MRF defined above, the ap-
proximation scheme discussed in Sect. 4 can be adopted to both pθ1(xS1) and
pθt (xSt |xS1:t−1), t = 2, . . . , T . The pθ1(xS1) is an MRF exactly as discussed in
Sect. 3, so the approximation scheme defined in Sect. 4 can be directly applied. For
pθt (xSt |xS1:t−1), at least two possibilities exist for how to cope with the condition-
ing variables. One may either find a POMM approximation for specific values of the
conditioning variables, or one may construct a general POMM approximation as a
function of xS1:t−1 . In the following, details of the two alternatives are discussed in
turn.

5.2.1 A First POMM Approximation for pθt (xSt |xS1:t−1)

If the purpose of computing the POMM approximation is to evaluate (approximately)
the likelihood function in order to find, for example, the maximum likelihood esti-
mator for θ based on a given training image, observed values are available for xS1:t−1

and one may insert these values in pθt (xSt |xS1:t−1). Thereafter, the POMM approx-
imation defined in Sect. 4 can be directly applied. This approximation is denoted
by p̂θt (xSt |xS1:t−1) and the corresponding approximation of the joint distribution by
p̂θ (x). The strategy of inserting values for the conditioning variables xS1:t−1 can also
be used if the goal is to simulate unconditionally (and approximately) from pθ(x).
It is then natural to simulate each of xSt for t = 1, . . . , T in turn. Thus, when xSt is
to be simulated, values for xS1:t−1 have already been simulated and can thereby be
inserted in pθt (xSt |xS1:t−1). Thereafter, the POMM approximation can be established
and values for xSt can be simulated by a backward pass. One should note, however,
that if it is of interest to generate several realizations from pθ(x), this implies that
new POMM approximations must be established for each of pθt (xSt |xS1:t−1) for each
realization. Moreover, it is not possible to use this POMM approximation scheme to
efficiently generate conditional realizations of x given some components in x. The
second approximation scheme for pθt (xSt |xS1:t−1), which can also be used for condi-
tional simulation is discussed next.

5.2.2 A Second POMM Approximation for pθt (xSt |xS1:t−1)

To see how to define a POMM approximation for pθt (xSt |xS1:t−1) without inserting
specific values for the conditioning variables, first recall that the model is specified
via an energy function Uθt (·), so corresponding to Eq. (7) we have

pθt (xSt |xS1:t−1) = c(θt , xS1:t−1) exp
{−Uθt (xS1:t )

}
, (23)

where c(θt , xS1:t−1) is the computationally intractable normalizing constant, now a
function of both the parameter vector θt and the conditioning variables xS1:t−1 . To see
how to cope with this intractable normalizing constant consider first the following
distribution for xSt ,

fθt (xS1:t ) ∝ exp
{−Uθt (xS1:t )

}
, (24)
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noting that the corresponding conditional distribution for xSt given xS1:t−1 , and
marginal distribution for xS1:t−1 becomes

fθt (xSt |xS1:t−1) = pθ(xSt |xS1:t−1) and fθt (xS1:t−1) = 1

c(θt , xS1:t−1)
, (25)

respectively. As fθt (xS1:t ) is an MRF, the approximation scheme defined in Sect. 4
can be directly applied to this distribution. Adopting a node order rule ρ(·,·) where
the nodes in St are assigned numbers from 1 to |St |, and stopping the summation
procedure when the first |St | (approximate) summations are finished results in ap-
proximations to the two distributions in Eq. (25). As detailed in Sect. 4.2, the approx-
imation to the conditional distribution is given as a product of univariate conditional
distributions, that is

p̃θt (xSt |xS1:t−1) =
|St |∏

k=1

f̃θt (xρ−1(k)|xρ−1(l), l = k + 1, . . . , |S1:t |), (26)

whereas the approximation to fθt (xS1:t−1), which we denote by

f̃θt (xS1:t−1) = 1

c̃(θt , xS1:t−1)
, (27)

has no special form. Performing the procedure discussed above for each t =
2, . . . , T and combining the results two alternative approximations of pθ(x) are ob-
tained. Replacing the computationally intractable normalizing constants for each of
pθt (xSt |xS1:t−1) with the corresponding approximation given in Eq. (27) results in the
following approximation

p̃θ (x) ∝ exp
{−Uθ1(xS1)

