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Abstract Inferring reservoir data from dynamic production data has long been done
through matching the production history. However, proper integration of available
production history has always been a challenge. Different production history data
such as well pressure and water cut often occur at different scales making their joint
inversion difficult. Furthermore, production data obtained from the same well or even
the same reservoir are often correlated making a significant portion of the dataset
redundant. Thirdly, the massiveness of the data recorded from wells in a large reser-
voir over a long period of time makes the nonlinear inversion of such data computa-
tional demanding. In this paper, we propose the integration of multiwell production
data using wavelet transform. The method involves the use of a two-dimensional
wavelet transformation of the data space in order to integrate multiple production
data and reduce the correlation between multiwell data. Multiple datasets from dif-
ferent wells, representing different production responses (pressure, water cut, etc.),
were treated as a single matrix of data rather than separate vectors that assume no
correlation amongst datasets. This enabled us to transform the multiwell production
data into a two-dimensional wavelet domain and subsequently select the most impor-
tant wavelets for history match. By minimizing the square of the Frobenius norm of
the residual matrix we were able to match the calculated response to the observed
response. We derived the relationship that allows us to replace a conventional mini-
mization of the sum of squares of the l2 norms of multi-objective functions with the
minimization of the square of the Frobenius norm of the integrated data. The use-
fulness of the approach is demonstrated using two examples. The approach proved
very effective at reducing correlation between multiwell data. In addition, the method

A.A. Awotunde (�)
King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia
e-mail: awotunde@kfupm.edu.sa

R.N. Horne
Stanford University, Stanford, CA 94305, USA
e-mail: horne@stanford.edu

mailto:awotunde@kfupm.edu.sa
mailto:horne@stanford.edu


226 Math Geosci (2013) 45:225–252

helped to reduce the cost of computing sensitivity coefficients. However, the method
gave poor prediction of water cut when the datasets were not scaled before inverse
modeling.

Keywords Parameter estimation · Data integration · Wavelet transform · Adjoint
sensitivity · Reparameterization

1 Introduction

A common challenge in reservoir modeling is to integrate multiple reservoir and pro-
duction data properly for efficient reservoir management. Reservoir and production
data exist at multiple scales making such integration difficult. The presence of mul-
tiple scales in reservoir heterogeneity necessitates that the parameters be resolved
into separate scales in order to identify the scale at which each parameter-component
affects reservoir performance the most. Production data must also be resolved into
different scales in order to identify the most relevant portion of the data. Further-
more, in evaluating large-scale reservoir performance it is necessary to determine the
distributed reservoir parameter (for example, permeability) field. Estimation of reser-
voir parameter distributions in turn depends on the availability and efficient integra-
tion of valuable static data (for example core and well log data) and dynamic data
(for example, production data). The most common method of estimating distributed
reservoir parameters from dynamic production data is through inverse modeling. In-
tegrating multiple production data during inverse modeling poses several challenges.
One major challenge is the correlation in data. It is necessary to decorrelate the data
in order to extract the most useful information from them. The problem of inverse
analysis is further complicated when the constraining data exist at different scales of
resolution. In this case, integrating the data to reduce the scale effect becomes nec-
essary. A commonly adopted approach is to use different scaling factors to bring the
different datasets to the same resolution. However, there is no unique way to select
scaling factors and this introduces some bias into the inverse modeling, giving more
importance to some datasets. A third difficulty is in handling a voluminous dataset
within given limited computational resources.

Several attempts have been made to resolve these problems. Reservoir fluid flow
theory is based on the continuum theory in which flow equations are derived based
on mass conservation over a representative control volume (REV) whose properties
are assumed to be averages of the properties at microscopic scales (Peaceman 1977;
Aziz and Settari 1979). For several years, upscaling (Chu et al. 1998; Nakashima
and Durlofsky 2010) has been used widely to integrate reservoir parameters repre-
senting multiple grid scales. The upscaled parameters are often some form of aver-
aged grid block parameters representative of the microscopic properties over the grid
blocks. In geostatistical reservoir modeling, conditional simulation (Journel 1974;
Strebelle et al. 2003) has been proposed to integrate different types of static reservoir
data while the integration of dynamic production data into reservoir modeling has
been done mainly by history matching (Jacquard and Jain 1965; Carter et al. 1974;
Chavent et al. 1975). Several history matching methods including gradual deforma-
tion (Hu 2000, 2002), probability perturbation method (Caers 2003; Johansen et al.
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2007), wavelet approach (Huang and Kelkar 1996; Lu and Horne 2000; Sahni and
Horne 2005, 2006), and streamline-based simulation approach (Yoon et al. 2001;
He et al. 2002; Al-Harbi et al. 2005) have been proposed. All these approaches inte-
grate information from production data into reservoir modeling. To our knowledge,
none of these approaches considered the integration of production data into a sin-
gle indistinguishable form before or during history matching. Awotunde and Horne
(2011b, 2012) proposed the use of one-dimensional wavelet transform to integrate
dynamic data from the same well. However, the focus of their work was mainly to re-
duce the computational overhead involved in estimating sensitivities of the integrated
production data to integrated reservoir parameters.

The main theme of this paper is the integration of production data obtained from
different wells producing from the same reservoir. We proceed first by presenting
a framework that enables us to integrate production data using a two-dimensional
wavelet transform. Here, we derived the relationship that allows us to replace a con-
ventional minimization of the square of the norms of multiobjective functions with
the minimization of the square of the Frobenius norm of the integrated data in wavelet
domain. The procedure is then coupled to a wavelet decomposition of the parameter
space in order to solve the inverse problem. The approach helps to integrate and
decorrelate production datasets. Apart from the benefit obtained from decorrelation
of data, it is also shown that the approach reduces the size of data needed for param-
eter estimation significantly, thereby making the process more efficient computation-
ally. The usefulness of the approach is demonstrated using two numerical examples.
Comparison is made to the conventional approach (no transformation of data) and the
wp − wk approach (Awotunde and Horne 2012).

2 Theory

In this section, we describe topics that are relevant to the understanding of the formu-
lations in this paper.

