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Abstract Variance-based global sensitivity analysis (GSA) is used to study how the
variance of the output of a model can be apportioned to different sources of uncer-
tainty in its inputs. GSA is an essential component of model building as it helps to
identify model inputs that account for most of the model output variance. However,
this approach is seldom applied to spatial models because it cannot describe how un-
certainty propagation interacts with another key issue in spatial modeling: the issue
of model upscaling, that is, a change of spatial support of model output. In many en-
vironmental models, the end user is interested in the spatial average or the sum of the
model output over a given spatial unit (for example, the average porosity of a geolog-
ical block). Under a change of spatial support, the relative contribution of uncertain
model inputs to the variance of aggregated model output may change. We propose
a simple formalism to discuss this issue within a GSA framework by defining point
and block sensitivity indices. We show that the relative contribution of an uncertain
spatially distributed model input increases with its correlation length and decreases
with the size of the spatial unit considered for model output aggregation. The results
are briefly illustrated by a simple example.
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1 Introduction

Variance-based global sensitivity analysis (GSA) is used to study how the vari-
ance of the output of a model can be apportioned to different sources of uncer-
tainty in its inputs. Here, the term model denotes any computer code in which a
response variable is calculated as a deterministic function of input variables. Orig-
inally developed in the 1990s (Sobol’ 1993), GSA is now recognized as an essen-
tial component of model building (European Commission 2009; Environmental Pro-
tection Agency 2009) and is widely used in different fields (Cariboni et al. 2007;
Tarantola et al. 2002). GSA is based on the decomposition of a model output vari-
ance into conditional variances. So-called first-order sensitivity indices measure the
main effect contribution of each uncertain model input to the model output variance.
Based on these sensitivity indices, ranking the model inputs helps to identify inputs
that should be better scrutinized first. Reducing the uncertainty on the inputs with the
largest sensitivity indices (for example, by collecting additional data or changing the
geographical pattern of data locations) will often result in a reduction in the variance
of the model output. More generally, GSA helps to explore the response surface of a
black box computer code and to prioritize the possibly numerous processes that are
involved in it.

Although GSA was initially designed for models where both inputs and output
can be described as real valued random variables, some recent work has extended
GSA to environmental models for which both the inputs and output are spatially dis-
tributed over a two-dimensional domain and can be described as random fields (Lil-
burne and Tarantola 2009). In these works, the computer code under study uses maps
derived from field data (for example, digital elevation models and land use maps).
These maps are uncertain due to measurement errors, lack of knowledge, or aleatory
variability (Brown and Heuvelink 2007; Refsgaard et al. 2007). The uncertainty of
these spatial inputs is usually modeled using random fields. Model output is also
spatially distributed (for example, a flood map or a pollution map). Authors use geo-
statistical simulation to incorporate spatially distributed model inputs into the GSA
approach (Ruffo et al. 2006; Saint-Geours et al. 2010) and they display estimation
procedures to compute sensitivity indices in a spatial context, either with respect to
the spatial average of the model output (Lilburne and Tarantola 2009) or with respect
to the values of the model output at each site of a study area (Heuvelink et al. 2010;
Marrel et al. 2011; Pettit and Wilson 2010).

Nevertheless, to date, none of these studies has reported on a key issue: the link be-
tween uncertainty propagation and model upscaling/downscaling. Model upscaling is
the problem of translating knowledge from smaller scales to larger (Heuvelink 1998).
In many environmental models, the physical quantities considered are spatially addi-
tive (for example, porosity or evapotranspiration), that is, their large-scale properties
derive from small-scale properties by simple averaging (Chilès and Delfiner 1999).
In this case, the model end user is usually interested in the spatial linear average or
the sum of spatial output over a given spatial unit (for example, the average porosity
of a block or the total evapotranspiration over a plot of land) and model upscaling is
thus reduced to a change of support problem (namely, a change of support of the end
user’s output of interest). Heuvelink (1998) observed that under a change of spatial
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support of the model output, the relative contribution of uncertain model inputs to
the variance of the aggregated model output may change. Exploring how sensitivity
analysis results interact with such a change of support is thus of great importance. It
would allow the modeler to check the robustness of model-based environmental im-
pact assessment studies and better assess the confidence of their results. Knowledge
of this interaction would also allow the modeler to answer the following questions:
What are the model inputs that explain the largest fraction of the variance of the out-
put over a given spatial support? For which output support size does a given spatially
distributed model input contribute to the largest fraction of the variance of the model
output? How does the contribution of a spatially distributed input to the variance of
the model output depend on the parameters of its covariance function?