} T∏

t=2

c̃(θt , xS1:t−1) exp
{−Uθt (xS1:t )

}
, (28)

whereas by combining the approximations in Eq. (26), we obtain the approximation

p�
θ (x) = p̃θ1(xS1)

T∏

t=2

p̃θt (xSt |xS1:t−1), (29)

where p̃θ1(xS1) is the POMM approximation to pθ1(xS1). The latter approximation,
p�

θ (x), is given as a product of univariate conditional distributions and is then by def-
inition a POMM. Thereby, unconditional realizations from p�

θ (x) can be generated
very efficiently once the POMM approximation is established. This is in contrast
to the situation for the first POMM approximation discussed above, where the gen-
eration of each realization requires a number of new POMM approximations to be
established. The approximation p̃θ (x) is not a POMM and direct simulation from
the distribution is not possible. However, up to a normalizing constant an explicit
formula for the distribution is available, and thus a Metropolis–Hastings algorithm
can be used to generate samples from the distribution. It is also interesting to note
that p�

θ (x) can be obtained as a POMM approximation to p̃θ (x) by adopting the
approximation scheme discussed in Sect. 4 if letting the nodes in ST be numbered
from 1 to |ST |, the nodes in ST −1 be numbered from |ST | + 1 to |ST ∪ ST −1| and
so on, and letting the nodes within each St be numbered in the same order as used
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when constructing Eq. (27). It is therefore reasonable to consider p̃θ (x) to be a better
approximation than p�

θ (x).

5.3 Conditional Simulation

Let pθ(x) be a multi-grid MRF for x as defined above and let p̃θ (x) and p�
θ (x) be

the corresponding approximations defined by Eqs. (28) and (29), respectively. Fur-
ther let z denote a vector of observed quantities which is related to x via a likelihood
function ψ(z|x). In the following, we assume the likelihood ψ(z|x) to be known
and easy to compute. For example, z may contain exact observations of some ele-
ments in x, or z may be of the same dimension as x and the components of z may
contain conditionally independent noisy observations of each component of x. The
resulting conditional distribution pθ(x|z) is clearly not computationally feasible, but
in the following how to define and simulate from approximations to this conditional
distribution is discussed. For each of the two approximations p̃θ (x) and p�

θ (x) to
pθ(x), there are corresponding approximations to pθ(x|z) ∝ pθ(x)ψ(z|x), namely
p̃θ (x|z) ∝ p̃θ (x)ψ(z|x) and p�

θ (x|z) ∝ p�
θ (x)ψ(z|x). Direct simulation is not pos-

sible from either of these but up to a normalizing constant explicit formulas are
available for both so simulation can be done with a suitable Metropolis–Hastings
algorithm. As discussed above, p̃θ (x) is the better approximation to pθ(x), so it
is reasonable to also assume that p̃θ (x|z) is the better approximation to pθ(x|z).
Moreover, as the computational complexity of the Metropolis–Hastings algorithms
of the two approximate conditional distributions are essentially the same, it is rec-
ommended to use p̃θ (x|z) as the approximation to pθ(x|z). An alternative to using
the Metropolis–Hastings algorithm to simulate from p̃θ (x|z) is to establish a corre-
sponding POMM approximation. The approximate distribution p̃θ (x|z) is an MRF,
so it can be fed into the approximation scheme in Sect. 4. Independent realizations
can thereafter be efficiently generated from the resulting POMM approximation. For
this last POMM approximation, we find it reasonable to use the ordering of the nodes
defined in the end of Sect. 5.2. In particular, this produces an internal consistency in
the approximations as it implies that if there is no data (i.e. z is empty) the resulting
POMM approximation becomes p�

θ (x).

