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Abstract A common assumption in geostatistics is that the underlying joint distri-
bution of possible values of a geological attribute at different locations is station-
ary within a homogeneous domain. This joint distribution is commonly modeled as
multi-Gaussian, with correlations defined by a stationary covariance function. This
results in attribute maps that fail to reproduce local changes in the mean, in the vari-
ance and, particularly, in the spatial continuity. The proposed alternative is to build
local distributions, variograms, and correlograms. These are inferred by weighting
the samples depending on their distance to selected locations. The local distributions
are locally transformed into Gaussian distributions embedding information on the lo-
cal histogram. The distance weighted experimental variograms and correlograms are
able to adapt to local changes in the direction and range of spatial continuity. The
automatically fitted local variogram models and the local Gaussian transformation
parameters are used in spatial estimation algorithms assuming local stationarity. The
resulting maps are rich in nonstationary spatial features. The proposed process im-
plies a higher computational effort than traditional stationary techniques, but if data
availability allows for a reliable inference of the local distributions and statistics,
a higher accuracy of estimates can be achieved.
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1 Introduction

The assessment of the spatial uncertainty in geostatistics relies on the Random Func-
tion (RF) model (Matheron 1970). This is defined as an ensemble of multiple spa-
tially correlated random variables (RV), Z(u), located at multiple points u within a
selected domain D. This domain is usually assumed homogeneous under statistical,
geological, and/or practical criteria (Journel 1986). This corresponds to the decision
of stationarity and allows for the inference of a spatially invariant distribution of
grouped data within a domain, or of only some of its statistics (Myers 1989; Journel
and Huijbregts 1978). The multi-Gaussian distribution is commonly adopted for char-
acterizing the RF due to its convenient properties (Deutsch and Journel 1998). The
mean field, and the variance and covariance matrix fully define the multi-Gaussian
RF. Commonly used geostatistical techniques such as simple multi-Gaussian krig-
ing (Verly 1983) and the various Gaussian-based simulation methods (Alabert 1987;
Gómez-Hernández and Cassiraga 1993; Dimitrakopoulos and Luo 2004) rely on the
assumption of a stationary multi-Gaussian RF. The basis of these techniques is the
local conditioning of the global distribution of uncertainty by neighboring data. The
resulting maps show the homogeneous spatial continuity resulting from the adoption
of a global distribution and spatial covariance models.

Nevertheless, when modeling complex geological settings, it may be unfeasible to
delimit homogeneous domains due to the lack of information about their limits or to
the complexity of the geological processes affecting the geological attribute. In these
cases, a realistic numerical modeling may require including locally changing means,
variances, ranges, and orientations of the spatial continuity and other parameters.

Different approaches have been proposed to include the nonstationarity of partic-
ular statistics or parameters required for spatial estimation. Techniques like Univer-
sal Kriging incorporate a trend in the mean (Goovaerts 1997). Techniques such as
variogram modeling within moving windows (Haas 1990), presimulation of the lo-
cal anisotropy angles of the variogram model (Xu 1996) and spatial transformation
(Sampson and Guttorp 1992; Boisvert et al. 2009; Monestiez and Switzer 1991) have
been proposed for incorporating locally changing anisotropies in the spatial conti-
nuity. Although these approaches may deal satisfactorily with the nonstationarity of
particular statistics and parameters, none of them offers an integrated treatment of all
aspects of nonstationarity.

This paper proposes an integrated approach for incorporating local changes in the
cumulative distribution function (cdf) and all the required statistics. This approach is
based on the assumption of local stationarity. Under this assumption, the RF multi-
variate cdf is deemed stationary only in reference to an anchor point. The local cdf and
its 1-point and 2-point statistics are inferred by weighting the samples depending on
their distance to a respective anchor point. The modeling of local normal scores trans-
formation functions by Hermite polynomials allows for translating the changes in the
univariate cdf into a multi-Gaussian locally stationary framework. Additionally, the
parameters of the local variogram models are intended to reflect the local changes in
the spatial continuity. Locally stationary estimation and simulation techniques work
with local transformation functions and local variograms at each unsampled location.
This paper describes the details of the proposed approach. The performance of lo-
cally stationary multi-Gaussian kriging is compared with its stationary counterpart



Math Geosci (2013) 45:31–48 33

in terms of the accuracy of estimates. The last part of this paper discusses several
key aspects of the locally stationary approach and briefly describes possible future
developments.