2.1 Data Integration

A major challenge in reservoir flow modeling is the integration of different data ob-
tained from the same reservoir. Because reservoir heterogeneity often exists at multi-
ple and largely different scales, reservoir parameters at different scales must be prop-
erly integrated for accurate flow prediction. Several approaches to integrate reservoir
flow parameters have been proposed. One approach is to transform the parameter
space into a wavelet domain that allows reduction in parameter space (Huang and
Kelkar 1996; Lu and Horne 2000; Sahni and Horne 2005). This approach reduces the
correlation in the transformed parameter and has proven to be very efficient in reduc-
ing the nonuniqueness associated reservoir parameter estimation and by extension
the uncertainty in estimated reservoir parameters. Liu et al. (2006) analyzed interwell
heterogeneity by correlating injection and production data. Another challenge is in-
tegrating production data that exist at the same or different scales before or during
inverse modeling. Panda et al. (2001) presented a method for identifying the impact
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of multiscale data on reservoir modeling. History matching of pressure data from dif-
ferent wells is an example of an inverse modeling involving production data at the
same scale of resolution. Integrating these data will help identify the most significant
part of the data and reduce redundancies in the dataset. An orthogonal transformation
(such as Karhunen Loeve, wavelet, etc.) of the data will help decorrelate the data,
enabling better exploitation of the important components in the dataset. An example
of inverse modeling involving data at different scales is the simultaneous matching of
pressure and water cut data from different wells located in the same reservoir. These
two data types exist at different scales and integrating both during history matching
is more difficult. The method often adopted is to scale each dataset with either the
standard deviation or the largest member (in absolute value) of that dataset. These
two scales will lead to different estimates even when the initial guesses are the same
in both cases. Awotunde and Horne (2012) introduced the use of one-dimensional
wavelet decomposition (wp − k and wp − wk) of production data in parameter esti-
mation but applied the approach separately to one-dimensional datasets. Scale fac-
tors were used subsequently to integrate the transformed datasets during parameter
estimation. In this work, we study how different datasets at different scales can be
integrated using a two-dimensional wavelet transform. Our aim here is to propose
a platform that allows a two-dimensional wavelet transform of multiple production
datasets rather than a separate transform for each dataset.

2.2 The Two-Dimensional Wavelet Transform

Two-dimensional wavelet transforms are useful in decomposing two-dimensional
datasets. In general, a two-dimensional wavelet transform is composed of four func-
tions: a two-variable scaling function, φ(x, y) defined (Chui 1992; Percival and
Walden 2000) as

φj,m,n(x, y) = 2j/2φ
(
2j x − m,2j y − n

)
, (1)

and three two-variable wavelet functions given by

ψi
j,m,n(x, y) = 2j/2ψi

(
2j x − m,2j y − n

)
, ∀i ∈ {H,V,D}, (2)

where j,m,n ∈ Z, φ(x, y) is a scaling function and ψH (x, y), ψV (x, y) and
ψD(x, y) are three different wavelet functions. If the filters are separable, then each
of the two-variable scaling and wavelet functions can be written as the product of two
one-variable functions

φ(x, y) = φ(x)φ(y), (3)

ψH (x, y) = ψ(x)φ(y), (4)

ψV (x, y) = φ(x)ψ(y), (5)

and

ψD(x, y) = ψ(x)ψ(y). (6)

Equations (3) to (6) indicate that two-dimensional separable filters can be designed
directly from their one-dimensional counterpart. Thus, in discrete form, the two-
dimensional wavelet transform operates on an image (a two-dimensional dataset) by
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first applying a one-dimensional discrete wavelet transform (DWT) on each column
of the data and then applying the one-dimensional DWT on each row of the trans-
formed data. This is equivalent to

D̃w = WtD̃WT
ds, (7)

where D̃ is the original dataset, Wt is the wavelet matrix that transforms the columns
of D̃, Wds is the wavelet matrix that transforms the rows of D̃ and D̃w is the two-
dimensional wavelet transform of D̃. The subscripts t and ds in Eq. (7) indicates
decomposition along the time domain and across datasets, respectively. The wavelet
matrix can be subdivided into two filters: the low pass filter H that computes the
normalized pairwise averages of the input signal (column vector) and the high pass
filter G that computes the normalized pairwise differences of the input signal. With
these definitions, the linear operation in Eq. (7) can be represented by

D̃w = WtD̃WT
ds =

[
Ht

Gt

]
D̃

[
Hds

Gds

]T

. (8)

Equation (8) can be written as

D̃w =
[

HtD̃

GtD̃

]
[
HT

ds

∣∣GT
ds

]T
. (9)

By rearranging the terms on the right-hand side of Eq. (9), we obtain

D̃w =
[

HtD̃HT
ds

GtD̃HT
ds

∣∣∣∣
HtD̃GT

ds

GtD̃GT
ds

]
=

[
B

H

∣∣∣∣
V

D

]
. (10)

In Eq. (10), the linear transform HtD̃HT
ds computes the normalized pairwise aver-

ages along the columns of D̃, and then the pairwise averages along the rows of HtD̃.
This produces an approximation (or blur) B of D̃. HtD̃GT

ds computes the normalized
pairwise averages along the columns of D̃ and then the normalized pairwise differ-
ences along the rows of HtD̃. This will produce the vertical differences V between B

and D̃. GtD̃HT
ds computes the normalized pairwise differences along the columns of

D̃ and then the normalized pairwise averages along the rows of GtD̃. This operation
produces the horizontal differences H between B and D̃. The last linear operation,
GtD̃GT

ds, computes the normalized pairwise differences along the columns of D̃ and
then the normalized pairwise differences along the rows of GtD̃ to produce the diag-
onal differences D between B and D̃.

2.3 Frobenius Norm

The Frobenius norm of an N × L matrix, D̃, is defined as the square root of the sum
of the absolute squares of its elements (Golub and Van Loan 1996)

‖D̃‖F =
√√
√√

N∑

n=1

L∑

l=1

|dn,l |2 =
√

trace
(
D̃∗D̃

)
. (11)
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In Eq. (11), dn,l is the element in row n and column l of D̃, D̃∗ is the conjugate
transpose of D̃, and the trace function is used. The square of the Frobenius norm of D̃

is equivalent to the sum of squares of the l2-norms of the column vectors in D̃. Thus,
the sum of squares of l2-norms of several vectors of equal length can be replaced by
the Frobenius norm of a single matrix whose columns are composed of those vectors.

3 Analysis of Multiwell Data

In practical field scenarios, it is often the case that different types of data from the
same reservoir are available for history-matching. In such cases, it becomes necessary
to constrain the model to match all available data simultaneously. Thus, this becomes
a multiobjective minimization problem. The objective here is to minimize simulta-
neously the errors in all the datasets. Such minimization presents several challenges
ranging from correlation of datasets to existence of data at different scales of resolu-
tion. Measured data often have different scales of resolution. For example, water cut
often exists at a scale vastly different from the scale at which bottomhole pressures
occur. However, residuals of these two measurements must be minimized simulta-
neously. The approach often adopted is to use different scaling factors for different
datasets. The choice of scaling factors will no doubt introduce some level of bias in
the minimization algorithm. In this work, we investigated the use of wavelet trans-
form to integrate multiple production data. Furthermore, history data from multiple
wells producing from the same reservoir are often correlated (well-to-well). Such cor-
relation may adversely affect the capability of history matching algorithms to solve
the inverse problem because correlation creates redundancies in history data. How-
ever, the discrete wavelet transform is known to decorrelate certain time series (Perci-
val and Walden 2000). In this regard, we explored a means to decorrelate the multiple
production histories using a two-dimensional wavelet transform.