5.4 Parameter Estimation by Maximum Likelihood

Let x be a given training image to which we want to fit a multi-grid MRF. The max-
imum likelihood principle is adopted to estimate θ = (θ1, . . . , θT ) and thus the like-
lihood function in Eq. (22) must be maximized with respect to θ . As the multi-grid
MRF is specified with a separate parameter vector θt to each of the T MRF compo-
nents, the maximization can be done with respect to each θt separately. Moreover, as
each model component is an MRF the optimization procedure specified in Sect. 4.3
can be directly applied. Note that for the parameter estimation procedure the POMM
approximation only needs to be available for the values of the conditional variables
that appear in the training image. In the estimation of θt for t > 1, it is therefore
natural to use the first POMM approximation discussed in Sect. 5.2.
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Fig. 2 The three training images used in the evaluation of our approximate model fitting procedures

Fig. 3 The neighborhoods used in the multi-grid MRF for nodes not located on the boundary of the
lattice. (a) Neighborhood for sub-lattice S1. (b) Neighborhood for St when t is even. (c) Neighborhood
for St when t > 1 is odd

6 Examples

To evaluate the performance of the approximation scheme it is applied to the three
121 × 121 training images shown in Fig. 2. For all three training images, we let
S1 be a 16 × 16 lattice and use T = 7 sub-lattices. The total lattice S then be-
comes 121 × 121. In the following, details are given of the parametric form for
the multi-grid MRF used in the examples. Thereafter, we define the node ordering
used for the approximations within each level, and finally present numerical exam-
ples.

6.1 Parametric Multi-grid MRF Used in the Simulation Examples

In this section, the exact neighborhood system and parametric energy functions used
in the numerical examples presented below are defined. Large neighborhoods and an
energy function with many parameters clearly give flexible models that can be fitted
to a large variety of training images. However, the computational cost of the fitting
and simulation process grows quickly with the neighborhood size and the dimension
of the parameter vector. It is also important not to include too many parameters so
as to avoid overfitting. Lastly, the multi-grid MRF structure defined above reduces
the need for a large neighborhood system and many parameters in each level of the
model. In the MRF for xS1 we use a second-order neighborhood system. Then each
interior node has eight neighbors as illustrated in Fig. 3(a). The white colored nodes
are neighbors of the black node. The number of neighbors for the nodes on the bound-
ary of the lattice is correspondingly reduced, so that the four corner nodes have only
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Fig. 4 Clique types used in the definition of pθ1 (xS1 )

three neighbors and other boundary nodes have five neighbors. With this neighbor-
hood system, we get cliques of up to four nodes, and assuming translation invariant
potential functions, we then have ten clique types to consider; see Fig. 4. For each of
these clique types, a corresponding parameter is associated (θ1,k for clique type (k)

in Fig. 4) and for clique type (k) we adopt the potential function

VC(xC, θ1) = θ1,k

∏

(i,j)∈C

xij , (30)

where θ1 is a vector of the model parameters. Thus, the potential for a clique is equal
to the value of the associated parameter if all nodes in the clique have value one, and
the potential is zero otherwise. Without loss of generality, one of the ten parameters
can be set as equal to zero, thus for the rest of this paper we fix θ1,0 = 0 and are
left with the parameter vector θ1 = (θ1,1, . . . , θ1,9) that has to be estimated from the
training image.

In the conditional MRF for xSt when t is even a second-order neighborhood model
is again adopted, but in addition each node (i, j) ∈ St is associated with a set Bij that
contains the four nodes in S1:t−1 that are located closest to (i, j). An illustration is
given in Fig. 3(b), where the gray nodes are the four nodes in Bij . For the energy
function, the following parametric form

Uθt (xSt , xS1:t−1) = U1
θt,1:9(xSt ) +

∑

(i,j)∈St

U2
θt,10:19

(xij , xBij
), (31)

is adopted, where the parameter vector θt has nineteen elements and is split into θt,1:9
and θt,10:19. These contain the first nine and the remaining elements of θt , respec-
tively. For U1

θt,1:9(xSt ) exactly the same parametric form as for Uθ1(xS1) is adopted.

For the specification of U2
θt,10:19

(xij , xBij
), a similar strategy as for that of the energy

function for xS1 is adopted, but we include only terms corresponding to one and two
elements in Bij . More precisely, U2

θt,10:19
(xij , xBij

) is a sum of ten terms, one for each
of the node sets shown in Fig. 5, where node (i, j) is shown in black and the nodes in
Bij are shown in gray. The potential function corresponding to node set (k) in Fig. 5
is

VC(xij , xC, θt,10:19) = θtk xij

∏

(r,s)∈C

xrs, (32)
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Fig. 5 Sets, numbered from ten to nineteen, used to define the potential functions building up the energy
function U2

θt,10:19
(xij , xBij

)

where C is the set of gray nodes in the figure. One should note that with Eq. (31)
the conditioning variables xS1:t−1 only affect the first order effects, corresponding
to clique type (0) in Fig. 4. It is clearly possible to generalize the model definition
to allow the conditioning variables to modify also the pairwise, triple, and quadruple
interactions, but we have chosen not to do so here because this will result in a dramatic
increase in the number of parameters.