2 The Decision of Local Stationarity

An initial step in standard geostatistical modeling is the definition and delimitation
of geologically and statistically homogeneous spatial domains (McLennan 2007).
Within each of these domains, methods that account for the trend in the mean can
be used effectively. Although a trend model may capture the variations of the local
mean, this may not necessarily remove variations in other statistics, particularly in
the spatial correlation. Moreover, when these variations are continuous, building sub-
domains to capture them may be unfeasible. Modeling under the decision of local
stationarity is proposed as an alternative to the standard modeling process.

Given a geologically homogeneous domain D, the proposed decision amounts to
strict stationarity defined in relation to any of P reference points oi , i = 1, . . . ,P

within such domain. Thus, the RF multivariate distribution is invariant by translation
when anchored to a point oi

Prob
{
Z(u1) < z1, . . . ,Z(un) < zn;oi

}

= Prob
{
Z(u1 + h) < z1, . . . ,Z(un + h) < zn;oj

}
,

uα,uα + h,oi and oj ∈ D, and only if i = j,α = 1, . . . , n,

(1)

where h is a translation vector. The RF multivariate distribution is therefore redefined
at each location and its statistics are pertinent only for the reference point where they
are anchored. This is different to assuming stationarity within finite moving windows
(Haas 1990) and inferring the corresponding RF using only the data that falls inside
that window. This approach could result in difficult and unstable inference, particu-
larly in areas where data is scarce. Instead, what is proposed is to build different RFs
at each anchor point oi ∈ D using all data within the domain, with closer samples to
oi having greater influence than far away ones in the inference of the local cdf and its
statistics.

3 A Distance Weighting Approach for the Inference of Local Distributions and
Statistics

The use of distance based weights for obtaining local statistics has been proposed in
spatial statistics as the methodology of Geographically Weighted Regression (Fother-
ingham 1997; Fotheringham et al. 2002). This paper explores an extension of this idea
within a geostatistical framework.

The weighting of samples for the inference of the locally stationary RF cdf can
be achieved by any distance weighting function that fulfills a set of desirable prop-
erties: smooth distance decay, strict positivity, unbiasedness, independence of units,
and global consistency for all statistics. The continuous decrease of weights as the
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distance to the anchor point increases represents the idea that closer samples should
have a greater contribution to the corresponding anchored cdf and its statistics. The
distance based weights assigned to each sample are proportional to their contribution
to the local cdf. Therefore, they should be positive and the sum of contributions from
all samples should sum to 1. The weights used for the inference of the univariate cdf
and its statistics should be also used for the inference of 2-point statistics within the
same domain. This allows the 2-point statistics to revert to 1-point statistics when the
2-point separation distance becomes zero. Additionally, the weights should be inde-
pendent of the distance units used, but dependent only on the relative distances. One
distance function that fulfills all these properties is the Gaussian kernel. Given a set
of n samples at locations uα , α = 1, . . . , n within a domain D, their corresponding
weights in relation to an anchor point o are obtained from

ωGK(uα;o) = ε + exp
(− (d(uα;o))2

2s2

)

nε + ∑n
α=1 exp

(− (d(uα;o))2

2s2

) , uα,o ∈ D and α = 1, . . . , n. (2)

This is akin to a Nadraya–Watson estimator (Wasserman 2006). The background con-
stant ε is included here in order to avoid computational problems when the distance
d(uα;o) is very large and also to permit some contribution of distant samples. The
parameter s, known as the kernel variance or bandwidth, can be assumed the same
for all directions if there is no evidence of a strong global anisotropy.