3.1 Two-Dimensional Wavelet Transform of Data Space

Production data can be integrated by taking a two-dimensional wavelet trans-
form of the data. If we consider a production history composed of L datasets
{d1,meas,d2,meas, . . . ,dL,meas}, each of length N , then the equation for multiobjec-
tive function minimization can be expressed as

min
α

{
Φ(α)

} = min
α

{
1

2

[‖d1,cal − d1,meas‖2
2 + ‖d2,cal − d2,meas‖2

2 + · · ·

+ ‖dL,cal − dL,meas‖2
2

]}
. (12)

In Eq. (12), dl,cal is the lth calculated dataset, dl,meas is the lth measured dataset, and
dl,cal is a function of the model parameter vector α. The sum of squares of l2-norms
of the residuals appearing in Eq. (12) can be replaced by the square of the Frobenius
norm of a single residual matrix. Thus, the measured datasets and calculated datasets
can be grouped into two separate matrices with the square of the Frobenius norm
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of their residual replacing the sum of squares of the several l2-norms appearing in
Eq. (12). This relationship is given by

‖D̃cal − D̃meas‖2
F

= ‖d1,cal − d1,meas‖2
2 + ‖d2,cal − d2,meas‖2

2 + · · · + ‖dL,cal − dL,meas‖2
2, (13)

where

D̃cal = [d1,cald2,cal . . .dL,cal], (14)

and

D̃meas = [d1,measd2,meas . . .dL,meas]. (15)

However, a two-dimensional orthogonal wavelet transform of a matrix does not
change the Frobenius norm of the matrix (Appendix A). Consequently, the following
relationship holds

‖D̃wcal − D̃wmeas‖2
F = ‖D̃cal − D̃meas‖2

F , (16)

where

D̃wmeas = WtD̃measW
T
ds, (17)

and

D̃wcal = WtD̃calW
T
ds. (18)

In Eqs. (17) and (18), Wt is an N × N wavelet matrix that transforms the columns of
D̃ and Wds is an L×L wavelet matrix that transforms the rows of D̃. The equivalence
of the Frobenius norms in the two domains (time-space and wavelet) as shown in
Eq. (16) implies that we can replace the summation of several l2-norms in Eq. (12)
by the Frobenius norm of a two-dimensional wavelet transform of the residual matrix.
Therefore, Eq. (12) becomes

min
α

{
Φ(α)

} = min
α

{
1

2

∥∥D̃wcal(α) − D̃wmeas

∥∥2
F

}
. (19)

If the parameter space is transformed equally into a wavelet domain then the param-
eter α in Eq. (19) should be replaced by cα . Although the formulations in Eqs. (12)
through (19) help us to move from the real space to the wavelet space, it does not
provide any advantage unless a reduction in the transformed domain is made. Thus,
in practice, Wt is an Nr × N matrix that reduces the number of rows in D̃ from
N to Nr and Wds is an Lr × L matrix that reduces the number of columns in D̃

from L to Lr . The bases in Wt and Wds are selected such that most of the informa-
tion in D̃ are retained after the transformation. Even though a matrix representation
is used to illustrate the process of transformation, we do not form the matrices Wt

and Wds explicitly due to high cost of matrix storage and multiplication. Rather, the
Mallat pyramidal algorithm (Mallat 1989) is used first to compute all the wavelet
coefficients and the domain is subsequently thresholded to yield the reduced set of
coefficients. The approach described here shows that we can perform multiobjective
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Table 1 Description of approaches and their inputs

Approaches p − k p − wk wp − k wp − wk 2Dwp − k 2Dwp − wk

System parameters α α α α α α

Model parameters α cα α cα α cα

Measured data dmeas dmeas dmeas dmeas D̃meas D̃meas

Observation data dmeas dmeas cdmeas cdmeas D̃wmeas D̃wmeas

Transformation none par meas meas and par meas meas and par

function minimization by matching a subset of the wavelets derived from the two-
dimensional decomposition of the data space. The subset selected for history match
comprises the most important coefficients to constrain the model. This dimension
reduction in data space improves the efficiency of the algorithm by (1) decorrelat-
ing the dataset and (2) reducing cost associated with the computation of sensitivities
(Awotunde and Horne 2012).

3.2 The 2Dwp − wk Approach

In this work, six different approaches are considered and compared (Table 1). All
the approaches, except the 2Dwp − k and 2Dwp − wk have been presented previ-
ously (Lu and Horne 2000; Awotunde and Horne 2011a, 2011b, 2012). The p − k ap-
proach is the conventional nonlinear regression in which the parameter space is recon-
structed by matching all available data without any transformation (Levenberg 1944;
Marquardt 1963). The p−wk approach (Lu and Horne 2000) transforms the parame-
ter space into wavelet, and subsequently reduces the transformed space by threshold-
ing. The wp−k and 2Dwp−k approaches transform only the measurement space into
a reduced wavelet space while the wp−wk and 2Dwp−wk approaches transform both
the measurement and parameter spaces into reduced wavelet spaces. However, while
wp−k and wp−wk perform one-dimensional wavelet transform and reduction on the
measurement space, 2Dwp − k and 2Dwp − wk perform a two-dimensional wavelet
transform and reduction of the data space. The two approaches become equivalent
to the p − k approach if all wavelets (no data space or model space reduction) are
used in the nonlinear regression estimation (Appendix A). The last row in Table 1
describes the different approaches by indicating whether the parameter space, the
measurement space or both spaces were transformed. In particular, the 2Dwp − wk
approach involves wavelet transformation and thresholding of both the data space and
the parameter space. This makes it possible to integrate data from different wells. The
transformation and reduction of the data space is carried out in the following way:

1. Group all measured datasets into a single N × L matrix D̃meas, with each column
of the matrix representing a separate dataset.

2. Perform a two-dimensional wavelet decomposition of the matrix using the pyra-
midal algorithm. There is no reduction at this stage.