The change of support effect has been extensively discussed in geostatistics in the
context of regularization theory (Journel and Huijbregts 1978). Hence, we attempt
in this paper to integrate regularization theory with variance-based GSA framework.
Our idea is to define site sensitivity indices and block sensitivity indices to (i) pro-
vide a simple formalism that extends variance-based GSA to spatial models when
the modeler’s interest is in the spatial average or the sum of model output over a
given spatial support (Sect. 2) and (ii) discuss how the relative contribution of un-
certain model inputs to the variance of model output changes under model upscaling
(Sect. 3). We limit our study to point-based models, that is, models for which the
computation of the model output at some location uses the values of spatial inputs at
that same location only (Heuvelink et al. 2010). An example is used throughout this
paper to illustrate formal definitions and properties. Finally, we discuss the limits of
our approach and its connections to related works in Sect. 4.

2 Variance-Based Sensitivity Indices for a Spatial Model

2.1 Description of Spatial Model M

We want to study a computer code M whose output is a map and whose inputs are a
map and a set of n real valued variables. Both inputs and output are uncertain and are
described as random variables or random fields. More precisely, we use the following
notations: let D ⊂ R

2 denote a 2D spatial domain, x ∈ D a site, h the lag vector
between two sites x and x′, and v ⊂ D some spatial support (block) of area |v|. We
consider the model Y = M(U,Z) where U = (U1, . . . ,Un) is a random vector and
{Z(x) : x ∈ D} is a second-order stationary random field (SRF)—that we will often
simply denote by Z(x). U and Z(x) are supposed to be independent. Covariance
function C(·) of Z(x) is assumed to be isotropic, characterized by correlation length
a ∈ R, nugget parameter η ∈ [0;1[ and of the form

C(h) =
{

C(0) if h = 0

(1 − η) · C(0) · ρa(‖h‖) if h �= 0,
(1)

where ρa(·) is some valid correlogram (Cressie 1993). The model output is a two-
dimensional random field {Y(x) : x ∈ D} that we will simply denote by Y(x). We
assume that the first two moments of Y(x) exist. Finally, as discussed in the Introduc-
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Fig. 1 Spatial model with uncertain inputs U and Z(x) and spatial output Y (x). The modeler is interested
in the block average of Y (x) over some spatial unit v

tion, we limit our study to point-based models; hence, we assume that there exists a
mapping ψ : R

n × R → R such that

∀x ∈ D, Y (x) = ψ
[
U,Z(x)

]
. (2)

A sensitivity analysis of the model M must be performed with respect to a scalar
quantity of interest derived from spatially distributed model output Y(x). Here, we
consider two different outputs of interest: the value Y(x∗) at some specific site x∗ ∈ D
and the aggregated value Yv = 1/|v| ∫

v
Y (x) dx over support v. Because model inputs

U and Z(x) are uncertain, Y(x∗) and Yv are both random variables; the sensitivity
analysis will describe the relative contribution of uncertain model inputs U and Z(x)

to their respective variances. (See Fig. 1.)

2.2 Site Sensitivity Indices and Block Sensitivity Indices

Before defining sensitivity indices for spatial model M, we briefly review the math-
ematical basis of variance-based GSA. Let us consider a model Y = G(X1, . . . ,Xn),
where Xi are independent random variables and where the first two moments of Y

exist. The first-order sensitivity index Si of model input Xi is defined by

Si = Var[E(Y |Xi)]
Var(Y )

. (3)

Si ∈ [0;1] measures the main effect contribution of the uncertain model input Xi to
the variance of model output Y . Sensitivity indices can be used to identify the model
inputs that account for most of the variance of the model output (model inputs Xi

with high first-order indices Si ). Sum of Si is always less than 1 and the difference
1 − ∑

i Si accounts for the contribution of the interactions between model inputs Xi

to model output variance Var(Y ). Please refer to Saltelli et al. (2008) for more details
on GSA theory and on the estimation of sensitivity indices.