In geological datasets, sample locations commonly appear in clusters (Davis 2002;
Borradaile 2003). In order to minimize the bias induced by the clustered sampling,
the original distance weights can be corrected by declustering weights. Suitable spa-
tial declustering techniques include cell declustering (Isaaks and Srivastava 1989;
Deutsch and Journel 1998), polygonal declustering (Isaaks and Srivastava 1989;
Deutsch 2002), and weights obtained from the cross-validation simple kriging vari-
ance (Bourgault 1997). If the distance weights are able to minimize the biases caused
by clustered sampling, the average of weights assigned to each one of the samples
in relation to P anchor points is equivalent to its corresponding declustering weight,
wα , that is,

ω̄(uα) = 1

P

P∑

j=1

ω(uα;oj ) ≈ wα ∀α = 1, . . . , n. (3)

This equality can be enforced if the original distance weights are scaled by

ω̂(uα;o) = ω(uα;o)
wα

ω̄(uα)
∀α = 1, . . . , n. (4)

Whereas polygonal and cell declustering methods only take into account sample ge-
ometry, weights obtained from the cross-validation simple kriging variance consider
also the redundancy and the global anisotropy of data. Thus, the latter represents a
more complete approach for scaling the distance weights for local statistics.

2-point statistics, such as variograms, covariances, and correlograms measure the
variability between pairs of samples separated by a given distance. Pairs of distance
weights assigned to single samples can be combined in order to obtain the weights
required for locally weighted 2-point statistics. A mixture rule (Korvin 1982) can
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Fig. 1 2-point weight profiles
for different values of the
parameter t in the mixture rule.
The tail sample location is fixed
in the origin and has a weight
of 1, while the head sample
location is moving along the line

be applied for this purpose. Given two property values g1 and g2, and volume frac-
tions φ, and 1 − φ, respectively, the general mixture rule is expressed as

M(g1, g2, φ, t) = [
φgt

1 + (1 − φ)gt
2

]1/t
, with t �= 0, t ∈ R. (5)

For obtaining 2-point weights for a pair separated by a vector h, it can be assumed
that the volume fractions of each sample are equivalent (that is, φ = 0.5) and the
individual sample weights are the property values

ω(uα,uα + h;o) =
[
ωt(uα;o) + ωt(uα + h;o)

2

]1/t

. (6)

For t = 1, the mixture rule is the arithmetic average, if t = −1 it is the harmonic
average. As seen in Fig. 1, the higher the t value, the closer the 2-point weight value
approaches the highest 1-point weight. The inverse is observed when t is increasingly
negative. A value of zero for t may be preferred in order to avoid these extremes. The
limit of the mixture rule when t tends to zero is the geometric average, that is,

lim
t→0

ω(uα,uα + h;o) = √
ω(uα;o) · ω(uα + h;o). (7)

A critical aspect of the local statistics inference is the choice of the distance weight-
ing function parameters. Although this choice depends on data density and can be
supported by numerical measures, it is mostly left to the practitioner’s judgment.
When choosing these parameters, the practitioner must be aware of the related vari-
ance/bias trade-off. A narrow bandwidth and very low background constant may cap-
ture smaller nonstationary features, but they may render the local statistics unreliable
and cause overfitting. On the other hand, a very wide bandwidth could result in ex-
cessive smoothing of the local statistics that may mask nonstationary features. The
distance weighting function must capture local trends informed by groups of samples
rather than reflect the local influence of a few individual values. Therefore, if data is
sparse, using a wider bandwidth would be preferred.

These weights modify the usual expressions of the 1-point and 2-point statistics.
Thus, the local univariate cdf is obtained by

Prob
{
Z(u) ≤ zk

∣∣ o
} ≈ F̂ (zk;o) = ∑n

α=1 ω(uα;o) · I (uα; zk) ∈ [0,1],
∀uα ∈ D, k = 1, . . . ,K,

(8)
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Fig. 2 (a) Synthetic image composed by three zones of different anisotropy (the small circles indicate
sample locations). (b) Absolute errors for location-dependent 2-point statistics obtained using different
kernel bandwidths

where I (uα; zk) is one if z(uα) ≤ zk , otherwise it is zero. The local mean, m̂Z(o),
variance, σ̂ 2(o), and other univariate statistics are obtained using the same set of
weights.

Omre (1984) proposed the estimation of variograms as weighted averages to ac-
count for data clustering. Here, the 2-point weights obtained using Eq. (7) are used
to estimate local experimental variograms, γ̂ (h;o), covariances, Ĉ(h;o), and correl-
ograms, ρ̂(h;o). The expressions for locally weighted 1-point and 2-point statistics
are presented in Appendix A.