3. Set a threshold value for the columns and another threshold value for the rows.
4. In each column, find the entry with the largest absolute value and compare this

absolute value with the preset threshold values for columns. Retain all columns
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that have their largest absolute entry greater than the preset column threshold
and discard the other columns. This yields a column-reduced matrix of dimen-
sion N × Lr .

5. In each row of the new matrix find the entry with the largest absolute value and
compare this absolute value with the preset threshold values for rows. Retain all
rows that have their largest absolute entry greater than the preset row threshold and
discard the other rows. This yields a row-and-column reduced matrix of dimension
Nr × Lr .

Other steps in the 2Dwp − wk approach are similar to Steps 4 to 10 of the wp − wk
approach presented in Awotunde and Horne (2012). The benefits of the 2Dwp − wk
approach include:

1. The approach helps to integrate different types of production data from the same
reservoir.

2. It helps to decorrelate multiwell production data.
3. It helps to reduce the cost of storage and computation of sensitivity coefficients.

Care must be taken to avoid overcompressing the data space. Too large compres-
sion of the data space can lead to loss of vital information in the data resulting in a
poor match to production data. This is particularly important in large fields where the
amount of production history data is enormous. In such cases, the number of wavelets
retained after compression can be large enough to make the computation of sensitivity
matrix very cumbersome and the Levenberg–Marquardt approach unattractive.

3.3 Decorrelation of Datasets

Usually measured data are correlated. Correlation in data means that such data carry
the same or almost the same information about the model they describe. This sit-
uation is observed in many practical cases where the number of measured data is
much larger than the number of parameters of the system. However, these data can-
not resolve the parameters uniquely. The adverse effect of correlation in data can
be illustrated with a simple example. Consider matching 20 data points in which 12
are uncorrelated and the remaining eight are correlated and carrying almost the same
information. This is nearly equivalent to matching 13 distinct and uncorrelated data
points with one of the data points assigned a weight that is eight times that of each
of the other data points. A history match of these data will lead to better assimilation
of the information in the data with the bigger weight and not-so-good assimilation
of the information in the other data points leading to poor history match results. In
essence, when data are correlated, many data points will carry the information that
could be carried by just one data point thus concentrating the history matching effort
on the same information at the expense of other information contained in the other
uncorrelated data points. Decorrelation refers to any process that is used to reduce
autocorrelation within a signal (a single dataset) or cross-correlation between a set of
signals (datasets). A wavelet decomposition and reduction of a correlated dataset re-
moves all or part of the correlation in the data so that the wavelet coefficients retained
carry the relevant information at appropriate scales. Thus, the 2Dwp − wk approach
is able to remove correlation in a measured dataset leading to a better history match.
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Care must however be taken to ensure that relevant information in the data is not
removed during wavelet reduction of the data space. The wp − wk approach is also
able to reduce the correlation in the dataset. However, examples presented in Sect. 4
of this paper show that the amount of reduction achieved by wp − wk is smaller than
that achieved by 2Dwp − wk. It is also necessary to note that while the wp − wk
approach decomposes and reduces each data-vector along the time domain only, the
2Dwp − wk approach decomposes the data along the time domain as well as across
datasets. Decomposition across datasets makes it possible for the 2Dwp − wk ap-
proach to remove/reduce correlation in data from different wells producing from the
same reservoir.

3.4 Solution Method

To obtain a solution to the inverse problem, Eq. (19) is solved iteratively using the
Levenberg–Marquardt method (Levenberg 1944; Marquardt 1963). This method in-

volves computing the gradient g
D̃wcal
cα

of the objective function Φ(cα) from

g
D̃wcal
cα

= (
S

D̃wcal
cα

)T vec(D̃wcal − D̃wmeas), (20)

computing an approximate Hessian matrix

H
D̃wcal
cα

= (
S

D̃wcal
cα

)T
S

D̃wcal
cα

+ λ̇I, (21)

solving for an approximate Newton direction δcκ
α from

H
D̃wcal ,κ
cα

δcκ
α = −g

D̃wcal ,κ
cα

, (22)

at each iteration and then computing the new estimate of the parameter field from

cκ+1
α = cκ

α + υκδcκ+1
α . (23)

In Eq. (21), S
D̃wcal
cα

is the sensitivity of the thresholded two-dimensional wavelet trans-
form of the measured data to the model-space wavelet coefficients, I is an identity

matrix the same size as H
D̃wcal
cα

and λ̇ is the Levenberg–Marquardt parameter (Lev-
enberg 1944; Marquardt 1963) and vec is a function that reshapes a matrix into a
column vector. The function vec reshapes a matrix into a column vector contain-

ing all the elements of that matrix. S
D̃wcal
cα

and g
D̃wcal
cα

are calculated using a wavelet
adjoint sensitivity method (Appendix B), and υ is the step-length calculated within
each iteration using the backtracking-Armijo-line search method (Gill et al. 1981;
Nocedal and Wright 2006; Griva et al. 1996). While λ̇ ensures that the Hessian is
positive-definite, υ ensures that an optimum step is taken in the computed direction.

In the main iteration loop, g
D̃wcal
cα

is computed from S
D̃wcal
cα

using Eq. (20) because it
is cheaper to compute the gradient using Eq. (20) if the sensitivity matrix is already

known. However, within the line-search iteration loop where S
D̃wcal
cα

is not required

or available, the wavelet adjoint method (Appendix B) is used to compute g
D̃wcal
cα

.
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4 Applications

Two example applications are presented to illustrate the usefulness of the approach.
Both examples used simulated data with added Gaussian noise as the measured data
for history matching. In all the examples, we used six different approaches: p − k,
p − wk, wp − k, wp − wk, 2Dwp − k, and 2Dwp − wk to estimate the permeability
distributions in the reservoir. In addition, two separate versions each of the p − k,
2Dwp − k and 2Dwp − wk approaches were considered. The first version involves
scaling the datasets before transformation while the second version does not involve
scaling the datasets. In the first version, we scaled all pressure data with one scale fac-
tor and scaled all water cut data with another scale factor. This procedure is expressed
as

min
α

{
Φ(α)

}

= min
α

{
1

2

[
1

β1

∥∥D̃press
wcal

− D̃press
wmeas

∥∥2
F

+ 1

β2

∥∥D̃wc
wcal

− D̃wc
wmeas

∥∥2
F

]}
. (24)

In Eq. (24), all pressure data are integrated into one lump (D̃
press
wmeas) and all water cut

data are integrated into another lump (D̃wc
wmeas

). β1 and β2 are the scaling factors for
the pressure and water cut data respectively. In the second version, all pressure and
water cut data are integrated into one single lump as given by Eq. (19). In order to
avoid confusing the effects of neglecting data at small scale to the effect of data inte-
gration by wavelet decomposition, we included two versions of the p − k approach
in these example applications. The first version involves scaling of datasets while the
second version used the data without scaling.