To extend GSA to spatial model M, we propose to use different types of sensitivity
indices to describe the relative contribution of the uncertain model inputs U and Z(x)

to the variance of the model output: an index on a point support (with respect to
output of interest Y(x∗)) and an index on a larger support (with respect to output of
interest Yv). First-order sensitivity indices of model inputs with respect to Y(x∗) are
called site sensitivity indices. Under the stationary hypothesis on SRF Z(x), these
indices do not depend on site x∗, and thus will simply be denoted by SU and SZ

SU = Var[E(Y (x∗) | U)]
Var[Y(x∗)] ; SZ = Var[E(Y (x∗) | Z(x))]

Var[Y(x∗)] . (4)
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First-order sensitivity indices of model inputs with respect to the block average Yv

are called block sensitivity indices and are denoted by SU(v) and SZ(v)

SU(v) = Var[E(Yv | U)]
Var[Yv] ; SZ(v) = Var[E(Yv | Z(x))]

Var[Yv] . (5)

The ratio SZ(v)/SU(v) gives the relative contribution of model inputs Z(x) and U
to the variance of the output of interest Yv . When SZ(v)/SU(v) is greater than 1,
the variance of Yv is mainly explained by the variability of the 2D input field Z(x);
when SZ(v)/SU(v) is less than 1, it is the nonspatial input U that accounts for most
of Var(Yv).

2.3 Illustrative Example

The proposed formalism for spatial GSA is illustrated by the following example.
A model Y = M(U,Z) is used for the economic assessment of flood risk over a
given floodplain D. Z(x) is the map of maximal water levels (m) reached during a
flood event. Z(x) is assumed to be a Gaussian random field with mean μ = 50 and
exponential covariance C(h) with C(0) = 100, correlation length a = 5 and nugget
parameter η = 0.1. U is a set of three economic parameters U1, U2, and U3 that
determine a so-called damage function that links water levels to monetary costs. U1,
U2, and U3 are assumed to be independent random variables following Gaussian
distributions N (1.5,0.5), N (55,5), and N (10,10), respectively. Random field Z(x)

and random vector U are supposed to be independent. Model output Y(x) is the map
of expected economic damages due to the flood over the area; these damages depend
on U and Z(x) through the mapping ψ

∀x ∈ D, Y (x) = ψ
[
U,Z(x)

] = U1 · Z(x) − U2 · e−0.036·Z(x) − U3. (6)

Stakeholders are interested in two outputs: the flood damage Y(x∗) on a specific
building x∗ ∈ D and the total damage |v| · Yv over a district v (here, a disc of ra-
dius r = 50). Here, the expression of mapping ψ and the statistical characterization
of model inputs may be simple enough that exact values of sensitivity indices could
be derived, but this is usually not the case in real applications in which the model
is very complex. A usual alternative is to consider model M as a black box and
estimate sensitivity indices with Monte Carlo simulation. We chose to use the esti-
mators and the computational procedure described by Lilburne and Rarantole (2009)
based on a quasirandom sampling design, using N = 4096 model runs (Table 1). It
appears that on a given site x∗, the variability of the water level map explains most
of the variance of Y(x∗): SZ = 0.89. On a larger spatial support, the variance of the
total flood damage |v| · Yv is mainly due to the economic parameters U1, U2, and
U3: SU(v) = 0.86. Thus, to improve the accuracy of damage estimation for a specific
building, the uncertainty should first be reduced on the water level map Z(x); how-
ever, to improve the accuracy of total damage estimation over a large district v, the
modeler should focus on reducing the uncertainty of economic parameters U1, U2,
and U3.
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Table 1 Sensitivity analysis
results over N = 4096 model
runs with respect to the outputs
of interest Y (x∗) and |v| · Yv .
Mean values with ±s.d.
computed by bootstrapping
(100 replicas)

Support Site x∗ Block v

Output of interest Y (x∗) |v| · Yv

Mean of output 66.5 ± 4.2 539 · 103 ± 3.6 · 103

Variance of output 1393 ± 188 9 · 109 ± 0.2 · 109

Site indices Block indices

Sensitivity
indices

SU = 0.09 ± 0.03 SU(v) = 0.86 ± 0.02

SZ = 0.89 ± 0.02 SZ(v) = 0.12 ± 0.02

3 Change of Support Effect on Block Sensitivity Indices

In this section, we assess how the ranking of uncertain model inputs based on their
block sensitivity indices vary under a change of support v of model output.