A synthetic image produced using sequential Gaussian simulation with different
variogram model parameters at each one of its three regions allows for illustrating the
impact of the kernel bandwidth on the local variograms and correlograms (Fig. 2(a)).
This image was sampled by a semiregular grid of 5×5 pixels. The location-dependent
experimental 2-point statistics were obtained at multiple anchor points located in a
10×10 pixels regular grid using different bandwidths. Figure 2(b) shows the average
absolute errors between the experimental local 2-point statistics and the true ones
calculated for each region of the exhaustive image. When narrow kernel bandwidths
are used, the fluctuations in the local 2-point statistics increase (Fig. 3(a)). Instead, for
very wide bandwidths, they converge toward the global experimental 2-point statistics
(Fig. 3(c)). Provided that data is abundant enough, a bandwidth that is roughly the
size of the regions of different anisotropy allows a reasonable reproduction of the
true local spatial continuity (Fig. 3(b)). Narrow bandwidths and data scarcity result
in increased uncertainty about the local distributions and statistics. Its quantification
is beyond the scope of this paper, but the discussion section contains a more extended
commentary on this subject.

Local experimental correlograms (Expression (A.6)) tend to be more robust than
local experimental variograms (Expression (A.3)). This is due to the incorporation
of the local means and variances in the calculation of the former. In this example
this is translated in a smaller absolute error for the local correlograms. Moreover,
their interpretation in terms of local spatial coefficients of correlation is straightfor-
ward.
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Fig. 3 Experimental global, true local and experimental local correlograms inferred using Gaussian kernel
bandwidths of 10 (a), 50 (b), and 100 (c) distance units. All the correlograms are in the direction E–W

4 Modeling of Local Normal Scores Transformation and Local Variograms

Local normal scores transformation is required for adapting Gaussian-based geosta-
tistical methods to the locally stationary framework. Each location dependent cdf
F̂ (z;o) must be locally transformed into the standard normal cdf, G(y). The local
normal scores transformation is expressed as

y = G−1(F̂ (z;o)
) = ϕY (z;o). (9)

This allows for matching of the local quantiles zp(o) with the standard Gaussian
quantiles, yp , such as

F̂
(
zp(o);o

) = G(yp) = p ∀p ∈ [0,1]. (10)

The local normal scores transformation functions must be stored for their further use
in estimation and simulation. An efficient option is to use Hermite polynomial series
with stored local coefficients to model the local transformation functions. Appendix B
presents the equations required for this purpose.

The modeling of experimental variograms allows for an exhaustive description of
the spatial continuity for different directions and distances. The variogram model-
ing process also allows for incorporating geological information on spatial continu-
ity. These models provide a suitable covariance function for the kriging equations
(Gringarten and Deutsch 2001). Any of the valid variogram models can be used for
fitting the local experimental 2-point statistics. The same variogram model should
be chosen for all anchor point locations. Only the parameters of this model change
locally in response to changes in the spatial continuity informed by the experimen-
tal 2-point statistics. The stable model provides the capability of changing shapes
according to its power parameter (Chilès and Delfiner 1999)

γ (h;o) = c(o).
[
1 − exp

(−(
3
∣∣h′∣∣)b(o))] 0 < b(o) ≤ 2. (11)

In this expression, c(o)is the local sill contribution, h′, is the vector separation
modified by the local orientations and ranges of anisotropy, and b(o)controls the
shape of the local variogram model. b(o) yields the exponential model when it is 1
and the Gaussian model when it reaches 2.
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The local variogram models must be fitted for several directions at multiple anchor
point locations. This is only feasible with the help of a semiautomatic fitting algo-
rithm. Popular semiautomatic fitting algorithms are based in the minimization of the
weighted square error between the model and the experimental variogram (Cressie
1985; Pardo-Igúzquiza 1999; Emery 2010). Moreover, abrupt fluctuations in the pa-
rameters of the local variogram models must be also avoided if the experimental local
2-point statistics change smoothly between anchor points.