The data space was thresholded based on the magnitudes of the wavelets of data
while the model space was thresholded based on the magnitudes of entries in the
wavelet sensitivity matrix. There were multiple injectors and producers in the ex-
ample reservoirs. Pressure and water cut were recorded in all production wells and
injection pressure was recorded simultaneously in all injectors. In the p−k approach,
all the measured data were matched by varying the logarithm of reservoir permeabil-
ity. We tested two versions of the p − k approach, one with and the other without
scaling factors. This was done to enable the study of the true impact of the unscaled
2Dwp−k, and 2Dwp−wk approaches. In the p−wk approach, all the measured data
were matched while varying a subset of wavelets of logarithm of reservoir permeabil-
ity. The p − k and p − wk approaches require that the sensitivities of all datasets be
computed. The wp − k, wp − wk, 2Dwp − k, and 2Dwp − wk approaches, however,
require the computation of a data-reduced wavelet sensitivity matrix. The wp − k,
wp − wk, 2Dwp − k, and 2Dwp − wk models used the wavelet approach to adjoint
sensitivity computation to reduce the computational time and storage requirements.
The reduction achieved is approximately equal to the compression ratio defined as

CR = No. of measured data

No. of wavelets retained
. (25)

While the wp − k and wp − wk approaches perform a one-dimensional wavelet
decomposition of the data space, the 2Dwp − k, and 2Dwp − wk perform a two-
dimensional (standard Haar wavelet) decomposition of the data space. A two-
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Table 2 Reservoir, well and
fluid properties Properties Values Units

co 1.2E−5 psi−1

cw 5E−7 psi−1

pini 5000 psi

Swini 1E−6 none

φini 0.25 none

skin 0 none

dimensional wavelet transform (standard implementation) is performed on the pa-
rameter space by the p − wk, wp − wk and 2Dwp − wk approaches. Because the
parameter space in a multidimensional reservoir system is often large, it is not al-
ways possible to search for an optimum set of model parameters at every iteration.
Consequently, we used a multiscale procedure in which a small set of model coef-
ficients was retained at the start of the nonlinear regression and the set was gradu-
ally expanded until a desirable number of model coefficients (near-optimal set) were
included in the model space. All the examples presented here used this multiscale
procedure.

The l1-norms of the differences between the true permeability distribution and the
estimated distributions are used to measure the closeness of the estimates to the true
distribution. Thus, in this work, the residual norm of k is defined as

knorm = ‖kest − ktrue‖1

Lk
, (26)

where Lk is the length of k, ktrue is the true permeability distribution and kest is the
estimated permeability distribution. These norms, although providing some insight
into the performances of the approaches, cannot be taken as an ultimate measure of
performance of the approaches. The reservoir, well and fluid properties are presented
in Table 2.

4.1 Example 1: Reservoir with 16 × 16 Grid Blocks

This example comprises a reservoir discretized into 16 × 16 grid blocks (Fig. 1(a)).
The reservoir has two injectors and three producers as shown in Fig. 1(b). The flowing
bottomhole pressure (BHP) was measured at each injector while water cut and BHP
were measured at each producer. In all we had eight sets of data; two sets of mea-
sured pressure signals from the injectors, three sets of pressure signals and three sets
of water cut signals from the three producers. Each dataset had 256 data points. Thus,
overall, there were 2048 measured data to be matched. Figures 2(a) and 2(b) show,
respectively, the sets of pressure and water cut histories prior to wavelet transforma-
tion. While Fig. 2(c) shows the data after two-dimensional wavelet transformation
and thresholding of the combined datasets, Fig. 2(d) shows the wavelet coefficients
after two-dimensional wavelet transformation of the pressure data and Fig. 2(e) shows
the coefficients after a two-dimensional wavelet transformation and thresholding of
the water cut history data. In the unscaled versions of 2Dwp − k and 2Dwp − wk,
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Fig. 1 Log permeability distribution and location of wells in the 16 × 16 reservoir model. (a) Log perme-
ability distribution, (b) location of wells

Fig. 2 Two-dimensional transformation of a sequence of datasets into thresholded wavelets (16 × 16
reservoir model). (a) Sequence of measured pressure datasets, (b) sequence of measured water cut datasets,
(c) thresholded two-dimensional wavelets of all datasets, (d) thresholded two-dimensional wavelets of
pressure datasets, (e) thresholded two-dimensional wavelets of water cut datasets

the dimension of the data space was reduced from 256 × 8 to 13 × 7. A larger re-
duction is achieved along the time domain (256 to 13) than across datasets (8 to 7)
indicating that the data from the same well taken over a time period is more corre-
lated than data from different wells taken at the same time. In the scaled version,
the dimension of the pressure dataset was reduced from 256 × 5 to 11 × 7 and the
water cut dataset was reduced from 256 × 3 to 14 × 4. Prior to wavelet transforma-
tion, the pressure and water cut datasets were supplemented with zero columns to
make the number of columns be of order 2j where j is an integer. Table 3 shows
the number of data/coefficients matched as well as the number of model parame-
ters used by each approach. The number of observation (data) points was reduced
from 2048 to 376 by the wp − k and wp − wk approaches while the same num-
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Table 3 Model performance data (16 × 16 reservoir model)

Models p − k (p −
k)w/o sc

p − wk wp − k wp − wk 2Dwp−
k

(2Dwp −
k)w/o sc

2Dwp −
wk

(2Dwp −
wk)w/o sc

Ndata 2048 2048 2048 376 376 133 91 133 91

CR 1 1 1 5.45 5.45 15.4 22.5 15.4 22.5

Np 256 256 53–101 256 56–103 256 256 60–110 51–103

knorm 285.6 287.9 211.3 283.4 239.3 340.9 292.7 238.1 195

ber was reduced by 2Dwp − k and 2Dwp − wk to 133 when a scaling factor was
applied and to 91 when no scaling factor was applied, indicating that a higher com-
pression ratio of the data space was achieved by the two-dimensional decomposi-
tion of the data space. The adjoint method was used for computing sensitivities in
the 2Dwp − k and 2Dwp − wk method because the number of wavelets of data is
smaller than the number of system or model parameters. Also note that the reduction
in time achieved, by using a wavelet approach to adjoint formulation as opposed to
the conventional adjoint sensitivity computation, is approximately proportional to the
compression ratio defined in Eq. (21). In this example, the ratio was 15.4 and 22.5
for the two versions of 2Dwp − k and 2Dwp − wk considered. The residual norm
of the difference between the true and estimated permeability distributions was used
to measure the closeness of the modeled distributions to the true distribution (Ta-
ble 3). The initial residual norm of k for this example case was 309. Table 3 also
shows that, for this example, the residual norm of k was generally lower when the
model space was reduced. This indicates that the number of system parameters used
to parameterize this example model is larger than needed. Using fewer wavelets to
parameterize the model space gave closer match to the true permeability distribu-
tion. Even though the number of measured data was much larger than the number of
model parameters, none of the approaches (including the standard p − k approach)
gave an accurate estimate of the true permeability distribution. This shows that the
information content in the measured data was not enough to resolve all the model
parameters. Constraining the model with hard data or any accurate a priori informa-
tion during inverse modeling can help improve the estimation of the model parame-
ters.

