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Abstract Application of multivariate statistics to trace element datasets is reviewed
using 164 multi-element LA-ICP-MS spot analyses of pyrite from the Moonlight
epithermal gold prospect, Queensland, Australia. Multivariate analysis of variance
(MANOVA) is used to demonstrate that classification of pyrite on morphological
and other non-numeric factors is geochemically valid. Parallel coordinate plots and
correlation cluster analysis using Spearman’s coefficients are used to discover unex-
pected elemental relationships without making assumptions a priori. Finally, princi-
pal component analysis and factor analysis are used to demonstrate the presence of
sub-classes of pyrite. Corroborated with geological data, statistical analysis provides
evidence for successive generations of hydrothermal fluids, each introducing specific
metals, and for partial or complete replacement of different minerals. The data permit
reinterpretation of Moonlight as a telescoped system where epithermal-Au (± base
metals) is superposed onto early porphyry-Mo mineralization.
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1 Introduction

Statistical analysis has been widely applied to treat large datasets of multivariate data
for the past 30 years (Bailey and Krzanowski 2012). There are, however, few stud-
ies which apply (a) such techniques to a dataset for a single mineral such as pyrite,
and (b) critically evaluate the applicability of several different statistical methods to
such a dataset. Interest in multi-trace element datasets for single minerals has ex-
panded since techniques such as Laser-Ablation Inductively Coupled Plasma Mass
Spectroscopy (LA-ICP-MS) became available and high-quality standards were de-
veloped for reliable quantitative data at low cost (Ciobanu et al. 2009; Cook et al.
2009a, 2011; Danyushevsky et al. 2011; Large et al. 2007; Maslennikov et al. 2009;
Sung et al. 2009; Thomas et al. 2011; Ye et al. 2011). In mineral deposit studies,
refractory minerals such as pyrite are targeted since unless they have totally re-
crystallized, a sequence of geological events will be encoded within their zoned,
or otherwise heterogeneous, trace element chemical patterns (Cook et al. 2009b;
Sung et al. 2009). Mineral trace element data also have applications for exploration
vectors that can assist in locating new resources, for genetic interpretation and for
traceability of concentrate.

LA-ICP-MS trace element data are commonly presented with relatively low-level
statistical treatment: as arithmetic or weighted means, variance data, or as bi- or tri-
element correlations (Ye et al. 2011). Application of trace element distributions to
derive genetic or exploration information is based on classification of mineral popula-
tions defined by grain morphology, habit, mineral association or other non-numerical
characteristics (Cook et al. 2009b). The statistical reliability of such an approach
is rarely tested. One of the issues that impacts the statistical texture of the dataset
is single-grain heterogeneity revealed by trace element mapping (Large et al. 2009).
This contribution addresses this gap, presenting statistical analyses in a multi-element
LA-ICP-MS dataset for pyrite. We assess the reliability, and geochemical validity, of
classifying populations on textural criteria using MANOVA, and evaluate the use-
fulness of a variety of multivariate statistical techniques; hierarchical agglomerative
cluster analysis; parallel coordinate plots; principal component analysis; and factor
analysis as exploratory methods for visualizing data, and discovering unexpected re-
lationships.

2 Geological Context, Pyrite Textures and Trace Element Data

The 164 spot analyses used for this study derive from 13 samples taken from three
drillholes intersecting Moonlight, a recently discovered epithermal-style Au prospect
within the Late Devonian to Early-Mid Carboniferous Pajingo orefield (Bobis et al.
1995; Richards et al. 1998; Baker et al. 2006), located in the Drummond Basin,
northwest Queensland, Australia. At Moonlight (Paul 2010), mineralization is lo-
cated within altered andesites, brecciated epiclastic rocks and crosscutting chal-
cedony veins. Pyrite is a minor, yet ubiquitous component of the veins and al-
tered rocks. Moonlight is a satellite prospect located 2 km southeast from the Vera
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Fig. 1 Texturally distinct pyrite (Py) types (back-scattered-electron images): (A) Zoned GR pyrite;
(B) GR pyrite retaining replacement texture; (C) ‘wispy’ pyrite (RR) coexisting with GR pyrite; (D) co-
existing GV- and ‘bladed’ RV-pyrite; (E) ‘feathery’ (RV) pyrite. (F) Photomicrograph showing ‘feathery’
vein pyrite

Nancy deposit where mining is currently ongoing. Gold occurs as fine-grained na-
tive gold/electrum as well as invisible gold (Cook and Chryssoulis 1990) within As-
bearing pyrite.