When t > 1 is odd, the nodes in St are organized in a lattice that is rotated 45◦
relative to the lattices making up S1 and St for t even (Fig. 1). We define the energy
function for the conditional MRF for xSt when t > 1 is odd in the same way as we did
for t even, except that all cliques and sets Bij are rotated 45° clockwise; the resulting
neighborhood is shown in Fig. 3(c). The total number of components in the parameter
vector of the multi-grid MRF becomes 19T − 10.

6.2 Numbering of Nodes Used in the Simulation Examples

To fully define the POMM approximation used in the simulation examples, it remains
to define the node numbering of the approximate forward–backward algorithm. The
nodes in each of S1 and St when t is even constitute rectangular lattices and the lexi-
cographical ordering of the nodes is used. As mentioned above, the nodes in St when
t > 1 is odd can be seen as nodes in a lattice that is rotated 45◦ relative to a rectangular
lattice; to explain our numbering here refer to Fig. 1. The black nodes (i.e. S3) in this
7×7 lattice are numbered in the order (6,1), (7,2), (4,1), (5,2), (6,3), (7,4), (2,1),
and so on.

6.3 Computational Parameters Used in the Simulation Examples

In the computation of the maximum likelihood estimator, the values of the parameters
γ and R defined in Sect. 4.3 must be specified. This begins with γ = 3.5 and R =
100. If the relative decrease of the estimated likelihood is less than 0.05, we let γ :=
γ /2 and R := R ∗ 2 and if the decrease is greater than 0.95 we assign γ := γ ∗ 2
and R := R/2. The optimization is stopped when R = 3200 and the decrease is less
than 0.05. In the computations, the POMM approximations depend on the value of κ .
In all examples presented, κ = 12 is used, which we think is a reasonable trade off
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between approximation quality and computational complexity. The same examples
for κ = 14 have also been run, without detecting significant differences in the fitted
models.

6.4 Simulation Examples

In this section, the results of the model fitting procedure for the three training images
in Fig. 2 are presented. How well the features of the training images are reproduced
by the models, and the quality of the different approximations introduced above are
investigated. First, a comment is made on the efficiency of the likelihood optimiza-
tion. Second, a look at realizations from the fitted p̂(x|θ) is presented. Such a simple
visual inspection gives a good indication of the quality of the model, but to get a more
accurate measure of this, the descriptive statistics introduced in Stien and Kolbjørnsen
(2011) are also used. Third, realizations from p�

θ (x) are presented. This distribution
is investigated in the same way and compared with the previous approximation. As
p�

θ (x) is a POMM, the resulting lower adjacent neighborhood is also studied. Lastly,
the approximations to the conditional distribution pθ(x|z) are explored.

The optimization of the likelihood is done by estimating the likelihood by impor-
tance sampling. When estimating θt , independent samples from the POMM approxi-
mation of pθt (xSt |xS1:t−1) are needed. Finding this POMM approximation is compu-
tationally the most demanding part of the algorithm. The number of POMM approx-
imations we need to compute varies quite a lot. Starting with a parameter vector of
only zeros, the maximum number of POMM approximations we need to compute to
reach the MLE was approximately one hundred.