Strictly, the processes of location-dependent variogram inference and modeling,
and local normal scores transformation and modeling should be performed at all the
locations to be estimated or simulated; however, these processes can be very demand-
ing in time and computer resources. Therefore, these are performed only at a limited
number of anchor points. The locations of these anchor points are chosen in order to
provide exhaustive and smoothly changing local statistics and parameters by inter-
polating their inferred values between those points. The local variogram parameters
and local Hermite coefficients do not necessarily average linearly, but it is reasonable
to reconstruct their variation between anchor points by interpolation if they change
smoothly from one anchor point to another. An adequate anchor point separation
minimizes the number of required anchor points while keeping the error introduced
by the interpolation within tolerable limits. Since local 1-point statistics, such as the
mean and the variance, are relatively straightforward to infer, these are used to as-
sess the trade-off between the number of anchor points and the error introduced by
interpolation.

5 Locally Stationary Spatial Estimation

Estimation and simulation under the locally stationary assumption use the interpo-
lated local variogram parameters and Hermite coefficients to update the covariance
matrix and the normal scores transformation function at each location. Locally sta-
tionary simple kriging (LSSK) is central for estimation and simulation under the as-
sumption of local stationarity. Its equations are akin to the traditional simple kriging
(Goovaerts 1997), but with spatial correlation models that are locally dependent. The
locally stationary simple kriging system of equations is expressed as

n(o)∑

β=1

λ
(LSSK)
β (o)ρZ(uβ − uα;o) = ρZ(o − uα;o), α = 1, . . . , n(o), (12)

where λ
(LSSK)
β are the kriging weights and ρZ(h;o) is the location dependent correl-

ogram model and n(o) is the number of samples within an ellipsoidal search neigh-
borhood centered at o. Thus, o is the estimation location, the location where the
local correlations ρZ(h;o) are defined, and the center of the search ellipsoid. For the
search ellipsoid, a simple option is to use a unique isotropic moving neighborhood
with fixed dimensions large enough to accommodate the different local variogram
ranges throughout the estimation domain. A more elaborated option would be to use
locally changing neighborhoods with dimensions and orientations related to range
and anisotropy of the local variogram models.
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Equation (12) requires the data–data and data-estimated location correlation ma-
trices change from one location to another. The correlation for the same pair of loca-
tions will differ depending on which location is being estimated. This difference will
be larger as the separation between two estimate locations grows or if the location-
dependent correlograms change abruptly between adjacent locations. The resulting
inconsistencies that may arise can be minimized by using wide bandwidths to infer
smoothly changing local correlograms and fitting them with models with continu-
ously changing parameters. Moreover, the local correlation between nearby samples
is more relevant for estimation. The expressions for the locally-stationary simple krig-
ing estimator, Z∗

LSSK(o), and variance, σ 2
LSSK(o), are given in Appendix C.

In locally stationary multi-Gaussian kriging (LSMGK), the local normal scores
transformation is performed at every estimation point, locally stationary simple krig-
ing is then used to obtain the conditional cdf (ccdf) in Gaussian space. This is defined
by the LSMGK estimate,Y ∗

LSSK(o), and variance, σ 2
LSSK(o). The ccdf in original units

is subsequently built by back-transforming the local Gaussian quantiles yp(o), that
is,

zp(o) = ϕZ

(
yp(o);o

) ≈
Q∑

q=0

φq(o)Hq

[
yp(o)

]

=
Q∑

q=0

φq(o)Hq

[
Y ∗

LSSK(o) + σLSSK(o) · tp
]
. (13)

In this expression, tp is the p-quantile in standard Gaussian units, and Hq [yp(o)]
and φq(o) are the Hermite polynomials and their local coefficients, respectively (see
Appendix B). The mean and variance of the ccdf in original units can be approxi-
mated by the mean and the variance of the local quantiles zp(o).

6 Example

The well-known Walker Lake dataset (Isaaks and Srivastava 1989) is used for illus-
trating the proposed methodology and algorithms. Figure 4(a) presents the exhaus-
tive Walker Lake dataset overlaid by the clustered samples that are used for locally
stationary modeling. The scale and the elevation attribute in this map have been dis-
torted. Thus, their corresponding units will be assumed generic.