The diverse pyrite textures (Fig. 1) indicate that the epithermal system was
multi-phase in terms of brecciation and input of hydrothermal fluids (Paul 2010).
Sampling was focused on pyrite from veins and disseminations in lithologies with
different alteration in order to constrain (i) Au deportment in pyrite and associa-
tion with other elements and (ii) the mineralization sequence. The dominant tex-
tural pyrite type is granular. This is always characterized by compositional zona-
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Table 1 Classification of pyrite grains

Symbol Morphology Location Class Number

Granular Rock GR 98

Granular Vein GV 22

Replacement Rock RR 14

Replacement Vein RV 30

Total = 164

tion patterns that show not only reabsorption and overgrowth but are also demar-
cated or crosscut by pores (Fig. 1A), sometimes associated with trails of inclusions.
Whereas zonation is attributable to mineral growth, the latter clearly relate to su-
perimposed brecciation. Some zoned grains retain a bladed appearance indicating
pseudomorphic replacement of a pre-existing mineral (Fig. 1B). Such a texture is
common for pyrite that replaces marcasite and/or pyrrhotite (Ramdohr 1980). This
is often accompanied by the presence of relict inclusions suggesting the identity of
the precursor minerals; such inclusions, however, are not seen in the present sam-
ples.

More typical replacement morphologies observed for Moonlight pyrite are char-
acterized by unusual habits, that is, wispy and feathery. These morphologies were
interpreted to mimic earlier minerals with lamellar habit and which are also ob-
served in the samples: bladed calcite, molybdenite and possibly chlorite (Fig. 1C, D;
Paul 2010). Although granular and replacement pyrites are dominant in the rock
and veins (Fig. 1E, F), respectively, they nevertheless coexist in the two litholo-
gies; in veins, granular pyrite is clearly later. Feathery pyrite always has a dirty
appearance outlining the lamellar morphology and this is attributable to retention
of dusty inclusions. Titanium-oxide inclusions (rutile and ilmenite) are common in
the granular pyrite in the rock, whereas inclusions of base-metal sulfides are present
in granular pyrite from the veins. Fine-grained Ag-minerals and gold are present in
both.

Multi-element LA-ICP-MS spot analysis and element mapping of pyrite were car-
ried out on an Agilent HP 7700 and HP 4500 Quadrupole instruments, respectively
(CODES, University of Tasmania). Methodologies followed Danyushevsky et al.
(2011) with details given in the online Appendix A. Results of the 164 LA-ICP-MS
spot analyses are given in Table 1 of online Appendix B. For the purpose of this paper,
we classify pyrite by two criteria: appearance (granular, G, or replacement, R) and
location (rock, R, or vein, V), giving four simplified classes: GR; GV; RR; and RV
(Table 1). The largest dataset is for GR which is also the earliest generation of pyrite.
All the other categories are later than GR, either because of their location (RV and
GV in the vein) or as replacement type in the rock (RR). Certain trace elements were
commonly measured at concentrations below minimum detection limit (mdl) in part
of the population (percentage of spot analyses below the mdl in brackets): Cr (81),
Nb (70), Te (63), Re (60), U (52), W (49), Bi (48), Sn (48), Ga (45), In (27), Mn
(24), V (20), Cd (15). Values of half the mdl are reported in Table 2 and in Table 1 of
online Appendix B. However, for statistical analyses values below the mdl there is no
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Fig. 2 Au versus As plot. The solubility limit for Au in pyrite (Reich et al. 2005) is shown as a dashed-line.
Below this line, Au occurs in solid solution, whereas above, a component of Au is present as inclusions
(Au0)

substantial evidence that the element in question is present and the value is therefore
set to 0. This makes negligible difference to analyses.

