
Math Geosci (2012) 44:47–70
DOI 10.1007/s11004-011-9379-9

Support Vector Machines for Landslide Susceptibility
Mapping: The Staffora River Basin Case Study, Italy

Cristiano Ballabio · Simone Sterlacchini

Received: 14 December 2009 / Accepted: 29 November 2011 / Published online: 3 January 2012
© International Association for Mathematical Geosciences 2011

Abstract The aim of this study is the application of support vector machines (SVM)
to landslide susceptibility mapping. SVM are a set of machine learning methods in
which model capacity matches data complexity. The research is based on a concep-
tual framework targeted to apply and test all the procedural steps for landslide sus-
ceptibility modeling from model selection, to investigation of predictive variables,
from empirical cross-validation of results, to analysis of predicted patterns. SVM
were successfully applied and the final susceptibility map was interpreted via suc-
cess and prediction rate curves and receiver operating characteristic (ROC) curves, to
support the modeling results and assess the robustness of the model. SVM appeared
to be very specific learners, able to discriminate between the informative input and
random noise. About 78% of occurrences was identified within the 20% of the most
susceptible study area for the cross-validation set. Then the final susceptibility map
was compared with other maps, addressed by different statistical approaches, com-
monly used in susceptibility mapping, such as logistic regression, linear discrimi-
nant analysis, and naive Bayes classifier. The SVM procedure was found feasible and
able to outperform other techniques in terms of accuracy and generalization capacity.
The over-performance of SVM against the other techniques was around 18% for the
cross-validation set, considering the 20% of the most susceptible area. Moreover, by
analyzing receiver operating characteristic (ROC) curves, SVM appeared to be less
prone to false positives than the other models. The study was applied in the Staffora
river basin (Lombardy, Northern Italy), an area of about 275 km2 characterized by a
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very high density of landslides, mainly superficial slope failures triggered by intense
rainfall events.

Keywords Support Vector Machines · Landslide susceptibility mapping · Spatial
prediction · Cross-validation

1 Introduction

The main aim of landslide susceptibility modeling is to identify areas prone to future
mass movements, on the basis of previous knowledge about the spatial distribution
of past occurrences. The basic idea behind this approach is to identify areas where
a particular combination of physical properties could indicate the predisposition to-
wards similar events in the future. This goal is usually achieved by relating the spatial
distribution of past landslides with the spatial distribution of supporting morphomet-
ric, geological, geomorphological, and land use properties to produce a susceptibility
map. As the relationship between these properties and the spatial probability of oc-
currence is usually unknown, susceptibility prediction is achieved through the use of
statistical modeling or machine learning techniques. Landslide susceptibility assess-
ment can be seen as a typical classification problem whose main aim is to separate
instances belonging to two classes: (i) areas where landslides occurred or are likely
to occur in the future; and (ii) areas where landslides did not occur or are not likely
to occur in the future.

Several researchers applied different classification techniques to landslide suscep-
tibility prediction and many of these are reviewed in Carrara et al. (1995), Guzzetti
et al. (1999), Aleotti and Chowdhury (1999), Brenning (2005). Most of these tech-
niques fall into two main categories: the former comprises simple ranking functions
based on Bayes’ theorem, like naive Bayes (NB), or the weights of evidence (WofE)
(Goodacre et al. 1993; Bonham-Carter 1994) classifiers; the latter uses parametric
statistical techniques such as linear discriminant analysis (LDA) (Carrara et al. 2003;
Guzzetti et al. 2006) or logistic regression (LR) (Ayalew and Yamagishi 2005;
Eeckhaut et al. 2006; Carrara et al. 2008). The former category uses non-parametric
techniques and is thus not bounded by a particular distribution. However, these ap-
proaches suffer from conceptual limitations related to predictors independence as-
sumption, which is usually violated in practice. Moreover, predictors classification
is required by these models, a practical issue which reduces the informative content
of the input and limits model accuracy. On the contrary, parametric models can deal
with continuous variables; however collinearity remains a limit for these models and
linearity is frequently not met in practice. Further, these models are strictly paramet-
ric and must satisfy several restrictive assumptions on data distribution. In this study,
we propose the application of support vector machines (SVM) (Vapnik 1995, 1998;
Cherkassky and Mullier 2007) to landslide susceptibility mapping. SVM are based
on a non-linear transformation of the covariates in a high-dimensional space, where
different classes are linearly separable. Recently, several authors applied two SVM-
related methods, namely support vector classification and support vector regression,
to a broad range of spatial problems (Kanevsky and Canu 2000; Smirnoff et al. 2008;
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Ballabio 2009; Samui and Sitharam 2010; Pozdnoukhov et al. 2011). When used
properly, SVM are able to outperform many classifiers (Meyer et al. 2003). To assess
the performance of SVM, we chose to compare the performances of this technique
with the ones of the techniques most commonly utilized by geomorphologists to pro-
duce maps of landslide susceptibility. To keep the outcome of the study coherent with
the existing literature, we chose to use performance metrics of common use in this
field of study.