In order to test the predictive ability of the approaches, the true reservoir perme-
ability model, ktrue was used to predict the pressure and water cut 750 days beyond
the end (t = 1153 days) of the measured data and the predicted data was compared
with the data predicted by the six approaches. The matches to the measured data
(t � 1153 days) and the predicted data (t > 1153 days) are shown in Figs. 3 and 4.
All the approaches gave good matches to the measured pressure (Fig. 3) and to the
predicted pressure data. Match to the water cut data was good in all cases except those
from the unscaled versions of 2Dwp−k and 2Dwp−wk (Fig. 4). The predicted water
cut data from the unscaled versions of the p − k, 2Dwp− k and 2Dwp− wk approach
was worse than those from the other approaches. Clearly, there were mismatches due
to the inability of the unscaled versions to reconcile data at vastly different scales.
This effect is less conspicuous in the match to water cut data given by the unscaled
version of the p − k approach. The inability of the unscaled versions of the 2Dwp− k
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Fig. 3 Match to bottomhole pressure at the injectors and producers (16 × 16 reservoir model). (a) p − k,
(b) p − k w/o scaling, (c) p − wk, (d) wp − k, (e) wp − wk, (f) 2Dwp − k, (g) 2Dwp − k w/o scaling,
(h) 2Dwp − wk, (i) 2Dwp − wk w/o scaling

and 2Dwp − wk approaches to reconcile data at the vastly different scales leads to the
elimination of some wavelet coefficients carrying important information about the
water cut in these approaches. This shows that the unscaled versions of the p − k,
2Dwp − k, and 2Dwp − wk were unable to fully integrate data at the different scales
of resolution encountered in this problem. Nevertheless, the unscaled versions gave
lower overall residual values (better match to production data) than their scaled coun-
terparts. Figure 5 shows the initial log permeability guess, the true log permeability
distribution and the estimates of the log permeability given by all approaches. We ob-
serve that the unscaled versions of the p − k, 2Dwp − k and 2Dwp − wk approaches
gave estimates (Figs. 5(d), 5(i), and 5(k), respectively) that are closer to the true
log permeability distribution than the scaled versions. Since the unscaled versions
match the pressure better than they match the water cut data, these results suggest
that pressure data carry more important information about the reservoir permeabil-
ity distribution than the water cut data. Because the overall objective of the history
matching procedure is to obtain accurate estimates of reservoir parameter distribu-
tion, the unscaled versions may serve as better alternatives to the scaled versions. We
also observe that the results obtained by the unscaled versions of the 2Dwp − k and
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Fig. 4 Match to water cut at the producers (16 × 16 reservoir model). (a) p − k, (b) p − k w/o scaling,
(c) p−wk, (d) wp−k, (e) wp−wk, (f) 2Dwp−k, (g) 2Dwp−k w/o scaling, (h) 2Dwp−wk, (i) 2Dwp−wk
w/o scaling

2Dwp − wk approaches are better than (in terms of more accurate log permeability
maps in Fig. 5 and lower data mismatch in Fig. 6) those obtained from the unscaled
version of the p − k approach indicating that it is better to integrate the multiwell
data before solving the inverse problem. In addition, Fig. 6 shows that the unscaled
versions of the 2Dwp − k and 2Dwp − wk approaches converged faster than the other
approaches. The number of model parameters selected by the p − wk, wp − wk, and
2Dwp − wk approaches at different iteration counts are shown in Fig. 7. In these
three approaches, we retained approximately 40 % of the model-space coefficients
for history matching.

4.2 Example 2: Reservoir with 64 × 64 Grid Blocks

This example was designed to test the abilities of the six approaches to map the high
permeability path in a heterogeneous reservoir (Fig. 8(a)). The system was a 100 ft
thick reservoir of length 6400 ft and width 6400 ft discretized into 64×64 gridblocks.
The reservoir had an underlying permeability of 100 md with some medium to high
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Fig. 5 log k distributions (16 × 16 reservoir model). (a) True distribution, (b) initial guess, (c) p − k,
(d) p − k w/o scaling, (e) p − wk, (f) wp − k, (g) wp − wk, (h) 2Dwp − k, (i) 2Dwp − k w/o scaling,
(j) 2Dwp − wk, (k) 2Dwp − wk w/o scaling

permeability streaks running in a north-eastern direction. There were 16 injectors and
16 producers in the reservoir (Fig. 8(b)). Measurements of pressure in the injectors
and pressure and water cut in the producers were taken concurrently so that there
were 48 sets of data from all 32 wells. Each set of data contained 256 data points
making up a total of 12 288 data points.

Table 4 shows that the number of observation data was reduced from 12 288 to 688
by the scaled version of 2Dwp − k and 2Dwp − wk and from 12 288 to 429 by the
unscaled versions. These reductions translate to approximately 17.8 and 28.6 times
saved in terms of computing sensitivity coefficients using the adjoint method. In fact,
the original data matrix was reduced from 256×48 to 13×33 in the unscaled versions
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Fig. 6 Decay of data mismatch
(16 × 16 reservoir model)

Fig. 7 Model space
composition by p − wk,
wp − wk and 2Dwp − wk
(16 × 16 reservoir model)

Fig. 8 Log permeability distribution and location of wells in the 64 × 64 reservoir model. (a) Log perme-
ability distribution, (b) location of wells

of 2Dwp − k and 2Dwp − wk. The reduction achieved across datasets (from 48 to 33)
is not obtainable in the wp − wk approach thus showing the advantage of 2Dwp − wk
over wp − wk in integrating and decorrelating multiwell data. In the scaled versions,
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Table 4 Model performance data (64 × 64 reservoir model)