The dataset shows that pyrite contains Au (mean 69.8 ppm) and up to 50 000 ppm
As. Au concentrations vary within each sample and between samples; maximum val-
ues exceed 600 ppm. The lack of observed visible gold in the pyrite grains analyzed
is consistent with the position of points on the Au versus As plot (Fig. 2) relative to
the empirical solubility limit of Au in pyrite (Reich et al. 2005). All except two points
plot below the solubility line. Further indirect constraints on the size of Au inclusions
come from the Au signal on the time-resolved downhole LA-ICP-MS depth profiles
which are typically smooth. Our previous work linking the appearance of the LA-
ICP-MS spectra to the observed Au distribution at the micron- to nanoscale (Ciobanu
et al. 2011, 2012) are consistent with the above interpretation where Au is present
either in the lattice or as nanoparticles.

Basic statistical treatment (Table 2) shows that Ag, Sb and Tl concentrations are
markedly higher in the RR and particularly in the RV category; Pb and Cd are anoma-
lous in RV but not in RR. Molybdenum concentrations are also two orders of mag-
nitude higher in the vein categories than the respective rock counterparts. Such high
concentrations of these elements are unusual for pyrite. Concentrations of Co and Ni
(means 201 and 155 ppm, respectively) vary over four orders of magnitude, spiking
to values of over 6000 ppm Co and 2800 ppm Ni. Both elements are generally higher
in the innermost zone of GR pyrite. Co and Ni concentrations are significantly lower
in RR pyrite; Ni, however, is highest in RV pyrite, as is the Ni/Co ratio. Among the
siderophile elements, GR pyrite contains some higher values of Ti and also V, Cr
and Nb albeit at much lower concentrations. Element maps of a zoned GR pyrite
(Fig. 3) show a core enriched in Co, Ni, Cu, Ag and Sb overgrown by an As- and
Au-rich zone. Core-reabsorption and distinct geochemical patterns indicate at least
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Fig. 3 Back-scatter electron image (top) and LA-ICP-MS element maps of zoned GR pyrite. Scale repre-
sents counts per second

two growth cycles. Element mapping of feathery RV pyrite (Fig. 4) shows a contrast-
ing pattern in which all elements, except Cu, are homogeneously distributed. Ni is
dominant over Co and Hg is also present.

3 Multivariate Statistical Analysis

We emphasize the application of statistical analysis to a geological problem in its
ability to provide a succinct description of the data, highlight relationships among
variables and potentially provide insight into underlying geological processes (which
may not be apparent otherwise). The mathematical formalism is only briefly intro-
duced. Further detail is given by Winderbaum (2011), based on methodology devel-
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Fig. 4 LA-ICP-MS element maps of a “dirty”-feathery RV pyrite. Scale represents counts per second

oped in Koch (2012) but that is also available in most multivariate statistics textbooks
(Manly 1994; Everitt and Dunn 2001).

3.1 Multivariate Analysis of Variance (MANOVA)

We have samples, which will be assumed random, from four natural populations;
GR, GV, RR and RV. Let μi,j denote the population mean for element i in class
j (i = 1, . . . ,26 correspond to Au, . . . ,Nb (online Appendix B) and j = 1,2,3,4
correspond to GR, GV, RR and RV). MANOVA tests the null hypothesis that the
mean (concentration of element) vectors are the same across the four populations,
specifically

Model 1 hypothesis:

⎛
⎜⎝

μ1,1
...

μ26,1

⎞
⎟⎠ = · · · =

⎛
⎜⎝

μ1,4
...

μ26,4

⎞
⎟⎠ , (1)

Model 2 hypotheses:

⎛
⎜⎝

μ1,1
...

μ26,1

⎞
⎟⎠ =

⎛
⎜⎝

μ1,4
...

μ26,4

⎞
⎟⎠&

⎛
⎜⎝

μ1,2
...

μ26,2

⎞
⎟⎠ =

⎛
⎜⎝

μ1,4
...

μ26,4

⎞
⎟⎠

&

⎛
⎜⎝

μ1,3
...

μ26,3

⎞
⎟⎠ =

⎛
⎜⎝

μ1,4
...