1.1 Study Area

The study area is entirely within the Staffora river basin (Lombardy), an area
of about 275 km2 belonging to the northern sector of the Apennines, facing the
Po Plain (Fig. 1). The area is characterized by outcropping formations mainly
composed by clay and marl-rich terrigenous formations (Beatrizzotti et al. 1969;
Braga et al. 1985) which are subject to frequent landsliding. A thoroughly geomor-
phological and historical description of landslides in the study area, along with a
temporal analysis of their evolution, has been performed by Carrara et al. (2003),
Meisina et al. (2006) from 1950 to 2000. The authors have shown that most of the
slope failures were triggered in 1951, 1959, 1976–1977, 1993, 1997, 2000: all pe-
riods characterized by heavy rainfall events following dry periods. These landslides
which can be classified in terms of types, materials involved, estimated volumes, ve-
locities and degree of activity (Cruden and Varnes 1996), are mostly represented by
active mud-earth flows, prediction of which is the aim of this study. Mud-earth flows
are widespread all over the study area occupying over 36 km2 with 1574 observed
occurrences.

Some authors have already produced maps of landslide susceptibility for the study
area, by applying different techniques. Carrara et al. (2003) performed a Linear Dis-
criminant Analysis on 2245 morphological-lithological terrain units. Sterlacchini et
al. (2004), Poli and Sterlacchini (2007) applied the weights of evidence modeling
technique on a pixel base. In the first case, the terrain units used in the analysis may
limit the spatial resolution of the resulting susceptibility map and, as these units could
be further subdivided into smaller units or aggregated into larger ones, their choice is
somehow ambiguous. Moreover, the linear discriminant analysis approach is strictly
applicable only when the underlying variables are jointly normal with equal covari-
ance matrices and devoid of outliers, a situation which does not commonly occur in
practice, where class imbalance and sampling bias (Oommen et al. 2011) is a common
issue even for less restrictive methods. Finally, the assumption of linearity between
response and variables is usually not realistic. In the case of Poli and Sterlacchini
(2007), the authors were obliged to classify the original continuous predictive vari-
ables (due to the model requirements) thus reducing the informative content of their
input data and, in so doing, the predictive accuracy. Both cited methodologies also re-
quire the explanatory variables to be non-collinear. This is a concerning issue as most
of the morphometric, geological and land-use variables are inherently correlated (i.e.
slope and lithology, slope and land use, altitude and land cover, etc.). The use of SVM
can help to overcome some assumptions and limitations implied in the models above
mentioned, improving the accuracy of the final predictions. In particular, SVM are an
inherently robust and collinearity resistant technique.
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Fig. 1 On the left, the Staffora river basin location in northern Italy is indicated by the gray square. On the
right, shaded relief maps of the study area with the two sets of occurrences; in the upper-right figure are
the events that occurred before 1992, while in the lower-right figure are the events that occurred between
1992 and the end of 1999

1.2 Predictor Variables and Landslide Inventories

In order to predict landslide susceptibility, a set of spatially distributed predispos-
ing variables was related with the spatial distribution of past landslide occurrences.
More precisely, two inventories of active and quiescent landslides (Cruden and Varnes
1996), showing the geographical distribution of mass movements in two different
time periods. 1992 and 1999, have been used in the model (Fig. 1). The events that
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occurred before 1992 will be named Set1; this set contains 378 distinct events with
an average per-event area of 14400 m2 and a total area of 5.5 km2. Set2 contains
the events which occurred between 1992 and 1999 and contains 336 events with an
average per-event area of 12250 m2 and a total area of 4.6 km2. Since one goal of
the study is to assess the forecasting capability of different models, we utilized only
Set1 for model training and parameters fitting by randomly splitting the model into
two subsets, a training set and a testing set. This subdivision was repeated in a k-fold
procedure in order to avoid the possible influence of a particular data configuration.
Set2 was utilized exclusively for the cross-validated performance evaluation of the
fitted models.

All predictors used in the analysis are summarized in Table 1, and can be subdi-
vided into two groups: morphometric terrain features and geo-lithological and land
use features. Morphometric features were derived from the regional digital elevation
model (DEM), available for the study area, with a ground resolution of 20 m. From
the DEM, the following terrain features were derived: (i) altitude and slope (Zeven-
bergen and Thorne 1987), internal relief (expressed as the maximum elevation change
per unit area), which are key-factors usually used in landslide susceptibility assess-
ment studies; (ii) compound terrain index (CTI) (McKenzie and Ryan 1999) also
known as the Wetness index is the logarithm of the ratio between upslope contributing
area and slope gradient. The CTI models the soil water content and water saturation
within landscapes, as flows need water saturation to occur; (iii) insolation (Dubayah
and Rich 1995), expressed in kW h yr−1, calculated on a seasonal basis. Direct inso-
lation is the amount of radiation reflected by the terrain: its maximum intensity is on
south-facing slopes. This parameter plays different roles on landslide susceptibility:
it directly influences the vegetation cover and the micro-climate; it indirectly controls
water availability (and soil moisture, after all) by snow melting and evapotraspira-
tion; (iv) distance from channel base level, which is the limiting level below which
a stream cannot erode its channel. Local base levels occur where the stream meets a
resistant rock body, or where the stream empties into a lake. This variable identifies
areas where mud earth-flows triggering is less likely as these events cannot occur at
the local channel base level; (v) convergence index, which characterizes soil and de-
bris erosion and deposition within the landscape; (vi) morphological protection index
(MPI) expresses the positive openness (Yokoyama et al. 2002) which expresses the
degree of dominance or enclosure of a location within the landscape; (vii) downs-
lope distance gradient (Hjerdt et al. 2004) which expresses how far a given amount
of water must travel in the landscape to lose a certain amount of potential energy.
This index differs from CTI because it takes into account the downslope topography,
which may enhance or dampen local drainage; and (viii) stream power Index, defined
as SPI = ln(Ca · tan(G)) where Ca is the catchment area and G is slope steepness.
This index is directly proportional to stream flow energy and as such expresses the
erosive potential of overland flow.