Models p − k (p −
k)w/o sc

p − wk wp − k wp − wk 2Dwp −
k

(2Dwp −
k)w/o sc

2Dwp −
wk

(2Dwp −
wk)w/o sc

Ndata 12 288 12 288 12 288 716 716 688 429 688 429

CR 1 1 1 15 15 17.8 28.6 17.8 28.6

Np 4096 4096 816–1679 4096 822–1647 4096 4096 854–1645 791–1687

knorm 249.1 232.2 249.2 258.6 259 294.1 234.4 267.9 233.2

Fig. 9 Match to pressure and water cut Column 1: pressure at injectors; Column 2: pressure at producers;
Column 3: water cut (64 × 64 reservoir model). (a) p − k, (b) p − k w/o scaling, (c) p − wk, (d) wp − k,
(e) wp − wk, (f) 2Dwp − k, (g) 2Dwp − k w/o scaling, (h) 2Dwp − wk, (i) 2Dwp − wk w/o scaling

the pressure datasets were reduced from 256×32 to 10×32 and the water cut datasets
were reduced from 256 × 16 to 23 × 16. In addition, reducing the observation space
by a two-dimensional wavelet transformation makes the adjoint approach a cheaper
method of sensitivity computation. Table 4 also shows the residual norm of k given
by the six approaches. The initial residual norm of k for this example was 290. In this
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Fig. 10 Match to pressure at the producers (64 × 64 reservoir model). (a) p − k, (b) p − k w/o scaling,
(c) p−wk, (d) wp−k, (e) wp−wk, (f) 2Dwp−k, (g) 2Dwp−k w/o scaling, (h) 2Dwp−wk, (i) 2Dwp−wk
w/o scaling

example, the approaches that do not decompose (and reduce) the model space gave
lower residual norms of k. The 2Dwp − k approaches gave the smallest norm.

The matches to the production histories (t � 1852 days) and predicted data
(t > 1852 days) are presented in Figs. 9, 10, 11. The predicted data are produced
from the true permeability distribution and compared with the predictions from the
six approaches. The p − k (scaled version) and the p − wk approaches had difficulty
matching the pressure history, particularly the injection pressure (Figs. 9(a), 9(c),
10(a) and 10(c)). The unscaled versions of the p − k, 2Dwp − k and 2Dwp − wk
provided excellent matches to the pressure data but only acceptable matches to most
of the water cut histories (Figs. 11(b), 11(g), and 11(i)). However, the predictions of
future water cut profile from all the approaches are generally poor. It is important to
note that the inability of the unscaled versions of the 2Dwp − k and 2Dwp − wk ap-
proaches to match all the water cut histories accurately indicate that the approaches
do not satisfactorily integrate multiple datasets at different scales. However, the in-
tegration achieved is acceptable given the benefits derived from decorrelating the
dataset and reducing the computational costs.
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Fig. 11 Match to water cut at the producers (64 × 64 reservoir model)

Estimates of permeability distribution obtained from the six approaches are pre-
sented in Fig. 12. Although (as expected) none of the approaches was able to give
an accurate estimate of the true log permeability distribution, the approaches showed
varying ability to map out the medium-to-high permeability paths. Visual inspection
shows that the unscaled versions of the p − k, 2Dwp− k, and 2Dwp−wk approaches
produced better estimates than the scaled versions. We also observe that the 2Dwp−k

and 2Dwp − wk approaches (involving two-dimensional integration of the datasets)
produced better estimates than their counterparts. The scaled version of p − k and
the p − wk (also scaled) gave the worst estimates in this example. The results ob-
tained here are in agreement with those obtained in Example 1, further indicating
that (1) pressure data carry more significant information about the reservoir param-
eter distribution than water cut data, and (2) the two-dimensional wavelet transform
is an efficient tool for integrating and decorrelating multiwell data. In Fig. 13, we
observe that the 2Dwp − k and 2Dwp − wk approaches (scaled and unscaled) exhib-
ited better convergence properties than the other approaches. Of all the approaches
considered, the scaled p − k and the p − wk exhibited the worst convergence. Fig-
ure 14 shows the number of model parameters used at different iteration counts. We
retained approximately 40 % of the total number of model coefficients for history
match.
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Fig. 12 log k distributions (64 × 64 reservoir model). (a) True distribution, (b) initial guess, (c) p − k,
(d) p − k w/o scaling, (e) p − wk, (f) wp − k, (g) wp − wk, (h) 2Dwp − k, (i) 2Dwp − k w/o scaling,
(j) 2Dwp − wk, (k) 2Dwp − wk w/o scaling

5 Conclusions

A two-dimensional wavelet transform and reparameterization of the data space was
used to integrate and decorrelate multiwell production data. The scaled and unscaled
versions of the transformed datasets were considered and used for reconstructing the
reservoir permeability field. Sample applications were used to study the effects of
(a) integrating the datasets and (b) scaling the datasets on the ability to reconstruct
the reservoir model. Results from sample applications show that (1) the approaches
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Fig. 13 Decay of data
mismatch (64 × 64 reservoir
model)

Fig. 14 Model space
composition by p − wk,
wp − wk and 2Dwp − wk
(64 × 64 reservoir model)

involving two-dimensional integration of the data space produced better estimates of
reservoir parameter distribution than those involving one-dimensional or no integra-
tion of the data space, (2) the unscaled versions of the transformed data produced
poorer but acceptable matches to the water cut data, and (3) the unscaled versions of
the data (p − k, 2Dwp − k and 2Dwp − wk) gave the lowest residual error in data
but poor predictions of water cut. We conclude that the two-dimensional integration
of multiwell production datasets is able to integrate and decorrelate the data thus re-
moving redundancies in the dataset. Furthermore, a large volume of data does not
necessarily lead to a better estimate of model parameters. The amount of informa-
tion about the model carried by the data is more important than the volume of the
data available for history match. Finally, observations show that the 2Dwp − wk ap-
proach gives a larger compression of data, and hence faster adjoint wavelet sensitivity
computations than the wp − wk approach.
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Appendix A: Relationship Between Regression in Real Space and Regression
in Wavelet Space

In this appendix, we give two proofs. First we prove that the Frobenius norm remains
unchanged when the residual matrix is transformed into an orthonormal wavelet do-
main. Furthermore, we show that when all observation-space wavelet coefficients and
all model-space wavelet coefficients are included in the nonlinear regression estima-
tion, the 2Dwp − wk approach is equivalent to the p − k approach.