μ26,4

⎞
⎟⎠ . (2)
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Table 3 Summary of MANOVA results

Au Ag As Sb Cu Pb Bi Tl Zn Cd In Se Te Sn Mo W Re U Mn Ga Co Ni Ti V Cr Nb

Model 1: manova(Y-class)

(all) *** *** *** *** * *** *** *** * * *** *** *** *** *** *** ◦ *** *** *** ◦ * **

Model 2: manova(Y-(GV+RV+RR+GR))

GV *** * *** *** ** ** * *** * *** *** ◦ *** *** ** *** * ◦ ◦
RV *** *** ** *** *** *** *** * *** *** *** *** ◦ *** * *** * **

RR *** *** ◦ *** ** ** *** *** *** *** *** ◦ *** *** *** ◦ *

Significance codes [Pr(> F)]: ***0–0.001, **0.001–0.01, *0.01–0.05, ◦0.5–0.1, no symbol > 0.1
Summaries produced from summary.aov() in R (www.r-project.org/), as is the notation for the MANOVA
models Model 1 and Model 2 above. Pr is for probability and F is standard test statistic, as in Manly (1994)
and Everitt and Dunn (2001). Class is a 4-level factor variable, with levels corresponding to GR, GV, RV
or RR. Y is the multivariate responses consisting of the log-transformed concentrations of all 26 trace
elements. Each of GR, GV, RV and RR are binary indicator vectors for their respective classes

These are preferable to 26 univariate tests of hypotheses of equal means because it
allows for multiple comparisons without resorting to the highly conservative Bonfer-
onni inequality. Fitting Model 1 provides evidence that the four vector means differ
at the 1 % significance level. More specifically, Model 2, along with the other three
pair-wise comparisons (not shown), provide evidence that all four vector means dif-
fer from each other at the 1 % significance level. This is taken into consideration in
further analyses. Summaries of these results (Table 3) show that only Te, W, U, Ga
and V, all elements with very low concentrations, are not significant in differentiating
the classes (Model 1). Model 2 hints at more complex patterns, including that Cu and
Zn are important in the differentiation between GR and GV but not between GR and
the replacement classes.

3.2 Parallel Coordinate Plots

An important step in analysis is to visualize the data. With two-dimensional data
(which is where only two trace elements are measured) this is easily done by pro-
ducing a scatterplot. If the dimension remains small, multiple scatterplots can be pro-
duced, one for each element pair. All these scatterplots need to be considered simul-
taneously in order to obtain a representation of the multivariate nature of the dataset,
since the proximity of two datapoints in one scatterplot no longer implies they are
similar as d-dimensional geochemical vectors. This quickly becomes impractical for
moderate numbers of elements, specifically for a dataset on d trace elements, there
are m (Eq. (3)) such pairs

m =
(

d

2

)
= d!

2!(d − 2)! = d(d − 1)(d − 2)!
2!(d − 2)! = 1

2
(d2 − d). (3)

In these data d = 26, so m = 325. One method to overcome this difficulty in visual-
izing higher dimensional datasets is Parallel Coordinate Plots (Inselberg 1985). In a
parallel coordinate plot the value (either concentration or log-transformed concentra-
tion) of each element is represented on a vertical line, labeled at the x-axis. Each spot

http://www.r-project.org/
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analysis is then represented by a piece-wise linear line joining d points, each on the
vertical line of the corresponding element, at a height corresponding to the value of
that spot analysis on that element. This gives an accurate representation of the data in
the multi-dimensional (26-dimensional in this case) data-space, providing an initial
visualization of the multivariate nature of the data.

We present the raw data in terms of GR and (GV+RR+RV) classes (Fig. 5A, B).
It is notable that of the 26 elements, As, Mo and Ti occur at concentrations that
range over the largest number of orders of magnitude. In Ti, two anomalous values
(both in GR) constitute most of this variance. Arsenic consistently has the highest
concentration and sets the scale of the plot, but in contrast high values of Mo are
notably absent in the GR class, as observed from Table 2. Also Co, Cu, Zn, Se and
Mn are visible on Fig. 5A but not on Fig. 5B; Cd, Tl and Ni are visible in Fig. 5B but
not Fig. 5A.

The elements in both figures showing greatest variability are both chalcophile and
granitophile in character but a pronounced variability in siderophile elements is ex-
clusive to GR. Such differences are difficult to see because of the large variability in
scale within the raw data. Log-transformed data are considered (Eq. (4)), addressing
the issues of scale, and influence of outlying values

x
(log-transformed)
ik = ln

(
x

(raw)
ik + 1

)
. (4)

x
(raw)
ik , as in Eq. (4) is the kth observation’s concentration of element, i. x(log-transformed)

ik

is similarly defined for the log-transformed concentration. The addition of a constant
is a standard means of dealing with zero-values attributed to non-negative variables
when taking logarithms. The choice of 1 for the constant added before taking the log-
arithm avoids negative values on the log-scale (which would confuse interpretation)
and curtails the influence of zero and low-concentration values.