Along with morphometric-related features, the spatial distribution of ten litholog-
ical units outcropping in the study area was derived from the regional geological map
(Beatrizzotti et al. 1969; CARG project 1992). The presence of clay and marl-rich
sedimentary formations clearly influences the overall susceptibility in the study area.
Structural data (bedding planes, faults, thrusts, etc.) were derived from existing geo-
logical maps and added to the set of predictor variables. The influence of the attitude
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Table 1 List of covariates included in the analysis. Continuous variables are summarized by their mini-
mum, average and maximum value in the overall study area, in the occurrences of Set1 and in the occur-
rences of Set2 respectively. Discrete variables are summarized by the relative cover of each class within
the study area, within Set1 and within Set2

Name Continuous variables

Area Set1 Set2

min average max min average max min average max

Channel base level 0 17.27 163.7 0 10.59 94.53 0 12.38 107.8

Convergence index −100 0.2 100 −57.65 −3.32 92.4 −87.5 −3.6 71

CTI 1.29 6.69 21.9 3.7 6.7 17.2 3.1 6.6 17.6

Distance from faults 0 767 5916 0 566 1926 0 564.9 4587

Distance from thrust 0 1890 7851 0 1414 5341 0 1804 6310

Downslope distance gradient 0 0.325 1.466 0 0.27 0.89 0 0.312 1.056

Elevation 150 617 1690 200 546 1120 197 474 1246

Insolation 0.85 2.46 3.31 1.45 2.47 2.99 1.48 2.42 2.99

Internal relief 0 31.09 190 4 26.5 100 3 28 100

Morphological protection Idx 0 0.325 1.46 0 0.13 0.5 0 0.13 0.59

Slope 0 29.5 147 0 26 90 0 27.7 91

Stream power index 0.02 61.3 105 0.02 67.6 3272 0.02 73 4531

Discrete variables (relative surface)

Class name Area Set1 Set2

Land.1 3.1% 2.9% 1.5%

Land.2 34.1% 49.6% 52.2%

Land.3 13.0% 4.2% 1.7%

Land.4 2.8% 0.2% 0.2%

Land.5 12.0% 0.3% 0.3%

Land.6 15.1% 9.9% 8.0%

Land.7 9.2% 11.6% 5.4%

Land.8 6.3% 19.3% 23.9%

Land.9 1.0% 0.0% 0.6%

Land.10 3.3% 1.9% 6.1%

Geo.1 2.3% 1.9% %2.5

Geo.2 7.1% 0.07% 0.4%

Geo.3 14.8% 6.3% 4.8%

Geo.4 23% 29.5% 36.1%

Geo.5 9.4% 28.2% 33.3%

Geo.6 8.9% 0.3% 0.3%

Geo.7 11.5% 10.3% 9.6%

Geo.8 1.6% 2.5% 2.5%

Geo.9 8.0% 20.8% 9.1%

Geo.10 13.3% 0.07% 1.2%

Str.1 23.9% 18% 19.3%

Str.2 21.4% 11.4% 13.2%

Str.3 31.7% 59.6% 50.2%

Str.4 23.0% 11.0% 17.3%
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of the strata is rather evident: if bedding planes are oriented in the same direction
of the slope, the slope is increasingly prone to failure. Thus, four classes describing
different orientations and inclinations of rock strata with respect to slope were added
among the predictors. Moreover, as geomechanical stress can result in rock fracture
increasing landslide susceptibility, distance from faults and thrusts was also added
to the set of predictors. Finally, as land cover and land use can influence hydrologic
balance, soil erosion, and run-off, ten land use classes were derived from the DUSAF
project (DUSAF project 2003) and added to the set of predictive variables. The data
frame of Table 1 was then converted into a dummy matrix x of dimension M × N ,
where M = 36 is the number of independent variables and N is the sample size.

In the present case, the classification task aims at discriminating between the land-
slide prone areas (class 1) and the rest of the study area (class −1). We can notice
from Fig. 1 that the ratio between landslide area and the overall area is generally
very low, thus the unaffected area can be resumed by a random sample of the total
population, excluding landslide areas. It should be noted that class imbalance and
sampling bias can influence the outcome of several models (Oommen et al. 2011;
Lin et al. 2002), so in order to have comparable sample size, the dimension of
the −1 sample has to be similar to the number of the pixels in the landslide areas
(susceptible/not-susceptible). This sample was taken as to have a distribution which is
a normal approximation of the distribution of the topographic and geo-environmental
features (as summarized in Table 1) within the study area.