Lemma 1 Given two matrices X̃ = (x1 x2 . . .) and Ỹ = (y1 y2 . . .), of equal dimen-
sions, and having orthonormal two-dimensional wavelet transforms W2D(X̃) = S̃ =
(s1 s2 . . .) and W2D(Ỹ ) = R̃ = (r1 r2 . . .), respectively. The Frobenius norm of the
difference between X̃ and Ỹ , is exactly the same as the Frobenius norm between S̃

and R̃. That is,

‖X̃ − Ỹ‖2
F = ‖S̃ − R̃‖2

F . (27)

Proof Given that

S̃ = WtX̃WT
ds, (28)

and

R̃ = WtỸWT
ds, (29)

then the Frobenius norm of the difference between S̃ and R̃ can be expressed as

‖S̃ − R̃‖2
F = ∥∥WtX̃WT

ds − WtỸWT
ds

∥∥2
F

= ∥∥Wt(X̃ − Ỹ )WT
ds

∥∥2
F

= trace
{[

Wt(X̃ − Ỹ )WT
ds

]T [
Wt(X̃ − Ỹ )WT

ds

]}

= trace
{
Wds(X̃ − Ỹ )

T
(X̃ − Ỹ )WT

ds

}
. (30)

Because the trace function is invariant under cyclic permutations, we can rearrange
the matrices inside the trace to have

‖S̃ − R̃‖2
F = trace

{
(X̃ − Ỹ )

T
(X̃ − Ỹ )WT

dsWds
}

= trace
{
(X̃ − Ỹ )

T
(X̃ − Ỹ )

}

= ‖X̃ − Ỹ‖2
F . (31)

�

Lemma 2 If all observation-space wavelets and all model-space wavelets are used
in a minimization involving the 2Dwp − wk approach, then regression performed in
the wavelet domain will follow exactly the same path and yield the same estimates as
regression performed in the real space.
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Proof Because all observation-space wavelets and all model-space wavelets are used,

S
D̃wcal
cα

, H
D̃wcal
cα

, and g
D̃wcal
cα

are of full dimensions. By substituting the definitions of

H
D̃wcal
cα

and g
D̃wcal
cα

into Eq. (22) and omitting the iteration index, we obtain

[(
S

D̃wcal
cα

)
T S

D̃wcal
cα

+ λ̇I
]
δcα = −(

S
D̃wcal
cα

)T vec(D̃wcal − D̃wmeas). (32)

Replacing S
D̃wcal
cα

by WtS
D̃cal
cα

Wds and D̃w by WtD̃WT
ds in Eq. (32) and simplifying

leads to
[
SD̃cal

T

cα
SD̃cal

cα
+ λ̇I

]
δcα = −(

SD̃cal
cα

)T vec(D̃cal − D̃meas) (33)

Recognizing that cα = Wsα we may write

[(
SD̃cal

α WT
s

)
T
(
SD̃cal

α WT
s

) + λ̇I
]
Wsδα = −(

SD̃cal
α WT

s

)
T vec(D̃cal − D̃meas). (34)

Further simplification yields

[(
SD̃cal

α

)
T SD̃cal

α + λ̇I
]
δα = −(

SD̃cal
α

)T
vec(D̃cal − D̃meas). (35)

Equation (35) may be written as

Hδα = −g, (36)

where H and g are the Hessian and gradient of the objective function in the p − k ap-
proach. This proves that the 2Dwp − wk approach is equivalent to the p − k approach
when all wavelets of the data and model spaces are retained for regression. �

Appendix B: Adjoint-State Method for Two-Dimensional Data Integration

In this appendix, we discuss the method of directly computing the adjoint sensitivities
of the two-dimensional wavelets of measured data to model parameters. Consider
any vector-valued function ξ(α), which depends on state variables un(α) and is thus
represented by

ξ(α) = η
(
u1,u2, . . . ,uN,α

)
, (37)

in which η(u1,u2, . . . ,uN,α) is, in general, any vector-valued function. However,
for the purpose of sensitivity computation it represents the vector of computed data.
These computed data correspond to only times at which measurements are made. We
may then form an augmented functional ξa by adjoining the constraints f to η using
adjoint variables λ̃ ∈ U∗. Thus,

ξa

(
un+1, λ̃n+1, α

) = η +
N∑

n=0

[(
λ̃n+1)T

fn+1]. (38)

In Eq. (38), η, of length NL, is the vector of data for which sensitivities are to be
computed and λ̃n+1 is the matrix of adjoint variables at time-step n + 1. λ̃n+1 is of
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dimension Nu × NL. In vectorial notation η can be written as

η = vec(D̃cal) = [
dT

1,cald
T
2,cal . . .dT

L,cal

]T
, (39)

where the function vec reshapes a matrix into a column vector containing all the
elements of that matrix. By taking a wavelet transform of Eq. (38) we obtain

ξwa

(
un+1, λ̃n+1

w ,α
) = ηw +

N∑

n=0

[(
λ̃n+1

w

)T
fn+1]. (40)

In Eq. (40), we have used the definitions

ξwa = vec
(
Wt ξ̃aW

T
ds

)
, (41)

ηw = vec
(
WtD̃calW

T
ds

)
, (42)

and λ̃w is computed from the adjoint system of equations. Using the following defi-
nitions,

Jn = ∂fn

∂un
, (43)

Dn+1 = ∂fn+1

∂un
, (44)

Yn+1 = ∂fn+1

∂α
, (45)

and following the same approach presented in Awotunde and Horne (2012), we obtain

(
Jn

)T
λ̃n

w = −
[(

Dn+1)T
λ̃n+1

w +
(

∂ηw

∂un

)T ]
, (46)

and

∂ξwa

∂α
= ∂ηw

∂α
+

N∑

n=1

[(
λ̃n

w

)T
Y n

]
. (47)

Equation (46) is the adjoint equation through which all the adjoint variables λ̃n
w are

evaluated. Jn is the Jacobian matrix, Dn+1 is the is a block-diagonal matrix contain-
ing the derivatives of the accumulation terms at current time-step with respect to the
state variables at the previous time step and Yn+1 is a matrix containing the deriva-
tives of the residual vector with respect to model parameters. All the three matrices
are obtained from the simulator at the last step of the Newton–Raphson iteration at
every time-step n. The Jacobian matrix and the matrix of derivatives of the accumula-
tion terms are constant for all parameters. Thus, we need to compute them only once
at every time step and, therefore, there is no computational overhead. To compute the
reduced wavelet adjoint gradient, we follow the procedure presented in Awotunde
and Horne (2012), but replace the one-dimensional wavelet decomposition with a
two-dimensional wavelet transform of the two-dimensional dataset and then reshapes
the matrix into a vector using vec.
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