Each of the training images have some distinct features that put the model fitting
procedure to the test. In training image (a), the shape of the black objects are very
irregular, and thus the best results are expected for this training image. Image (b), by
comparison, has very regular black objects which are mostly convex. It may not be
possible to reproduce this very regular shape in realizations from the fitted model.
Training image (c) has objects which extend from one side of the lattice to the other
and will be the hardest test for our fitting procedure. For each of the fitted models,
realizations are generated from p̂θ (x) and we judge the quality of the model by visual
inspection. The left, middle, and right columns of Fig. 6 show three realizations from
p̂θ (x) fitted to the training image in Fig. 2(a), (b) and (c), respectively. It seems like
the fitted models for training images (a) and (b) reproduce the main features of the
corresponding training images. The three realizations from the model fitted to train-
ing image (a) are quite difficult to distinguish from the training image, except that the
realizations contain a much larger number of small black and white objects. White
objects within black ones occur only a very small number of times in the training
image. Note that the irregular nature of the objects means that this model is the most
difficult to judge by visual inspection. In the realizations from the fitted model to
training image (b), it is fair to say that the objects are slightly less regular versions of
the objects in the training image. However, in applications such as reservoir charac-
terization, this training image is not necessarily a more realistic description of the real
phenomenon than the fitted model. The realizations from the model fitted to training
image (c) contain channels similar to those in the training image, but most of them
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Fig. 6 For each training image, three realizations from the fitted p̂θ (x)

do not extend all the way across the image. In petroleum reservoirs, the continuity of
the structures is very important and, therefore, this model would fail at modeling a
key feature of the reservoir.

To get a better impression, the descriptive statistics are also studied. The statistics
considered are, for each of the two colors, area fraction (Fraction), average ratio of
area and circumference of an object (Area/Circ), average area of an object (Area),
number of objects in an image (# Objects), average extension of an object in x- (x-ext)
and y-directions (y-ext), and average circumference of an object (Circ). We compute
the statistics from 100 realizations from p̂θ (x) and standardize these by dividing by
the corresponding value from the training image. Box and Whisker plots of the results
are shown in Fig. 7. The value of the training image, which is one, is indicated by
a vertical solid line. Plots corresponding to black and white objects are found in the
left and right columns, respectively, whereas the upper, middle and lower rows in the
figure correspond to the training images in Fig. 2(a), (b), and (c), respectively. The
standardized statistics for the fitted model for training image (a) all have a median
value close to one, but only four of the boxes cover this value. This discrepancy is
mostly due to the fact that there are too many small objects of either color. If one omits
objects smaller than four nodes (figures for this not shown) all of the boxes cover one.
In the fitted model for training image (b), either the boxes or whiskers cover one for
all the statistics considered. The biggest disparity is again in the number of white
objects, but note that the variance of this statistic is large. For the fitted model to
training image (c), most of the statistics of the training image are not reproduced by
p̂θ (x). Surprisingly, this suggests that training image (b) is the image that fits best
with our fitted model. In petroleum applications, the ratio of different classes is a
very important statistic. In all the fitted models, the ratio of black and white is well
reproduced. To also assess the performance for p�

θ (x), we repeat the same simulation
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Fig. 7 Box and Whisker plots of the standardized descriptive statistics for unconditional simulations from
the fitted model p̂θ (x)

exercise for this POMM approximation. The results of this are found in Figs. 12
and 13 in Appendix. These figures are organized similar to Figs. 6 and 7, respectively.
The Box and Whisker plots are very similar for p�

θ (x) and p̂θ (x), but many of the
boxes for p�

θ (x) have moved slightly away from one relative to the situation for p̂θ (x).
For instance, the number of white objects in the fitted models for training image (b)
now has a median that is larger than two. There are also some statistics which have
moved closer to one, for example, the number of black objects in the fitted model to
training image (b).

It is quite difficult intuitively to understand the nature of the fitted POMM, p�
θ (x).

Therefore, Fig. 8 also shows the resulting lower adjacent neighborhood Nij of one
node (i, j) ∈ S4 well away from the borders of the lattice. In the figure, node (i, j)

is shown in black with a circle surrounding it. Nodes in Nij are also shown in black,
whereas the nodes in {ρ−1(l), l = ρ(i, j) + 1, . . . ,mn} \ Nij are shown in gray. The
upper, middle, and lower plots correspond to the training image in Fig. 2(a), (b), and
(c), respectively. We see that below node (i, j), Nij contains a rectangular region of
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Fig. 8 For a node (i, j) well
away from the lattice borders,
lower adjacent neighborhoods in
the fitted POMMs, p�

θ (x)

nodes in S1 ∪ S2 ∪ S3. Above (i, j), Nij also contains nodes in S4 and, therefore, it
is reasonable that fewer nodes from S1 ∪ S2 ∪ S3 need to be included and a triangle
is formed. One should note that Nij of the fitted p�

θ (x) for training image (c) extends
further horizontally than for the other fitted models. However, the differences between
Nij obtained for the three training images are reasonably small.