3.1 Relation Between Site Sensitivity Indices and Block Sensitivity Indices

Site sensitivity indices and block sensitivity indices are related. Let EZY (x) denote
the conditional expectation of Y(x) given Z(x), that is

∀x ∈ D, EZY (x) = E
[
Y(x)

∣∣ Z(x)
]
, (7)

where EZY (x) is the transform of the input SRF Z(x) via the function ψ̄(z) =∫
Rn ψ(u, z)fU (u) du (Eq. (2)) where fU(·) is the multivariate pdf of random vec-

tor U. Under our assumptions concerning Y(x), EZY (x) is a second-order SRF. Let
C∗(·) denote its covariance function, σ 2 = C∗(0) its variance and σ 2

v its block vari-
ance over support v, that is, the variance of block average 1/|v| ∫

v
EZY (x) dx. Block

variance σ 2
v is equal to the mean value of C∗(h) when the two extremities of lag vec-

tor h describe support v, which we denote by C∗(v, v) (Journel and Huijbregts 1978).
Using these notations, it follows from Eqs. (4) and (5) that site sensitivity indices and
block sensitivity indices are related by (see Appendix A for a proof)

SZ(v)

SU(v)
= SZ

SU
· σ 2

v

σ 2
= SZ

SU
· C∗(v, v)

C∗(0)
. (8)

3.2 Change of Support Effect

Consider now that model M was initially developed to study the spatial average
Yv over the support v, and that after model upscaling the modeler is interested in
the spatial average YV over the support V , where V 
 v. We know from Krige’s
relation (Journel and Huijbregts 1978) that the block variance σ 2

v decreases with in-
creasing size of support: σ 2

V ≤ σ 2
v . It follows from Eq. (8) that

SZ(V )

SU(V )
≤ SZ(v)

SU(v)
. (9)

The fraction of the variance of the aggregated model output explained by the in-
put random field Z(x)—compared to the fraction explained by U—is thus smaller
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on support V than on support v. More specifically, let us suppose that the covariance
function C∗(·) of the random field EZY (x) has a finite effective range and that the
support v is large with respect to this range. To a first approximation, the block vari-
ance σ 2

v is of the form σ 2
v � σ 2A/|v|, where A is the so-called integral range of C∗(·)

and is defined by A = 1/σ 2
∫

C∗(h) dh (Chilès and Delfiner 1999). It follows from
Eq. (8) that

SZ(v)

SU(v)
� |v|c

|v| with |v|c = A · SZ

SU
. (10)

Equation (10) shows that the ratio |v|c/|v| determines the relative contribution
of the model inputs Z(x) and U to the output variance Var(Yv). The larger that this
ratio is, the larger the part of the output variance Var(Yv) that is explained by the input
random field Z(x). For a small ratio (when the area of the support v is large compared
with the critical size |v|c), the variability of Z(x) is mainly local, and the spatial
correlation of Z(x) over v is weak. This local variability averages over the support
v when the aggregated model output Yv is computed; hence, input two-dimensional
random field Z(x) explains a small fraction of the output variance Var(Yv). However,
for a greater ratio (that is, when the area of the support v is small compared with the
critical size |v|c), the spatial correlation of Z(x) over v is strong. The averaging-out
effect is weaker; hence, model input Z(x) explains a larger fraction of the output
variance Var(Yv).

3.3 Link Between Covariance Function and Lock Sensitivity Indices

Critical size |v|c = A · SZ

SU
depends on the covariance function C∗(·) of the random

field EZY (x), which is itself driven by the covariance function C(·) of the input SRF
Z(x). Let us now assume that Z(x) is a Gaussian random field (GRF). EZY (x) is
then square-integrable with respect to the standard normal density. It can be decom-
posed into an Hermitian expansion and its covariance function C∗(·) can be written
as (Chilès and Delfiner 1999; see Appendix B for a proof)

C∗(h) =
∞∑

k=0

λ2
k · [C(h)

]k
. (11)

For most of the usual transition covariance functions (spherical, exponential, and
Gaussian models), the covariance C(h) is a monotonically increasing function of
correlation length a. In this case, it follows from Eq. (11) that the integral range A =
1/σ 2

∫
C∗(h) dh also increases with correlation length a. An increase in correlation

length a thus leads to an increase in the critical size |v|c, and the ratio of block
sensitivity indices SZ(v) and SU(v) satisfies (Eq. (10))