Parallel coordinate plots of the log-transformed data for GR, GV, RR and RV
(Fig. 5C–F) reveal relationships not easily visible in Table 2. The Au–Ag relation-
ship is notable, in that GR, RR and RV all show a consistent pattern of significantly
higher Ag than Au, while GV shows the opposite trend. Siderophile concentrations
(Ti, V, Co, Mn) in GR are markedly higher than other classes. The Ni–Co pair show a
distinctive relationship clearly visible in all the classes except RR, where this relation-
ship is markedly absent. Re is apparent only in granular classes, and not replacement
classes.

3.3 Correlation Cluster Analysis (CCA)

We are particularly interested in finding relationships between elements, particularly
unexpected relationships. An intuitive place to start in looking for such relationships
is correlation coefficients. It is possible (although tedious) to consider all pair-wise
correlation coefficients individually (Tables 2, 3, 4 in the online Appendix C), but
this approach immediately runs into the same problem previously mentioned in that
the number of such comparisons quickly becomes unwieldy (Eq. (3)). Hierarchical
agglomerative cluster analysis (Everitt and Dunn 2001) can provide a visualization
of correlations in a dendrogram. This is done by replacing the usual Euclidean dis-
tance with the correlation based pseudometric 1 − |ρ| (where ρ is the coefficient of
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Fig. 5 Parallel coordinate plots. (A) and (B) show boxplots for the raw data for classes GR and
(GV+RR+RV), respectively; (C)–(F) show the log-transformed data for the four classes GR, RV, RR, RV,
respectively. Chal-chalcophile elements; Chg-chalcogens; Gran-granitophile elements; Sid-siderophile
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Fig. 6 Dendrograms describing a hierarchical agglomerative cluster analysis scheme by a distance based
on Spearman’s coefficient (ρ). (A)–(D) show this analysis for each class (GR, RV, RR and RV, respec-
tively). Abbreviations as for Fig. 5

interest). We thus display all the relationships between all the correlation coefficients
in a single, interpretable, diagram.

The dataset contains numerous extreme values (common in multi-element datasets,
Reimann and Filzmoser 1999), and so the usual Pearson’s correlation coefficient is
not appropriate; a more robust measure of association is needed. We use Spearman’s
rank-based coefficient of association (Eq. (5))

ρij =
∑n

k=1(yik − ȳi )(yjk − ȳj )√∑n
k=1(yik − ȳi )2

∑n
k=1(yjk − ȳj )2

, (5)

where i and j represent the trace elements in question, yik and yjk are the rank of the
kth observation on i and j , respectively (in increasing order of concentration, where
tied values are given their average rank) and, clearly, ȳi = 1

n

∑n
k=1 k = 1

2 (n + 1),
∀i ∈ {1,2, . . . ,26}.

Spearman’s coefficient is a direct measure of monotonic association between two
variables and, in contrast to Pearson’s correlation coefficient, is not unduly influenced
by outliers. GR (Fig. 6A) shows grouping of the majority of siderophile, chalcophile
and granitophile elements. Importantly, however, elements such as Au, Sb and Tl join
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a chalcophile/chalcogen group that also contains Mo and Se. It is also interesting that
this grouping does not join with the dominant chalcophile group of base metals until
after the siderophile grouping, implying its association to the former is stronger than
the latter. GV (Fig. 6B) shows two clear groupings with strong correlations among
geochemically similar elements but significant differences from those in GR, par-
ticularly for the ore-forming metals for which there seem to be two signatures: one
defined by Ag–Sb–Tl–Pb, the other by Au–As–Se–Cu–In–Zn–Cd. This could be ex-
pected given the fact that GV is late relative to GR.

Both granular classes show clear groupings relative to the replacement categories
(Fig. 5C, D) which both feature cascade structures. Despite this, the geochemically
defined groupings can still be recognized in RR, especially the dominant chalcophile
and granitophile groupings, albeit with some overlap between the two. Figure 5 em-
phasizes the very different signatures of each class and also indicates that the re-
placement categories are more internally heterogeneous than the granular categories.
Replacement of different minerals, each with its own inherited geochemistry, and
possibly different sets of mobilized elements, have contributed to this heterogeneity.
The varying correlation structures also reflect the different element packages in the
replacement and granular categories. Particularly interesting is that the elements with
which Au correlates vary from class to class, and that the expected Co–Ni pairing
is only obvious for GR and GV (and to some extent also for RV) reflecting the dif-
ference observed in the parallel coordinate plots. In the replacement categories, the
two elements are separated into different groups or not directly correlated, further
stressing different inherited signatures.