Finally, conditional simulation is examined when the data z is exact observa-
tions of two columns in the training image. Specifically, the POMM approxima-
tion to p̃θ (x|z) is studied, obtained as described in the last paragraph of Sect. 5.3.
Figure 9 shows three realizations from this distribution for each of the three train-
ing images, and Fig. 10 shows corresponding estimated marginal probabilities based
on 1,000 conditional realizations. The images to the left, in the middle and to the
right in these figures correspond to the training images in Fig. 2(a), (b), and (c),
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Fig. 9 For each training image, three realizations from the POMM approximation of the fitted p̃θ (x|z)
when z is exact observations of two columns in the training image

Fig. 10 Estimated marginal probabilities for the POMM approximation of the fitted p̃θ (x|z) when z is
exact observations of two columns in the training image

respectively. The positions of the two observed columns are marked with vertical
lines. When simulating from an approximate distribution conditioned to exact data,
as is done here, the data may stand out from the simulated data if the approxi-
mation is not good enough. One should note that it is impossible to observe such
an effect in these realizations. As the conditional realizations are conditioned to
data from two vertical wells taken from the training image it should be expected
that these are more similar to the training image than the unconditional realiza-
tions in Fig. 6. Box and Whisker plots for the conditional distributions are given
in Fig. 11, which is organized similar to Fig. 7 described above. We see that in
the Box and Whisker plots for the conditional distribution the boxes have moved
slightly for all of the models. Some have moved further away from one and some
have moved closer to one. In particular, the most significant difference is that the
number of white objects in the fitted model to training image (b) has moved much
closer to one and that the average extensions and average circumference have in-
creased. This all indicates that there are fewer small white objects within the black
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Fig. 11 Box and Whisker plots of the standardized descriptive statistics for the conditional simulation
when conditioning on two columns

ones. For the other models, the differences are too small to justify solid conclu-
sions.

An example with observations in every tenth column has also been run. This puts
many restrictions on pθ(x|z), and could, as discussed above, potentially be prob-
lematic for the POMM approximation to p̃θ (x|z). The results are found in Figs. 14
and 15 in Appendix. These figures are organized similar to Figs. 9 and 10, respec-
tively. Again, it can be observed that the data does not stand out in the realizations.
Now it is also apparent that the introduction of more data has resulted in realizations
which are much more similar to the training images. The behavior of the approxima-
tion is thereby the same as what we would expect from pθ(x|z). However, the artifact
of the estimated model for the rightmost training image is again clearly seen. The
widths of the boxes in the corresponding Box and Whisker plots shown in Fig. 16 in
Appendix have decreased, which is also to be expected when the amount of data is
increased.
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7 Conclusions

In this paper, a new procedure for fitting an MRF to a given binary training image
is proposed. The model is defined by a multi-grid approach, which means that the
lattice is split into a series of sub-lattices. On each sub-lattice an MRF conditioned
on the values in the previous sub-lattices is fitted. The examples should demonstrate
the flexibility of the proposed approach, but also its limitations. The MRF multi-grid
formulation has an unknown normalizing constant in each lattice level. This compli-
cates the use of the MRF multi-grid model. This problem is resolved by approximat-
ing these unknown normalizing constants, ending up with a POMM approximation
to the specified MRF. We also define a POMM approximation to the corresponding
conditional distribution.

In geostatistics, the most popular strategy by far for constructing a prior model
from a training image is to adopt a multi-point statistics algorithm. As discussed in
the introduction this modeling strategy has important shortcomings whenever simu-
lation conditioned to observed data is of interest. In this article, an alternative prior
modeling strategy is proposed, where conditional simulation from a corresponding
conditional distribution is made possible by adopting a Markov chain Monte Carlo
algorithm. Faster approximate algorithms for conditional simulation are also given.
The focus of this article is on the methodological aspects of the modeling strategy.
Therefore, we have limited the attention to two-dimensional binary training images.
The procedure is easy to extend to training images with more than two values. The
computational cost increases rapidly with the number of values, however, so details in
the implementation are crucial in making the algorithms computationally feasible for
more than two values. A direct generalization of the approach to three dimensions is
possible, but we are of the belief that a better alternative is to model this as a Markov
chain of two-dimensional models, where the approach introduced in this paper can
be adopted for each of the two-dimensional models.