2 Methodology

2.1 Support Vector Machines

Support vector machines are a set of machine learning techniques based on the con-
cept of optimal separating hyperplane, developed by Vapnik (1995). SVM can be
thought as non-linear classifiers whose goal is to find the widest margin between two
classes in feature space.

When dealing with landslide susceptibility mapping, by the use of statistical ap-
proaches, two major issues can be identified. The first resides in the strong assump-
tions of the classic parametric models, which usually assume data linearity. If the
relation between dependent and independent variables is not linear, these models
will perform poorly. The second issue is model overfitting, which implies that fit-
ting a model with an arbitrary high number of degrees of freedom, aiming only
at minimizing the error, will result in a model fitting not only the general trend,
but also the random noise. Thus, the model will be poorly predictive on unob-
served data, as it is not discriminating between the trend and the noise. This is-
sue is related to the curse of dimensionality (Bellman 1961; Hastie et al. 2001;
Evangelista et al. 2006) that can be explained as the effect of the exponential re-
duction of observational informative content with the increase of dimensions. This is
due to the sampling density that is proportional to N1/M where M is the dimension
of the input space and N is the sample size. This behavior is shown in Fig. 2 where
prediction error is depicted as a function of the model complexity. Low complex-
ity models, like linear models, may have higher error rates if the model fits the data
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Fig. 2 Graphical representation of the relation between training error and testing error, as a function of
model complexity. This is a general model in machine learning systems

poorly: in this case, error is due to model bias. On the other hand, increasing model
complexity may arbitrarily reduce model bias and error for the training sample but
the resulting model is over-fitted and has a higher variance. The optimal model com-
plexity corresponds to the one which minimizes the error on unobserved test sample,
which corresponds to the solid line of Fig. 2.

The SVM approach aims at minimizing both the error test and the model complex-
ity. In other words, SVM are data-dependent models, which means that the model
capacity is tuned to match data complexity. This paradigm, also termed: structural
risk minimization (Vapnik 1995; Cherkassky and Mullier 2007), is the basis of the
SVM learning algorithm. In this study, our aim is to discriminate between suscep-
tible (1) and not susceptible (−1) pixels. In this case, SVM have to separate the N

observations into different classes using a function f expressing a hyperplane defined
as

f (x) = 〈w, x〉 + b =
N∑

i=1

(wixi) + b = 0, (1)

were, the vector x represents the independent variables (i.e. morphometric and geo-
environmental predictors), while the vector w represents the vector of weights which
has to be found by the model, and b is a constant. The concept behind (1), is rather
simple. Suppose that we want to discriminate between two classes. The most intuitive
approach is to find a function which acts as a threshold between the instances of the
two different classes. As the hyperplane is defined by being equal to zero, pixels
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Fig. 3 (a) Illustration of the Optimal Separating Hyperplane and Support Vectors. (b) Graphical depiction
of the Kernel trick mapping data from two to three dimensions

classification is given by their sign. The simplest possible function is a straight line
in two-dimensional space or a plane/hyperplane in more dimensions. This is exactly
the approach of linear methods. The SVM approach attempts to find the maximum
separating hyperplane, which is the plane passing through the widest gap between
the instances of the two classes. Figure 3(a) illustrates this concept: the separating
hyperplane is just one of the possible planes which separates the instances of the two
classes with the same amount of misclassification error. This hyperplane is known as
optimal separating hyperplane (Vapnik 1998). However, it is not always possible to
define a separating hyperplane, because the two classes can, and usually do, overlap
each other. This situation is illustrated in Fig. 3(a), where one of the instances lies
within the margin. To manage this issue, it is possible to introduce slack variables
(Cortes and Vapnik 1995; Vapnik 1998), defined as

ξi > 0 (i = 1, . . . ,N). (2)
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Slack variables are linear penalty terms aimed at minimizing the amount of the
misclassified instances. Conceptually, the slack variables act in a way similar to the
minimization of the root mean squared error (RMSE) in linear regression. The dis-
tance between a point x on the hyperplane, as in (1), and a point x′ is found by mini-
mizing ‖x − x′‖2. To achieve this goal, it is necessary to minimize both the complex-
ity of the model, measured by ‖w‖2 and its classification error max(ξ). A possible
way to address this problem is the ν-SVM (Chen et al. 2005), in which the param-
eter ν expresses the lower and the upper boundary of the number of observations
that could be taken as support vectors and the number of points allowed to lie on the
wrong side of the hyperplane, respectively. Parameter ν is associated with variable
ρ which is to be optimized during the training stage. Thus, the problem formulation
could be written as

minimize Rw,ξ,ρ = 1

2
‖w‖2 − νρ + 1

N

N∑

i=1

ξi

subject to

{
yi(〈w, xi〉) + b ≥ ρ − ξi (i = 1, . . . ,N)

xi ≥ 0 ρ ≥ 0,

(3)

where R is the structural risk, N is the number of observations, the term ‖w‖2 is
the Euclidean norm which expresses the distance between the hyperplane and the
margins and yi = [−1,+1] are the classes of the observed pixels. It can be shown
(Schölkopf 2001) that the effect of ρ can be explained considering that for ξ = 0 the
constraint of (3) imposes that the two classes are separated by the margin 2ρ