A Gaussian kernel with a 30 units bandwidth and a background of 0.01 was used
for the inference of location-dependent cdfs and its statistics for each one of the
anchor points located in a 20 × 20 units grid. Figure 4(b) shows the location of
the anchor points as well as a circle of radius equal to the kernel bandwidth cen-
tered in one of them. The original distance weights were corrected by declustering
weights, as in Eq. (4). Figure 5 presents the location-dependent cdfs for different an-
chor points and the global cdf. Each one of these location-dependent cdfs was locally
normal scores transformed and their corresponding transformation function modeled
by series of 40 Hermite polynomials. The location-dependent experimental correl-
ograms, ρ̂Y (h;o) were inferred from the locally transformed values for 6 different
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Fig. 4 (a) Clustered samples overlying the exhaustive Walker Lake dataset. (b) Anchor points locations
(small squares) overlying the clustered dataset (small circles). The fading grey circle in the middle of the
figure represents the bulge of the moving Gaussian kernel

Fig. 5 Location-dependent cdfs
inferred at 195 different anchor
points

directions at each anchor point. The 1 − ρ̂Y (h;o) experimental curves were fitted
semi-automatically using a nugget effect and an exponential model with local param-
eters. Figure 6 shows the interpolated maps of the resulting local variogram parame-
ters. The orientation of maximum continuity for the global normal scores variogram
model is Az. 165°. This global variogram model is defined as

γ (h) = 0.25 + 0.75 · Exp h max=119
h min=28

(h). (14)

The moving circular search window used for both, MGK and LSMGK, has a radius
of 135 distance units, which is large enough to accommodate any global or local
variogram range. Figure 7 shows a comparison of the cross validation results be-
tween MGK based on simple kriging (MGSK, Fig. 7(a)), ordinary kriging (MGOK,
Fig. 7(b)) and LSMGK (Fig. 7(c)). For this dataset, LSMGK cross-validation results
present a noticeable reduction in the mean square error. Also, despite the slight in-
crease in the standard deviation of estimates, LSMGK shows an increment of the
coefficient of correlation between true and estimated values from around 0.77, for
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Fig. 6 Local parameters of the exponential model fitted on the experimental correlograms of locally trans-
formed normal scores values: (a) nugget effect, (b) maximum range, (c) anisotropy ratio, (d) anisotropy
orientation

Fig. 7 Cross-validation scatterplots for (a) multi-Gaussian simple kriging, (b) multi-Gaussian ordinary
kriging, and (c) locally stationary multi-Gaussian kriging

both MGSK and MGOK, to 0.82. This is because the covariance between true and
estimated values is larger for LSMGK cross-validation results. Table 1 presents the
summary statistics for the cross-validation results using the two traditional kriging
methods and the proposed one.
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Table 1 Cross-validation statistics for multi-Gaussian simple kriging, multi-Gaussian ordinary kriging,
and locally stationary multi-Gaussian kriging

Data MGSK MGOK LSMGK

Mean (clustered) 435.4 444.9 447.6 436.3

Standard deviation (clustered) 299.6 213.5 214.9 219.3

Mean square error 37084 37410 30418

Covariance between true and estimated values 49171 49325 53704

Correlation between true and estimated values 0.769 0.766 0.818

Fig. 8 Estimates maps for (a) multi-Gaussian simple kriging, (b) multi-Gaussian ordinary kriging, and
(c) locally stationary multi-Gaussian kriging

Fig. 9 Conditional variance maps for (a) multi-Gaussian simple kriging, (b) multi-Gaussian ordinary
kriging, and (c) locally stationary multi-Gaussian kriging

While both MGSK and MGOK estimates maps (Figs. 8(a) and 8(b), respectively)
show a dominant direction of spatial continuity imposed by an invariant model of
spatial correlation, the LSMGK map (Fig. 8(c)) presents the full range of variation
of the directions of spatial continuity informed by the local variogram models. The
incorporation of local cdfs and variograms models in LSMGK causes the noticeable
differences in the resulting variances map (Fig. 9(c)) when compared with the MGSK
and MGOK variances maps (Figs. 9(a) and 9(b), respectively).
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Table 2 Basic statistics for multi-Gaussian simple kriging, multi-Gaussian ordinary kriging, and locally
stationary multi-Gaussian kriging estimates

Mean Variance Average of ccdf variances
in Gaussian units

Average of ccdf variances
in original units

Data 290.1 64,562

MGSK 306 33,263 0.602 39,444

MGOK 307.7 34,067 0.605 39,615

LSMGK 290.5 35,794 0.630 29,592

Fig. 10 True vs. estimated values scatterplots for (a) multi-Gaussian simple kriging, (b) multi-Gaussian
ordinary kriging, and (c) locally stationary multi-Gaussian kriging