3.4 Principal Component Analysis (PCA)

Another method to approach the visualization of such multi-dimensional data is to
find interesting planes to project the data into. This is equivalent to producing scat-
terplots, but rather than considering an infeasible (Eq. (3)) number of scatterplots,
we plot a smaller number of potentially interesting (linear) combinations of elements
against each other. PCA is a method for finding the (orthogonal) directions that pro-
duce maximum variance, which we call the principal components (PCs). These di-
rections are linear combinations of elements. PCA is particularly elegant as these can
be estimated directly as the eigenvectors of the sample covariance matrix (Everitt and
Dunn 2001); S = (sij ) where the entries are as in Eq. (6)

sij = ĉov(Xi, Xj ) = 1

n − 1

n∑
k=1

(xik − x̄i )(xjk − x̄j ). (6)

We use log-transformed data (as they are less influenced by outlying values, and
is invariant to scale and thus more relevant), so the values in Eq. (6) refer to the data
as given in Eq. (4). PC1–PC8 are given in Table 5 of online Appendix D. Notably As
is only a minor component of PC1–PC8 emphasizing how despite its high concentra-
tions, its relatively small variability makes it comparatively uninteresting in terms of
discussing subgroups of the data.

PC1 and PC2 are loaded by elements of both siderophile and hydrothermal (grani-
tophile and chalcophile) character but their structures are different. In PC1, hydrother-
mal elements (Mo, Au and Ag) have opposite signs to the siderophiles (Ti, Co, Ni),
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Fig. 7 Scatterplots describing
the first few PCs in the PCA of
log-transformed data: (A) PC1
versus PC2; (B) PC1 versus
PC2; and (C) PC1 versus PC4
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and the combination of low Mo and high Ti, Co separates GR from the replace-
ment classes. In contrast, in PC2 they carry the same signs, and concentrations of
Ni, Co, Mo and Pb contribute to differentiate between two sub-classes of RV. PC3 is
siderophile-dominant (Ti, V) and does not separate the data into groups. PC4 demon-
strates how the cumulative concentration of Zn, Cu, and to a lesser degree Au sepa-
rate two subgroups of GV. These four PCs (Fig. 7) show interesting trends between
the classes which we interpret in terms of inherited signatures and successive hy-
drothermal overprints. Perpendicular trends of GR and (GV+RR+RV) in Fig. 7A
and B show that hydrothermal fluids, carrying Mo and Au, interacted with the sig-
nature inherited from the rock (Ti, Ni). PC2 (Fig. 7A) and PC4 (Fig. 7C) show that
the hydrothermal fluids evolved during processes of replacement and vein formation
(GV and RV split into subgroups in Fig. 7A; GV is split into subgroups in Fig. 7C).
Splitting of RV into sub-populations is predictable considering pyrite provenance in
this class from replacement of different minerals, giving a group with shared mor-
phology but with subgroups having distinct geochemical signatures (Fig. 7A). In
contrast, the homogeneous RR class (mainly wispy pyrite) is consistent with replace-
ment of one mineral only. Splitting of GV into geochemically distinct subgroups
(Fig. 7A, C) is attributable to inclusions of sphalerite and chalcopyrite when GV
occurs as single grains but not when GV occurs as overgrowths on replaced pyrite
(Fig. 1D). On all three diagrams in Fig. 7, a sub-population of GR pyrite is observed
to be separated by PC1, in the direction of GV. Splitting of GR is attributable to
overprinting by later fluids, introducing elements that coincide with one of the GV
sub-populations. All these interpretations are consistent with the textural variation
(Fig. 1) and element mapping (Figs. 3 and 4).