‖w‖ . This
formulation is particularly attractive, as it can be shown that ν represents an upper
limit for the margin error ξ > 0 and a lower limit for the number of SV (Schölkopf
2001). Thus, one can approximately define the percentage of allowed training mis-
classification beforehand, by changing the value of ν. The solution of w for (3) for
the SVM can be found using the method of Lagrange multipliers expressing w as

w =
N∑

i=1

αiyixi, (4)

where αi are the Lagrange multipliers.
Although SVM are hard [+1,−1] classifiers, several approaches have been pro-

posed to derive smooth probabilities from their outcome. The approach used in this
work is based on the sigmoid transformation by Platt (1999) which has been suc-
cessfully applied in other environmental related case studies (Kanevski et al. 2009;
Pozdnoukhov et al. 2011)

p(y = 1|x) = 1

(1 + exp(a · f (x) + b))
, (5)

where a and b are constants. In the present case, the parameters were chosen as to
maximize the negative log-likelihood, which results in (5) providing estimates of the
class-conditional posterior probabilities. Given its features, in the present study we
applied probabilistic ν-SVM to predict mud earth-flow susceptibility.
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2.2 Kernel Function

In susceptibility assessment, some of the most frequently used classification tech-
niques are based on linear functions, as in Logistic Regression and Discriminant
Analysis. However, the linear model could be considered at best as an approxima-
tion for most of the real world data. The SVM approach is rather different. As stated
before, the hyperplane is derived from the values calculated through the dot product.
However, it is possible to use a dot product which is able to project the data pairs
into a space in which the classes are linearly separable. This procedure is known as
the Kernel Trick (Schölkopf 2001). Given a projection Φ : X → H from the original
space X to a space H , the dot product 〈Φ(xi),Φ(xj )〉 can be represented by a kernel
function k (Schölkopf 2001)

k(xi, xj ) = 〈
Φ(xi),Φ(xj )

〉
. (6)

Since the weight vector can be expressed as a linear combination of the training points

w =
N∑

i=1

αΦ(xi), (7)

Equation (1) can be written as

f (x) =
N∑

i=1

αik(xi, xj ). (8)

Usually the kernel is chosen so that the f will be linear in feature space. This can be
achieved by using the same criterion optimization as in (3). This situation is illustrated
in Fig. 3(b): on the left of the figure, we have two classes in a two-dimensional space.
In this space, it is not possible to separate these two classes using a linear function
(a straight line). However, if we project the data into a three-dimensional space, we
can successfully separate the two classes with a plane (which is a linear function
in three dimensions), as shown in the right part of Fig. 3(b). Through the use of
kernel mapping, SVM operating in an arbitrary number of dimensions can be built,
thus making it possible to find a separating hyperplane even for highly complicated
datasets. The radial basis function (RBF) Gaussian kernel

K(xi, xj ) = exp
(−σ‖xi − xj‖2) (9)

is an example of mapping function (Aizerman et al. 1964; Nilsson 1965) and is the
kernel utilized in this study due to its good generalizing properties. Given that the
computational time required by a grid search is not excessive, both kernel σ and
SVM ν parameters have been tuned using a fine grid search as suggested by (Hsu et
al. 2007) using the testing set.

2.3 Variable Selection and Investigation

Variable selection is a crucial part of model optimization procedure, aimed at retain-
ing only significant predictors in the analysis. This practice is widely used in statistics
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and its goal is to remove uninformative or noisy features from the final model. Vari-
able selection in linear techniques is usually carried out to minimize the RMSE on
the basis of some assumptions about data distribution. For instance, in landslide sus-
ceptibility assessment, Guzzetti et al. (2006) proposed the use of linear discriminant
functions to rank possible predictors. A general way to deal with this problem is to
maximize the separating margin between two classes (Fig. 3(a)). The aim is to se-
lect a set of features which maximizes the discriminant power and thus produces the
widest margin between the two classes. Recursive feature elimination (RFE) (Guyon
et al. 2002; Guyon and Elisseeff 2003) is a backward sequential feature elimination
technique, which starts with all the features and discards one feature at a time. The
squared coefficients of the weight vector w2

j (j = 1, . . . , p) are used as the feature
ranking criteria as features with larger weights are more informative. The magnitude
of w2

j corresponds to the change of the criterion R of (3) when the j th feature is
removed

J = 1

2
‖w‖2 − νρ +

N∑

i=1

ξi . (10)

It can be shown (LeCun et al. 1990), that �J(j) ≈ (�wj )
2 where J (j) is the value

of J when the j th feature is removed, the relation can be rewritten as

J (j) ≈ J + w2
j . (11)

Removing the feature with the smallest w2 will produce the least increase of J; in
other words RFE seeks to find the subset of variables which yields minimal J, thus
increasing generalization (Zhou and Tuck 2007).