Table 3 True and estimated values univariate and bivariate statistics for multi-Gaussian simple kriging,
multi-Gaussian ordinary kriging, and locally stationary multi-Gaussian kriging

Data MGSK MGOK LSMGK

Mean 278 306 307.7 290.5

Standard deviation 249.9 182.4 184.6 189.3

Mean square error 27000 27024 22708

Covariance between true and estimated values 34735 35175 37832

Correlation between true and estimated values 0.762 0.763 0.800

Table 2 presents some summary statistics of the traditional and locally station-
ary multi-Gaussian kriging estimates and ccdf variances. The variance of LSMGK
estimates is larger, which is an indication of reduced smoothing. Although the aver-
age of LSMGK conditional variances is slightly larger in Gaussian units, the back-
transformation constrained by the a priori local distributions results in a reduction of
the average of conditional variances in original units.

The comparison of scatterplots of MGSK, MGOK (Figs. 10(a) and 10(b)) and
LSMGK (Fig. 10(c)) estimates versus the values of the exhaustive dataset shows
that, for this particular case, LSMGK provides a more accurate estimation. This is
evidenced by a reduced mean square error, and by an increased covariance and cor-
relation coefficient between true and estimated values, as Table 3 shows.
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7 Discussion

Local statistics should capture actual local trends of the attribute rather than the in-
fluence of a few nearby samples. This is better accomplished with very dense sam-
pling. In the case of the Walker Lake dataset, the number of samples and their loca-
tions allow for the modeling of trends in the mean, variance, and spatial continuity
by the location-dependent statistics. Particularly, the changes in the orientations of
spatial continuity are satisfactorily reproduced by the 2-point statistics. Moreover,
kriging variances reflect not only the samples configuration and availability around
estimates, but also the local variability. Local normal scores transformation carry
information of the changes in the local statistics for their use in Gaussian-based es-
timation algorithms. These features allow LSMGK to outperform simple and ordi-
nary MGK in terms of accuracy and reduced uncertainty; this last expressed as the
average of ccdf variances. The improvement obtained by locally stationary model-
ing is observed for both cross-validation results and in the posterior confirmation
of the model by the exhaustive dataset. This may not be the case when samples
are scarce, the sampling design is poor, or the kernel bandwidth too narrow in re-
lation to the samples separation. In those cases, the inference of location-dependent
statistics may be poor and the consequent increased fluctuations in them reflect a
higher associated uncertainty. These fluctuations are related to the error that arises
from differences between the estimated statistics and the statistics of the unique
spatial distribution of a geological attribute (Marchant and Lark 2004). The effect
of reducing the bandwidth on the estimation of locally stationary statistics is sim-
ilar to the effect of reducing the sample size and the ratio between the domain
size and the spatial correlation range for stationary statistics (Muñoz Pardo 1987;
Webster and Oliver 1992). A measure of the uncertainty in the estimation of local
statistics is a necessary objective for forthcoming research. This could be helpful to
define an appropriate kernel bandwidth and it would allow for transferring the uncer-
tainty about the local statistics to the uncertainty about the estimates.

Currently, the choice of the kernel bandwidth relies mostly on the practitioner’s
judgment. If the local statistics vary abruptly from one anchor point to another, this
may be an indication of the issues discussed above. Unless a hard domain boundary
or another discontinuity is present, the local statistics should vary smoothly across
the domain. This also allows for minimizing inconsistencies and artifacts that may
arise from assigning different local covariance values to the same pairs of locations
in relation to adjacent anchor points. A related pending challenge is the development
of semiautomatic algorithms for the joint fitting of variogram models with local pa-
rameters that change smoothly within limits imposed by the user.