∂

∂a

[
SZ(v)

SU(v)

]
≥ 0. (12)

The relative contribution of the uncertain model input Z(x) to the variance of the
output of interest Yv increases when the correlation length of Z(x) increases. Indeed,
when correlation length a increases, the averaging-out effect that occurs when the
model output is aggregated over spatial support v weakens; thus, the fraction of the
output variance Var(Yv) which is explained by the input random field Z(x) increases.
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Fig. 2 GSA results depending on the size of disc-shaped support ν (with radius r and area |ν| = πr2), for
a = 5, η = 0.1: (a) total variance of Yv , (b) block sensitivity indices SU(v) (solid line) and SZ(v) (dashed
line), (c) ratio SZ(v)/SU(v) with fitted curve SZ(v)/SU(v) = |v|c/|v| (dashed line). Error bars show 95 %
confidence interval computed by bootstrapping (100 replicas)

Nugget parameter’s impact on the block sensitivity indices can be interpreted in
the same manner. The nugget parameter η controls the relative part of pure noise in
the input random field Z(x) (Eq. (1)). The smaller η is, the weaker the averaging-
out effect will be when the block average Yv is computed over the support v, and
the larger the part of output variance Var(Yv) will be that is explained by Z(x). The
critical size |v|c is thus a decreasing function of nugget parameter η, and the ratio of
block sensitivity indices SZ(v) and SU(v) satisfies (Eqs. (1), (8), (11))

∂

∂η

[
SZ(v)

SU(v)

]
≤ 0. (13)
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Fig. 3 GSA results depending on correlation length a, for η = 0.1 and a disc-shaped support v of radius
r = 50: (a) total variance of Yv , (b) block sensitivity indices SU(v) (solid line) and SZ(v) (dashed line).
Error bars show 95 % confidence interval computed by bootstrapping (100 replicas)

Fig. 4 GSA results depending on covariance nugget parameter η, for a = 5 and a disc-shaped support v of
radius r = 50: (a) total variance of Yv , (b) block sensitivity indices SU(v) (solid line) and SZ(v) (dashed
line). Error bars show 95 % confidence interval computed by bootstrapping (100 replicas)

3.4 Illustrative Example

To illustrate the change of support effects on sensitivity analysis results, we per-
formed spatial GSA on our numerical example in the following settings: varying disc-
shaped support v of increasing size (Fig. 2); varying correlation length from a = 1 to
a = 10 (Fig. 3); varying nugget parameter from η = 0 to η = 0.9 (Fig. 4). For each
setting, we computed estimates of the output variance Var(Yv), the block sensitivity
indices SU(v), SZ(v), and the ratio SZ(v)/SU(v) over N = 4096 model runs. Mean
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values with a 95 % confidence interval were then computed for each estimate using
bootstrapping (100 replicas). In accordance with Eqs. (9), (12), and (13), it appears
that the block sensitivity index SZ(v) (i) decreases when the support v increases
(Fig. 2(b)), (ii) increases with the correlation length a (Fig. 3(b)), and (iii) decreases
with the nugget parameter η (Fig. 4(b)). The opposite trends are observed for sensi-
tivity index SU(v). The change of support effect is clearly highlighted in Fig. 2(b): the
contribution of the economic parameters U1, U2, and U3 to the variance of total flood
damage |v|·Yv exceeds the contribution of the water level map Z(x) when the radius r

of v is greater than rc � 18; for radius r < rc , the variance of total flood damage over
the support v is mainly explained by the variability of the water levels Z(x). Finally,
Fig. 2(c) shows that the ratio SZ(v)/SU(v) is proportional to 1/|v| when the support
v is large enough. The theoretical curve SZ(v)/SU(v) = |v|c/|v| (Eq. (10)) was fitted
(least squares—R2 = 0.99) on data points (for r ≥ 20 only), yielding an estimate of
the critical size |v|c � 1,068. All calculations and figures were realized in R (De-
velopment Core Team 2009): random realizations of Z(x) were generated with the
GaussRF() function from the RandomFields package (Schlather 2001), while compu-
tation of sensitivity indices was based on a modified version of the Sobol() function
from the sensitivity package.