To test the reliability of the RFE procedure, a Wilcoxon rank sum test (Wilcoxon
1945; Mann and Whitney 1947) was performed. This procedure can rank input fea-
tures of Table 1 on the basis of their p-values. The Wilcoxon rank-sum test is a
non-parametric alternative to the two sample t-test which is based solely on the order
in which the observations from the two samples fall. The implementation of the test
follows the approach proposed by Boulesteix (2007), following the notation of the
previous sections. The test assesses the equality of the median of the landslide prone
and non-prone areas as two independent samples yi = −1 and yi = 1 in respect to a
feature Mj . The test statistic is then given as

W =
∑

i:yi=−1

RKi , (12)

which is the sum of the ranks (RKi ) of the observations belonging to class −1. The
p-value of the test is derived from the asymptotic result

W − N−1(N + 1)/2√
N−1N1(N + 1)/12

∼ N (0,1) (13)

where N−1 and N1 are the number of observations belonging to class −1 and 1, re-
spectively. The p-value estimation is made more robust by the use of Monte-Carlo
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Table 2 Collinearity check of
input variables. The VIF values
were calculated for all the
candidate variables. The VIF
values show that the effect of
collinearity on the model should
not be significant

VIF Df VIF( 1
2 Df )

Elevation 1.75 1.00 1.32

Channel b l 4.50 1.00 2.12

Convergence index 1.69 1.00 1.30

Direct insolation 4.85 1.00 2.20

Distance from faults 1.27 1.00 1.13

Distance from thrust 1.89 1.00 1.37

Downslope gradient 1.80 1.00 1.34

Geology 24.95 9.00 1.20

Morphological protection idx 1.93 1.00 1.39

Slope 2.72 1.00 1.65

Stream power idx 4.64 1.00 2.15

Structure 3.26 3.00 1.22

Total insolation 1.85 1.00 1.36

Land use 2.87 9.00 1.06

LS factor 1.55 1.00 0.77

cross-validation (Boulesteix 2007). The p-values are then used to perform a uni-
variate relevance ranking of environmental variables (Table 1) on the basis of their
p-values which can be compared to the results of the RFE procedure.

Since collinearity among predictor variables can influence the model outcome,
the predictor variables were checked for collinearity using variance inflation factors
(VIF) (Marquardt 1970; Fox and Monette 1992) in the data preparation stage. In
general, a VIF value of 10 or more is taken as proving high collinearity, although
some caution should be taken before removing the variable from analysis (O’Brien
2007). The VIF values shown in Table 2 evidence that collinearity should not be a
significant issue for this data set. The only variable which shows a significant (>10)
degree of collinearity is the layer of the lithology units. However, this high value is
due to the high number of degrees of freedom and the normalized VIF value is close
to the one of the other variables. Given this result, no variable was discarded from the
analysis due to collinearity.

2.4 Model Performance Evaluation

The classification capabilities of the SVM and other classifiers have been tested
through the use of receiver operation characteristic (ROC) graphs and prediction rate
curves. The ROC (Egan 1975; Fawcett 2006) is a graphical analysis of the success
rate of a binary classification and it provides useful information about the proneness
of a model to generate false positives errors. ROC graphs are built by plotting the ra-
tio between the true positives and the false positives in a two dimensional plane; for
discrete classifiers the resulting ROC is expressed by a point. Other classifiers yield
a classification probability or score (such as SVM in the present formulation, naive
Bayes, etc.) that represents the degree to which an instance is a member of a class.
Such scoring classifier can be used with a threshold to produce a discrete classifier: if
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the classifier output is above a given threshold, the classifier will produce a positive
or else a negative. Using a series of increasing threshold values will produce a series
of point in ROC space and varying the thresholds by infinitesimal steps between −∞
and +∞ will draw a curve in ROC space. An interesting property of ROC is that the
technique is insensitive to changes in class distribution, this means that while other
performance metrics, such as accuracy and precision, can change in response to class
skewness (Fawcett 2006), ROC curves remain the same. This is an attractive property
as class skewness seems to be a common occurrence (Fawcett 2006). The result of
the ROC analysis are summarized by the area under curve (AUC), which expresses a
complete success in classification for an AUC = 1, and random classification for an
AUC = 0.5.

The prediction rate curves method (Chung and Fabbri 1999; van Westen et al.
2003), have been widely applied for many years to assess the quality of susceptibil-
ity mapping, slicing the probability map into equal area classes, each ranked from a
minimum to a maximum value. The curves identify the percentage of landslide area
within a given probability class. Curve construction is performed by plotting the cu-
mulative percentage of susceptible areas (starting from the highest probability values
to the lowest ones) on the x axis and the cumulative percentage of events included in
the cross-validation set on the y axis. The steeper the curve, the larger the number of
events falling into the most susceptible classes.

3 Results

3.1 Variable Relevance and Probability Map Calculation

The RFE procedure selects 18 different features (out of 36 available) as the optimal
subset of covariates. The initial set of variables is shown in Table 1. Figure 4 depicts
the features with the highest overall influence on the model as estimated in the RFE
procedure; the p-values were calculated using the Wilcoxon test; Fig. 4 also shows a
substantial agreement between the ranking outcomes of both RFE and Wilcoxon test
and cross-validation RMSE. The grid search approach for SVM parameters identifies
an error minimum for ν = 0.17 and σ = 0.19, a graphical depiction of the testing er-
ror surface is shown in Fig. 5. This surface is produced by the averaged testing error
of the k testing sets used for parameters search. Once the model parameters have been
optimally tuned we applied the trained SVM to the input variables to obtain the map
of landslide susceptibility. As shown in Fig. 6, the output of the analysis is the land-
slide susceptibility map which portrays the spatial probability of event occurrence,
the probability is shown by the color scale whose color variation is based on proba-
bility distribution quantiles. This probability scale is not the occurrence probability
of an event in time, but the probability of a pixel to be classified in a given class by
the SVM. So, a pixel with value equal to 0.8 has 80% chance to be classified as 1 and
20% to be classified as a −1.