A major concern in the construction of a prior model from a training image and
corresponding conditional simulation is the computational complexity of the algo-
rithms. The most computer intensive part of our algorithms by far is the parameter
estimation procedure discussed in Sect. 4.3, which is done via an iterative numerical
optimization algorithm. This estimation procedure is clearly computationally more
costly than the estimation procedure used in multi-point statistics, where estimation
simply consists of counting the observed template configurations. One should note,
however, that the clique sizes used in the examples in Sect. 6 are smaller than the tem-
plate size typically needed to obtain satisfactory results in the multi-point statistics
algorithms. When the parameters have been estimated, both our algorithm to simulate
from the prior model and the approximate algorithm to simulate from a correspond-
ing conditional distribution are sequential algorithms. The computational complexity
for these algorithms are thereby comparable to the corresponding algorithms for the
multi-point statistics models.

As opposed to the Markov mesh model defined in Stien and Kolbjørnsen (2011),
our MRF model formulation does not include any directionality. The node order-
ing in our POMM approximation might potentially induce directionality in our fi-
nal POMM, but we are not able to find any significant such effect in any of our
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examples. Note that the multi-point statistics models (Journel and Zhang 2006;
Strebelle 2002) avoid this directionality problem by simulating the nodes in a ran-
dom order. When it comes to conditional simulation, our POMM is comparable to
the Markov mesh model of Stien and Kolbjørnsen (2011). As both formulations have
explicit formulas for the fitted distributions, conditional realizations can be generated
by adopting the Metropolis–Hastings procedure. Alternatively, as we detail for our
POMM in Sect. 5.3, realizations from an approximation to the conditional distribu-
tion can be generated by feeding the conditional distribution into the approximation
procedure of Tjelmeland and Austad (2012). As discussed in Sect. 1, conditional
simulation from the multi-point statistics models is more complicated.
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Appendix: Additional Plots

In this Appendix, the results of the simulation from p�
θ (x) and from the conditional

distribution p̃θ (x|z) are presented, when z is the observations of 11 vertical traces
in the training image. In Fig. 12, we show realizations from the fitted p�

θ (x), and in
Fig. 13 we show Box and Whisker plots of the corresponding standardized descrip-
tive statistics. In Fig. 14, we show realizations from the POMM approximation of the
fitted p̃θ (x|z), when z is 11 vertical traces taken from the training image, and corre-
sponding marginal probabilities are shown in Fig. 15. Box and Whisker plots of the
corresponding standardized descriptive statistics are shown in Fig. 16.

Fig. 12 For each training image, three realizations from the fitted p�
θ (x)
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Fig. 13 Box and Whisker plots of the standardized descriptive statistics for unconditional simulations
from the fitted model p�

θ (x)

Fig. 14 For each training image, three realizations from the POMM approximation of the fitted p̃θ (x|z)
when z contains exact observations of eleven columns in the training image
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Fig. 14 (Continued)

Fig. 15 Estimated marginal probabilities for the POMM approximation of the fitted p̃θ (x|z) when z is
exact observations of eleven columns in the training image

Fig. 16 Box and Whisker plots of the standardized descriptive statistics for the conditional simulation
when conditioning on eleven columns



Math Geosci (2013) 45:383–409 409

References

Bartolucci F, Besag J (2002) A recursive algorithm for Markov random fields. Biometrika 89:724–730
Besag J (1974) Spatial interaction and the statistical analysis of lattice systems. J R Stat Soc B 36:192–225
Chatterjee S, Dimitrakopoulos R, Mustapha H (2012) Dimensional reduction of pattern-based simulation

using wavelet analysis. Math Geosci 44:343–374
Clifford P (1990) Markov random fields in statistics. In: Grimmett GR, Welsh DJA (eds) Disorder in

physical systems. Oxford University Press, London, pp 19–31
Cressie NAC (1993) Statistics for spatial data, 2nd edn. Wiley, New York
Cressie N, Davidson J (1998) Image analysis with partially ordered Markov models. Comput Stat Data

Anal 29:1–26
Descombes X, Mangin J, Pechersky E, Sigelle M (1995) Fine structures preserving model for image pro-

cessing. In: Proc. 9th SCIA 95, Uppsala, Sweden, pp 349–356
Eidsvik J, Avseth P, Omre H, Mukerji T, Mavko G (2004) Stochastic reservoir characterization using

prestack seismic data. Geophysics 69:978–993
Friel N, Rue H (2007) Recursive computing and simulation-free inference for general factorizable models.