4 Discussion

Our first goal was to provide a formalism that extends the variance-based GSA ap-
proach to spatial models when the modeler is mainly interested in the linear average
or the sum of a point-based model output Y(x) over some spatial unit v. Our approach
is strongly motivated by various prior publications. Other authors had already com-
puted site sensitivity indices (Marrel et al. 2011; Pettit and Wilson 2010) and block
sensitivity indices (Lilburne and Tarantola 2009), but did so without naming them or
exploring their analytical properties or their relationship. Our work is an attempt to
do so. Equation (8) provides an exact relation between the site and block sensitivity
indices; it may prove useful in the case of a model with a simple enough analytical
expression.

Our research also sought to account for the change of support effects in the prop-
agation of uncertainty through spatial models, within a variance-based GSA frame-
work. We proved that the fraction of the variance of the model output that is explained
by a spatially distributed model input Z(x) decreases under model upscaling; when
the support v is large enough, the ratio of the block sensitivity index of spatially dis-
tributed input to the block sensitivity index of nonspatial inputs is proportional to
|v|c/|v|. The critical size |v|c depends on the covariance function of the input SRF
Z(x); it usually increases with an increase of the correlation length a or a decrease of
the nugget parameter η. These findings are a translation into GSA formalism of the
averaging-out effect clearly exhibited by Journel and Huijbregts (1978) in the regu-
larization theory. Our contribution is to discuss this issue from the point of view of
GSA practitioners. Formalizing the effect of a change of support on sensitivity anal-
ysis results may help modelers when they consider model upscaling; it will orientate
future data gathering by identifying model inputs that will explain the largest fraction
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of the variance of the model output over a new spatial support. Our contribution also
promotes an increased awareness of the issue of sharing out efficiently, among the
various inputs used by a complex computer code, the cost of collecting field data. At
some point of the model building process, the modeler will usually aim at reducing
the variance of the output below a given threshold that will depend on the model use.
To do so, the modeler may have to improve his knowledge on the real value of some
of the model inputs, usually by collecting extra data. In this case, gathering extra field
data on inputs maps that have small sensitivity indices (SZ(v) < 0.1) would be ineffi-
cient, as it would be costly but could not reduce the variance of the model output by a
large fraction. Saint-Geours et al. (2011) discuss this issue on a flood risk assessment
case study.

It should be noted that our approach is based on conditions that may not be met
in some practical cases. First, we considered a model M with a single spatially dis-
tributed input Z(x). In real applications, modelers may have to deal with several spa-
tial inputs Z1(x), . . . ,Zm(x), with different covariance functions Ci(·), correlation
lengths ai , and nugget parameters ηi . In this case, it can be shown that Eq. (8) still
holds separately for each spatial input Zi(x). However, no conclusion can be drawn
a priori regarding how a change of support affects the relative ranking of two spa-
tial inputs Zi(x) and Zj (x); the ratio of their block sensitivity indices SZi

(v)/SZj
(v)

will depend on the ratio of block variances σ 2
v,i/σ

2
v,j . Second, some environmental

models are not point-based and involve spatial interactions (for example, erosion and
groundwater flow models). In this case, it still may be possible to build a point-based
surrogate model as a coarse approximation of the original model; if not, then the
change of support properties discussed in Sect. 3 may not hold. Third, we assumed
the input random field Z(x) to be stationary; if it is not, site sensitivity indices depend
on site x∗ (Eq. (4)). It is then possible to compute maps of these indices (Marrel et
al. 2011; Pettit and Wilson 2010) to discuss the spatial variability of model inputs
sensitivities.

Finally, we focused on the case in which the modeler’s interest is in the spatial
linear average or the sum of model output Y(x) over the support v. As discussed by
Lilburne and Tarantola (2009), other outputs of interest may be considered, such as
the maximum value of Y(x) over v (for example, maximal pollutant concentration
over a zone), some quantile of Y(x) over v (Heuvelink et al. 2010), or the percentage
of v for which Y(x) exceeds a certain threshold. To our knowledge, no study has in-
vestigated the properties of sensitivity indices computed with respect to such outputs
of interest.