3.5 Factor Analysis (FA)

Factor analysis is a model-based method (Everitt and Dunn 2001), in which a model
as in Eq. (7) is fitted

X = Af + ε. (7)

In Eq. (7) X is the d × 1 dimensional data vector, A is the d × k matrix of factor
loadings, f is the k ×1 dimensional vector of factors (also known as latent variables)
whose values are not measured directly but which account for much of the measured
values, and ε is the d ×1 dimensional vector of errors, representing random variation
which makes up the difference between the measurement and the value accounted for
by the factors.

The maximum likelihood FA gives an estimate of the 26 × 2 matrix A = (aij )

(the weighting of each underlying factor on each variable—elements, in this case).
A is the approximate solution to V = AA′ + D (Rubin and Thayer 1982) where V

is the variance-covariance matrix of the sample and D is a diagonal matrix repre-
senting the variances of the ε. A biplot, as shown in Fig. 8 is a plot of the factor
loadings aij for factor j and element i, with the factors as axes where each ele-
ment is plotted as the vector (ai1, ai2). Matrix A is not unique, however. The axes
can be rotated, in matrix terms by applying the orthogonal transformation U , that is,
(AU)(AU)′ = AUU ′A′ = AIA′ = AA′. This can be useful as factors correspond-
ing to rotated axes are easier to interpret. Computer software displays default axes
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Fig. 8 Biplot for maximum likelihood FA on the log-transformed data on class GR. Abbreviations as for
Fig. 5

which align best with groups of elements. Models with more than two factors can be
fitted but the instructive graphical display is lost and interpretation may be more awk-
ward. The investigator can choose the number of factors to provide a useful physical
interpretation.

Meaningful interpretations with basis in geochemical reasoning can be inferred
from Fig. 8 (GR only). There are two directions of interest: (i) in the direction of the
strong Co–Ni pair (siderophile elements with hydrothermal affinity), coinciding with
the direction of the factor labeled component 1; and (ii) perpendicular to direction (i),
coinciding with the direction of a group of granitophile elements including Sn, W
and V, roughly coinciding with the direction of the factor labeled component 2. There
appear to be five broad element groupings in Fig. 8, three agreeing with (i), two in
the opposite direction. Each of the three groupings agreeing with (i) have two notable
subgroups, one with greater magnitude than the other, in particular base metals (Cu–
Pb–Cd–Bi) show affinity to the strong Co–Ni pair, Zn to granitophile elements, and
Tl–Sb–Ga to Mn–Ti. This indicates that the subgroups with larger magnitude (Co–
Ni, Ti–Mn, and Sn–W–U–V–Nb–Cr) can be largely explained by the factors in this
model, while the subgroups with smaller magnitudes (all consisting of chalcophile
elements) are also explained by the same factors/processes, but are significantly in-
fluenced by other factors not taken into account in this model. The groupings in the
opposite direction to (i) (chalcophile elements, chalcogens and granitophile elements
with hydrothermal affinity (Mo–Re)) are interesting since one of them (including
Mo–Re) seems to have a strong negative component in direction (i) but not in direc-
tion (ii), indicating it is affected by the same factor as the Co–Ni pair (direction (i)),
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but in an opposite sense, and is not influenced by the factor in direction (ii). The other
grouping, (As–Ag) appears to be similarly negatively affected by direction (i), but is
positively affected by direction (ii).

Given this distribution, direction (i) is attributable to at least two generations of
hydrothermal fluids that have different affinities (hence different signs for Co–Ni and
Mo–Re). Base metals (Cu, Pb, Zn, etc.) and Au–Mo define these, emphasizing the op-
posing trends observed for GR on Fig. 7. Direction (ii) is attributable to pyrite signa-
tures largely inherited from the magmatic rock. Clusters controlled by both directions
(As, Ti, Mn, etc.) then reflect modification of signatures during overprinting. This in-
terpretation is based on fluid sources but other factors explaining the distributions,
particularly the subgroups of lower magnitude, could include geochemical behavior
of each element (Co and Ni for example) and pyrite crystal chemistry which governs
element incorporation and release during mineral growth (Ti, Mn, Sb for example).