8 Conclusions

The use of location-dependent distributions and statistics under an assumption of
local stationarity with locally conditioned distributions and statistics is a viable ap-
proach for building numerical models that account for different aspects of nonsta-
tionarity in an integrated way. The resulting models show a greater richness of spa-
tial features, clearly contrasting with the homogeneous spatial continuity imposed by
global variogram models and the assumption of a stationary distribution.
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The distance weighted distributions and statistics can adapt to nonstationary as-
pects of the attribute. This capability depends on data availability and the choice of
the distance weighting function parameters. If data is abundant enough to allow for
a robust inference of the location-dependent statistics, the resulting models are able
to reproduce actual non-stationary patterns of the attribute. Moreover, these models
can result in increased accuracy and reduced uncertainty and, therefore, they have the
potential to provide an improved support for engineering decisions. Some future ar-
eas of research include the determination of the uncertainty about location-dependent
statistics and its transfer to final models, and improved joint fitting algorithms for lo-
cal variograms.
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Appendix A: Locally Weighted Statistics

Weighted local univariate statistics have been previously presented as geographically
weighted statistics (Brunsdon et al. 2002). For a set of calibrated weights ω̂(uα;o),
α = 1, . . . , n, anchored at point o, the local mean and variance are obtained from

m̂Z(o) =
n∑

α=1

ω̂(uα;o) · z(uα) (A.1)

and

σ̂ 2(o) =
n∑

α=1

ω̂(uα;o)
[
z(uα) − m̂(o)

]2
. (A.2)

Given a separation vector h, the locally weighted variograms are estimated by
(Machuca-Mory and Deutsch 2008; Harris et al. 2010)

γ̂ (h;o) = 1

2

N(h)∑

α=1

ω′(uα,uα + h;o) · [z(uα) − z(uα + h)
]2

, (A.3)

where ω′(uα,uα +h;o) are the standardized 2-point distance weights and N(h) is the
number of pairs separated by h. The local experimental covariance can be estimated
as

Ĉ(h;o) =
N(h)∑

α=1

ω′(uα,uα + h;o)
[
z(uα) − m̂−h(o)

][
z(uα + h) − m̂+h(o)

]
. (A.4)

The tail and head local means are obtained from

m̂−h(o) =
N(h)∑

α=1

ω′(uα,uα + h;o) · z(uα),

m̂+h(o) =
N(h)∑

α=1

ω′(uα,uα + h;o) · z(uα + h).

(A.5)
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And the local experimental correlogram is estimated as

ρ̂(h;o) = Ĉ(h;o)
√

σ̂ 2
−h(o) · σ̂ 2

+h(o)

∈ [−1,+1]. (A.6)

The required local tail and head variances are estimated by

σ̂ 2
−h(o) =

N(h)∑

α=1

ω′(uα,uα + h;o) · [z(uα) − m̂−h(o)
]2

,

σ̂ 2
+h(o) =

N(h)∑

α=1

ω′(uα,uα + h;o) · [z(uα + h) − m̂+h(o)
]2

.

(A.7)

Appendix B: Hermite Model of Local Gaussian Transformation

Given a number of quantiles zp(o) of the local distribution, the local Gaussian trans-
formation function is approximated by (Journel and Huijbregts 1978; Wackernagel
2003)

zp(o) = ϕZ(yp;o) ≈
Q∑

q=0

φq(o)Hq [yp]. (B.1)

Hq [yp] is the Hermite polynomial of order q , and the corresponding local coefficients
φq(o) are obtained by

φq(o) =
P∑

p=2

(
zp−1(o) − zp(o)

) 1√
q

Hq−1(yp)g(yp). (B.2)

Depending on the number of samples and the complexity of the cdf, between 50 to
200 local quantiles may suffice for the modeling of the local Gaussian transformation
function. The expansion into Hermite polynomials allows for the approximation of
the local variance (Rivoirard 1994)

σ̂ 2
Z(o) ≈

Q∑

q=1

φ2
q(o). (B.3)

In practice, expansions of degree 20 and 40 are commonly used (Vann and Sans 1996;
Wackernagel 2003, p. 247).

Appendix C: Locally Stationary Simple Kriging Estimator and Variance

The locally-stationary simple kriging variance is expressed as

σ 2
LSSK(o) = CZ(0;o)

[

1 −
n(o)∑

α=1

λ(LSSK)
α (o)ρZ(o − uα;o)

]

. (C.1)
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CZ(0;o) is equivalent to the location-dependent variance. The locally stationary sim-
ple kriging estimator is

Z∗
LSSK(o) =

n(o)∑

α=1

λ(LSSK)
α (o) · Z(uα) +

[

1 −
n(o)∑

α=1

λ(LSSK)
α (o)

]

m(o), (C.2)

with m(o)as the local mean.
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