3.2 SVM Classification Capabilities and Comparison with Other Techniques

To test the reliability of the SVM prediction map and to compare its performance
against other techniques, cross-validations were performed on two different landslide
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Fig. 4 Comparison of p-values obtained from MCMC Wilcoxon test and RFE ranking. The box plots
show the calculated p-values from the Wilcoxon test whose scale is represented on the left vertical axis.
RFE ranking is shown by the order of the variables on the horizontal axis. Cross-validation error is rep-
resented by the solid line, where the gray bands represent the 0.9 confidence intervals, CV-error scale is
shown on the right vertical axis. Only the top 30 ranking variables are shown

inventories: the former (Set1, 1992) to verify how much the model fitted the occur-
rence of past landslides; the latter (Set2, 1999) to test the SVM predictive capability.
Indeed, the degree of fit did not express how well the model predicted future land-
slides, because the events in Set1 were used to construct the prediction map. On the
other hand, Set2 comprised only events of the same type but not used in the training
stage. A good performance on Set2 would ensure a good predictive capability over
events not yet observed which means a good landslide susceptibility prediction.

Success and prediction rate curves and ROC analysis were also used to investi-
gate the outcomes of other three statistical techniques, commonly used in suscepti-
bility mapping, namely, logistic regression, linear discriminant analysis, and the naive
Bayes classifier weights of evidence. These techniques were applied using the best
set of predictors. Variable selection procedure for logistic regression and discrimi-
nant analysis showed that the best set of covariates to be included in these models
was equivalent to the one selected by recursive feature elimination, although the rela-
tive variable ranking is different; so that, the outcome of the different models could be
compared. The susceptibility maps produced by each technique are shown in Fig. 7,
also in this case color scale is based on probability distribution quantiles. The re-
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Fig. 5 Result of grid search for SVM ν and kernel σ , contour lines, and color scale show the mean square
error of the testing set

lated ROC curves are plotted in Fig. 8(a) for the training set and in Fig. 8(b) for the
cross-validation set. Table 3 compares the different approaches in terms of AUC.

Figure 8(b) shows the curves obtained from cross-validation over Set2; being
based on a completely independent set of data, model performance over Set2 pro-
vides a reliable mean to compare different techniques. In this case, SVM clearly
outperforms the other techniques, while logistic regression and discriminant analysis
show substantially identical performances and Naive Bayes performs slightly worse
than all the other approaches. Moreover, from the analysis of ROC-based curves of
Fig. 8(b), SVM model appears to be less prone to false positives than the other mod-
els, as its curve starts with a very steep increase of the true positive rate which calls
for a better discrimination capability between probable and not probable outcomes.
While the exclusion of false positives from the plot can be justified by the real im-
possibility to observe future not-yet-occurred events, this is a somewhat ill-posed
assumption. This consideration arises because we are not trying to discriminate be-
tween occurred and not-occurred events, but rather between the landslide distribution
in variables space and a completely random distribution in variables space. The SVM
ROC curve shown in Fig. 8(b) also proves that the model retains very good general-
ization properties on independent samples, thus reducing the likelihood of a possible
over-fitting in the tuning stage.
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Fig. 6 Susceptibility map as predicted by the SVM model. The color scale represents the probability of a
pixel being classified as landslide prone (spatial probability of occurrence)

Analyzing the results, it appears that SVM model outperforms the other classifiers
and produces high probability values over a smaller area. This high specificity of
the model confines approximately 78% of occurrences within the 20% of the most
susceptible area, while the other models identify no more than 60%. This means an
increased performance of 18% for the SVM.

Many authors (Chung and Fabbri 1999, 2003; Guzzetti et al. 2006) compute suc-
cess and prediction rate curves as single lines for each model, by averaging the dif-
ferent susceptibility values falling within each occurrence. As each landslide scarp
occupies a spatially defined area, the predicted probability values are not constant
within the scarp area, but they range from a minimum to a maximum value. Thus,
simple averaging can be reductive and lead to misinterpretation of the final result.
For this reason, in this study we propose to compute different (maximum, minimum,
and average) probability curves, as depicted in Fig. 9(a) for the training set (Set1).
The wide separation between the predicted minimum and maximum values, and the
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Fig. 7 Comparison between the SVM susceptibility map and the maps obtained by logistic regression,
linear discriminant analysis, naive Bayes. The SVM model produces high probabilities less frequently than
the other models, while preserving the predictivity on the observed occurrences. In this sense, the SVM
model is more specific and less prone to type false positives errors. The color scale is the same in all the
maps and indicates the spatial probability of occurrence

mean values very close to the maximum, is a strong evidence of SVM analysis speci-
ficity. The proximity between the mean and the maximum curves in Fig. 9(a) denotes
that SVM are very specific learners, able to discriminate between the informative
input and random noise. This behavior is also evident, albeit to a lesser degree, in
Fig. 9(b) that shows the predictive curves for the cross-validation set (Set2). In con-
clusion, given the maximum precautionary principle, one should take into account the
curve for the highest susceptibility rather than the average one. This implies a better
definition of the most susceptible area and, consequently, a more precise financial
allocation to mitigate slope instability problems.
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Fig. 8 (a) ROC curves
comparing classification
performance of different
techniques over the testing set
(Set1): SVM; LR; LDA; NB.
(b) ROC curves comparing
classification performance for
the cross-validation set (Set2)