5 Conclusions

This paper provides a formalism to apply variance-based global sensitivity analysis to
spatial models when the modeler’s interest is in the average or the sum of the model
output Y(x) over a given spatial unit v. Site sensitivity indices and block sensitivity
indices allow us to discuss how a change of support modifies the relative contribution
of uncertain model inputs to the variance of the output of interest. We demonstrate
an analytical relationship between these two types of sensitivity indices. Our results
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show that the block sensitivity index of an input random field Z(x) increases with
the ratio |v|c/|v|, where |v| is the area of the spatial support v and the critical size
|v|c depends on the covariance function of Z(x). Our formalization is made with a
view toward promoting the use of sensitivity analysis in model-based spatial deci-
sion support systems. Nevertheless, further research is needed to explore the case
of nonpoint-based models and extend our study to outputs of interest other than the
average value of model output over support v.

Appendix A: Proof of the Relation Between Site Sensitivity Indices and Block
Sensitivity Indices

As mentioned in Sect. 2, we assume that the first two moments of Y(x) exist. The
ratio of block sensitivity indices gives (Eq. (5))

SZ(v)

SU(v)
= Var(E[Yv | Z(x)])

Var(E[Yv | U]) . (14)

The conditional expectation of block average Yv given Z(x) gives

E[Yv | Z] = E

[(
1/|v|

∫
v

Y (x) dx
) ∣∣∣ Z(x)

]
(definition of Yv)

= 1/|v|
∫

v

E
[
Y(x)

∣∣ Z(x)
]
dx (for a point-based model)

= 1/|v|
∫

v

EZY (x) dx
(
definition of EZY (x)

)
.

Thus, we have Var(E[Yv | Z]) = Var(1/|v| ∫
v
EZY (x) dx) = σ 2

v (definition of σ 2
v ).

Moreover, the conditional expectation of block average Yv given input U gives

E[Yv | U] = E

[(
1/|v|

∫
v

Y (x) dx
) ∣∣∣ U

]
(definition of Yv)

= 1/|v|
∫

v

E
[
Y(x)

∣∣ U
]
dx (Fubini’s theorem).

E[Y(x) | U] does not depend on site x under the stationarity of SRF Z(x); thus, we
have in particular E[Yv | U] = E[Y(x∗) | U], and Var(E[Yv | U]) = Var(E[Y(x∗) |
U]). Combining these expressions with Eq. (14) yields

SZ(v)

SU(v)
= σ 2

v

Var(E[Y(x∗) | U]) . (15)

The ratio of site sensitivity indices gives (Eq. (4))

SZ

SU
= Var(E[Y(x∗) | Z(x)])

Var(E[Y(x∗)
∣∣ U]) . (16)

We notice that for point-based models Var[E(Y (x∗) | Z(x))] = Var[EZY (x∗)] = σ 2

(definition of EZY (x) (Eq. (7))). Finally, it follows from Eqs. (15) and (16) that

SZ(v)

SU(v)
= SZ

SU
· σ 2

v

σ 2
.
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Appendix B: Hermitian Expansion of Random Field EZY(x)

The random field EZY (x) can be written (Eqs. (2), (7)) as a transformation of the
Gaussian random field Z(x) through the function ψ̄ : z �→ ∫

Rn ψ(u, z) · fU(u) du

EZY = ψ̄(Z),

where fU(·) is the multivariate pdf of random vector U. Under the hypothesis that
the first two moments of Y(x) exist, random field EZY (x) has finite expected value
and finite variance. Thus, ψ̄ belongs to the Hilbert space L2(G) of functions φ :
R → R, which are square-integrable with respect to Gaussian density g(.). Hence, ψ̄

can be expanded on the sequence of Hermite polynomials (χk)k∈N, which forms an
orthonormal basis of L2(G) (Chilès and Delfiner 1999)

ψ̄ =
∞∑

k=0

αk · χk with χk(z) = 1√
k! · 1

g(z)
· ∂k

∂zk
g(z),

where coefficients αk are given by: αk = ∫
R

χk(z)ψ̄(z)g(z) dz. It follows that EZY (x)

can be written as an infinite expansion of polynomials of Z(x)

∀x ∈ D, EZY (x) =
∞∑

k=0

αk · χk

[
Z(x)

]
.

Its covariance then gives (Chilès and Delfiner 1999)

Cov
(
EZY (x),EZY (x + h)

) =
∞∑

k=0

α2
k ·

[
C(h)

C(0)

]k

=
∞∑

k=0

λ2
k · [C(h)

]k
,

where C(h) is the covariance function of GRF Z(x) and λk = αk · C(0)−k/2.
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