Biometrika 94:661–672
Friel N, Pettitt AN, Reeves R, Wit E (2009) Bayesian inference in hidden Markov random fields for binary

data defined on large lattices. J Comput Graph Stat 18:243–261
Geman S, Geman D (1984) Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of

images. IEEE Trans Pattern Anal Mach Intell 6:721–741
Geyer CJ, Thompson EA (1995) Annealing Markov chain Monte Carlo with applications to ancestral

inference. J Am Stat Assoc 90:909–920
Gonzalez EF, Mukerji T, Mavko G (2008) Seismic inversion combining rock physics and multiple-point

geostatistics. Geophysics 73:R11–R21
Hurn M, Husby O, Rue H (2003) A tutorial on image analysis. In: Møller J (ed) Spatial statistics and

computational methods. Lecture notes in statistics, vol 173. Springer, New York, pp 87–139
Journel J, Zhang T (2006) The necessity of a multiple-point prior model. Math Geol 38:591–610
Kindermann R, Snell JL (1980) Markov random fields and their applications. Am Math Soc, Providence
Künsch HR (2001) State space and hidden Markov models. In: Barndorff-Nielsen OE, Cox DR, Klüppel-

berg C (eds) Complex stochastic systems. Chapman & Hall/CRC, London
Li SZ (2009) Markov random field modeling in image analysis, 3rd edn. Springer, London
Pettitt AN, Friel N, Reeves R (2003) Efficient calculation of the normalising constant of the autologistic

and related models on the cylinder and lattice. J R Stat Soc B 65:235–247
Scott AL (2002) Bayesian methods for hidden Markov models: recursive computing in the 21st century.

J Am Stat Assoc 97:337–351
Stien M, Kolbjørnsen O (2011) Facies modeling using a Markov mesh model specification. Math Geosci

43:611–624
Strebelle S (2002) Conditional simulation of complex geological structures using multiple-point statistics.

Math Geol 34:1–21
Tjelmeland H (1996) Stochastic models in reservoir characterization and Markov random fields for com-

pact objects. PhD thesis, Norwegian University of Science and Technology. Thesis number 44:1996
Tjelmeland H, Austad H (2012) Exact and approximate recursive calculations for binary Markov random

fields defined on graphs. J Comput Graph Stat 21:758–780
Tjelmeland H, Besag J (1998) Markov random fields with higher order interactions. Scand J Stat 25:415–

433
Ulvmoen M, Omre H (2010) Improved resolution in Bayesian lithology/fluid inversion from prestack

seismic data and well observations: Part 1—methodology. Geophysics 75:R21–R35
Winkler G (2003) Image analysis, random fields and Markov chain Monte Carlo methods. Springer, Lon-

don
Zhang T, Pedersen SI, Knudby C, McCormick D (2012) Memory-efficient categorical multi-point statistics

algorithms based on compact search trees. Math Geosci 44:863–879


	Construction of Binary Multi-grid Markov Random Field Prior Models from Training Images
	Abstract
	Introduction
	Binary Partially Ordered Markov Models (POMM)
	Binary Markov Random Fields
	Forward-Backward Algorithm and the POMM Approximation
	The Exact Forward-Backward Algorithm
	The Approximation
	Maximum Likelihood Estimation by Importance Sampling

	Multi-grid MRF and POMM Approximation
	Multi-grid MRF
	POMM Approximations for the Multi-grid MRF
	A First POMM Approximation for pthetat(xSt|xS1:t-1)
	A Second POMM Approximation for pthetat(xSt|xS1:t-1)

	Conditional Simulation
	Parameter Estimation by Maximum Likelihood

	Examples
	Parametric Multi-grid MRF Used in the Simulation Examples
	Numbering of Nodes Used in the Simulation Examples
	Computational Parameters Used in the Simulation Examples
	Simulation Examples

	Conclusions
	Acknowledgements
	Appendix: Additional Plots
	References