4 Discussion

In pyrite, elements such as Co, Ni, Au, As, Sb, Se, and probably Mn and Ag, are
considered to enter the crystal lattice, whereas others (Nb, Ti, Cr, W, U) are most
likely to occur within micro- to nanoscale inclusions of discrete minerals. A degree
of correlation between members of each group might be expected but, as borne out
by the element maps, grain-scale compositional zoning implies that different parts
of the grain are enriched in different elements (for example the Au–As and Ag–Sb
distributions in Fig. 3), thus weakening the overall correlation. Many of the strong
associations recognized can be directly related to similar geochemical affinity or el-
ements with similar charge and ionic radii (for example Co and Ni, Zn and Cd or
Mo and Re). Inclusions of discrete minerals within growing pyrite (for example Ti
and Nb in rutile) could also contribute to the high variability observed among the
siderophile elements.

The PC plots begin to show the multivariate nature of the spot analyses. They
provide not only a representation of the basic statistics (Table 2) but a description
of the data that allows for easy interpretation not available in the basic statistics, for
example highlighting the Au–Ag relationship as markedly different in GV compared
to any of the other groups, and the absence of the Co–Ni interaction in RR pyrite.
MANOVA provides formal evidence that the four categories identified a priori (GR,
GV, RR, RV) are significantly geochemically distinct, and hints at more complex
inter-element relationships (Table 3).

Although the PC plots provide insight into some of the relationships among ele-
ments, they are far from comprehensive, and so dendrograms are introduced to sys-
tematically consider all pair-wise associations in a single plot, revealing interesting
differences in the association structure of the elements in the classes, for example
the signatures in granular pyrite, and the absence of such groupings in replacement
pyrite, highlighting the heterogeneity in the latter caused by replacement of different
minerals.

Multivariate techniques show element associations that assist interpretation of
Moonlight mineralization in a context of complex geochemical signatures overlap-
ping one another or discriminating smaller sub-populations. PCA demonstrates the
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clear presence of geochemically distinct subgroups within the simple classes of pyrite
(Table 1), as expected, thus drawing attention to the heterogeneity in these classes and
can even go on to quantify some of the geochemical vectors (PCs) that are capable
of discriminating rock-inherited from fluid-introduced signatures. The FA (Fig. 8)
visualizes some of these rock-inherited from fluid-introduced signatures in a more
interpretable manner, and highlights both the strength of these fluid-based interpreta-
tions in explaining elemental composition.

In terms of relevance for a genetic model with application to exploration, there are
three groups of elements: base metals (Cu, Pb, Zn, Ag, Sb, etc.); Au–As; and Mo,
which are all traceable through the multivariate statistical analysis of pyrite. The sig-
nature of core GR pyrite may reflect elements supplied by the fluid as well as those
inherited from minerals in the precursor rock, notably Co and Ni. This is reflected in
the splitting of the GR class by PCA (Fig. 7) and FA (Fig. 8). Copper and Ag input
corresponds to a fluid predating Au and As input (core versus overgrowth patterns
in Fig. 3). Geochemical variability in vein pyrite is suggestive of interaction between
later fluids and pre-existing rock pyrite, as well as replacement of a wider range of
minerals than in the rock. The varied intensity of this interaction generates the het-
erogeneous GV and RR pyrite. Texture-inferred replacement of molybdenite (among
other minerals) by pyrite is strongly supported by multivariate statistics which shows
Mo and Tl markedly enriched in one sub-population of RV pyrite. This implies that
Moonlight may feature telescoped porphyry-Mo and epithermal-Au (± base metal)
mineralization, an important finding for this type of mineral system. Geochemical
vectors based on the PCAs could be used in development of exploration models for
Pajingo and analogous orefields.

5 Conclusions

The methods presented here are valuable tools for investigating large datasets on a
mineral with a protracted history of interaction with fluids giving a complex geo-
chemical signature. Analysis of variance (MANOVA) indicates that there is a strong
statistical difference in the majority of elements across the four classes. Parallel co-
ordinates provide a first assessment of the scale of variance among a large set of
elements whereas CCA can draw attention to element associations that may not be
immediately obvious. PCA and FA were able to confirm that observed mineral group-
ings have distinct geochemical signatures and that some can be further sub-divided.

No single statistical method is, in itself, sufficient to analyze all aspects of the
dataset. Dataset size and inherent heterogeneity are both critical factors, especially
in cases such as this, where distinctive sub-populations exist. Further studies using
multivariate analysis on larger datasets are warranted to demonstrate the robustness
of these methods. These conclusions notwithstanding, a sound understanding of in-
organic geochemistry, and, in particular, crystal chemistry of the minerals concerned,
are essential for correct interpretation of multi-element datasets for minerals.
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