Table 3 AUC values for
different techniques applied to
the testing and to the
cross-validation data sets

SVM LR LDA NB

Testing set (Set1) 0.98 0.82 0.81 0.79

CV set (Set2) 0.83 0.79 0.79 0.76

The last step of the study is aimed at verifying SVM prediction capability when
only DEM derived continuous parameters are used in the analysis. As stated before,
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Fig. 9 (a) Prediction rate curves for the testing set (Set1). The solid curve is calculated using the average
probability within each mapped landslide. The “max” curve expresses the cumulative area of the highest
probability class which falls within mapped landslide. The “min” curve expresses the cumulative area
of the lowest probability class which falls within mapped landslide. (b) Prediction rate curves for the
cross-validation set (Set2). Curves are calculated as in (a)
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Fig. 10 ROC curves comparing
the performance of SVM an LR
when only morphometric
covariates are utilized to fit the
models. The models were fitted
using only Set1 occurrences.
The non-linear mapping of SVM
produces a good fitting even
with a reduced set of predictors,
while LR suffers a greater
performance reduction

one of the advantages of SVM over other techniques is the non-linear mapping. Lin-
ear models can cope with a certain amount of complexity and this usually requires
the model to be stratified in multiple levels using discrete covariates. In this way, it
is possible for a parametric model to have different intercepts and coefficient values
for each class of the discrete covariates. However, if only DEM derived parameters
are used, the model could suffer a significant performance reduction. This situation
is depicted in Fig. 10, where ROC curves from SVM and logistic regression are com-
pared. In this case, the models were not fitted on the best set of predictors, but only on
the DEM-derived covariates. Logistic regression suffers a greater performance reduc-
tion, while SVM preserves most of its prediction capability. This feature is of great
value considering the increasing availability of high resolution DEMs and the relative
scarcity of high resolution geo-environmental features maps (e.g. geological maps).
A technique which is able to produce reliable predictions using only morphometric
descriptors, can be applied in areas where other covariates are not available.

4 Conclusions

This study provides a conceptual framework for the mapping of landslides suscepti-
bility using support vector machines. This method is particularly attractive due to sev-
eral peculiar features, which include: robustness to noise, non-linear decision bound-
aries, easily implementable probabilistic outcome and an inherent capability to deal
with high dimensional classification problems. Several issues and common problems
of SVM application in this field of study are discussed and suitable solutions are pro-
posed. Particular attention has been dedicated to the description and application of
feature selection procedures. In this study, we propose the adoption of the recursive
feature selection algorithm (Guyon et al. 2002), which being based on the same prin-
ciple of SVM, provides coherent feature ranking results. This ranking appears to be in
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agreement with the one produced by more traditional techniques as the Wilcoxon test.
The evaluation of model performances has also been extensively addressed through
the use of ROC and success rate curves. In particular, we strongly advocate the use
of ROC curves given their attractive features, the most important one being their in-
sensitivity to class distribution.

Finally, we dedicated part of the study to the comparison of SVM performances
with the ones of more commonly used, at least in this field of study, techniques. We
compared SVM with logistic regression, linear discriminant analysis and naive Bayes
classifiers. Although this comparison might seem unfair, it is useful to advocate the
use of non-linear classifiers and robust statistical techniques among geomorpholo-
gists and hazard experts. In this study, the SVM procedure was found feasible and
able to outperform other techniques in terms of both accuracy and generalization
capacity. The over-performance of SVM against the other techniques was around
18% for the cross-validation set, considering the 20% of the most susceptible area.
This superior performance is retained even when the prediction is tested against a
time independent set of events, thus proving the SVM ability to predict the location
of possible future events. Another interesting aspect of SVM prediction is the re-
duced rate of false positives on the cross-validation set, as false positives contribute
to increase the cost of remediation and mitigation. Moreover, SVM proved to per-
form particularly well when reduced data sets, comprising only morphometric co-
variates, are used in the analysis. This feature it is yet another effective advantage
of SVM over other techniques as it makes their application more effective in areas
where geo-environmental maps are missing or outdated, like in developing coun-
tries. The susceptibility map produced by SVM appears have a lower spatial vari-
ability when compared with the ones produced by other techniques, while retaining
a superior prediction performance. If compared with other susceptibility maps pre-
viously produced for the study area (Carrara et al. 2003; Sterlacchini et al. 2004;
Poli and Sterlacchini 2007) this study susceptibility map appears far more specific in
its spatial delineation of potentially hazardous areas. Considering that hazard man-
agement and mitigation costs are directly related to the spatial extension of poten-
tially hazardous areas, it is evident that more accurate and specific hazard maps will
critically reduce both economic and social costs.
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