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Abstract The ensemble Kalman filter (EnKF) is a sequential data assimilation
method that has been demonstrated to be effective for history matching reservoir pro-
duction data and seismic data. To avoid, however, the expense of repeatedly updating
variables and restarting simulation runs, an ensemble smoother (ES) has recently
been proposed. Like the EnKF, the ES obtains all information necessary to compute
a correction to model variables directly from an ensemble of models without the need
of an adjoint code. The success of both methods for history matching reservoir data
without iteration is somewhat surprising since traditional gradient-based methods for
history matching typically require 10 to 30 iterations to converge to an acceptable
minimum. In this manuscript we describe a new iterative ensemble smoother (batch-
EnRML) that assimilates all data simultaneously and compare the performance of
the iterative smoother with the two non-iterative methods and the previously pro-
posed sequential iterative ensemble filter (seq-EnRML). We discuss some aspects of
the use of the ensemble estimate of sensitivity, and show that by sequentially as-
similating data, the nonlinearity of the assimilation problem is substantially reduced.
Although reasonably good data matches can be obtained using a non-iterative ensem-
ble smoother, iteration was necessary to achieve results comparable to the EnKF for
nonlinear problems.
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1 Introduction

History matching in reservoir engineering is the process of finding reservoir mod-
els that are consistent with historical production observations. Classical methods for
automatic or computer assisted history matching methods generally have used an ad-
joint system to compute the gradient of a data misfit function with respect to changes
in model parameters. Data from the entire history are usually included in the cost
function and the minimization is iterative. Past experience has been that synthetic
examples can be history matched with approximately 10 iterations using a Gauss–
Newton approach (Li et al. 2003) or with approximately 30 iterations using a quasi-
Newton method (Gao and Reynolds 2006) when gradients can be computed accu-
rately from an adjoint system. Recently, ensemble-based methods such as the ensem-
ble Kalman filter (Evensen 1994a) have gained much attention in petroleum engi-
neering. The EnKF does not require an adjoint system to obtain the gradient and has
been demonstrated to be quite flexible in the types of variable that can be estimated
and the types of measurement that can be used as data (see reviews in Aanonsen et
al. (2009), Oliver and Chen (2011)). Surprisingly, the EnKF seems to be able to of-
ten obtain satisfactory history matches without the need for iteration despite the fact
that many iterations were often required when the exact gradient is used in classical
methods.

Iterative ensemble Kalman filters (Gu and Oliver 2007; Li and Reynolds 2009;
Sakov et al. 2011), like the EnKF, have been used to sequentially assimilate data for
problems in which the relationship between data and model parameters is highly non-
linear. The iterative EnKF methods are able to improve the quality of data match with
additional simulation runs. One of the iterative EnKF methods, the ensemble random-
ized maximum likelihood (EnRML) method (Gu and Oliver 2007), uses an average
sensitivity estimated from the ensemble to iteratively update the model parameters
using the Gauss–Newton formulation. The state variables are computed by rerunning
the simulation using the updated model parameters. In a practical implementation of
the EnRML, a standard EnKF update is used unless the changes in the state variables
are large, in which case, the method switches to iterative updating (Gu and Oliver
2007; Chen and Oliver 2010a). The EnKF update is equivalent to the first iteration
of the EnRML with a full step length except that in the EnKF both model and state
variables are included in estimation.

Different from the filtering problem, a smoothing problem updates both the cur-
rent state and the past states when data are assimilated. The ensemble smoother was
initially introduced for the weather prediction problem (van Leeuwen and Evensen
1996), where estimation is focused on dynamic states and none or very few model pa-
rameters are involved. The ensemble smoother has been tested on a quasigeostropic
model (van Leeuwen and Evensen 1996) and on a Lorentz model (Evensen 1994b).
In both cases the ensemble smoother performed poorer than the EnKF. van Leeuwen
and Evensen (1996) attributed the better performance of the EnKF to its sequential
reduction of uncertainty at every assimilation step. Skjervheim and Evensen (2011)
introduced the use of an ensemble smoother (ES) for petroleum history matching. In
their implementation of the ES, data at all times are assimilated simultaneously so
that the analysis step of the EnKF is only applied once to update the model variables.
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The name “ensemble smoother” was used because prediction of the production and
dynamic states at different times can be computed by rerunning simulations from
initialization using the updated model variables. The batch update of the ES is sim-
ilar to the asynchronous EnKF in Sakov et al. (2010) in which the EnKF is used to
assimilate data that are not all collected at the same time.

The ES requires only a single update step, so the use of it avoids the frequent
modification of restart files and restarting of simulation runs that are required by
sequential updating of the EnKF. In some real applications, the increase in computa-
tional efficiency from the ES compared to the EnKF is substantial, partially because
it avoids updating of state variables which may cause convergence problems with the
simulator. The leading order of magnitude of floating point operations (FLOPS) for
the analysis step of the ES and the EnKF is O(max(nN2

e ,NdN
2
e )) (Evensen 2003),

where n is the number of variables in the state vector, Ne is the size of the ensemble,
and Nd is the number of data. In combined parameter and state estimation problems,
n equals to the sum of the number of model and state variables and is typically much
larger than the number of data Nd. Although the number of data at the analysis step is
greatly increased in the ES compared to the number of data at each of the data assim-
ilation times of the EnKF, the leading order of magnitude of the FLOPS is the same
as the EnKF if Nd remains less than n. The two examples presented in Skjervheim
and Evensen (2011) both showed comparable results for the ES and the EnKF, but the
computational cost in their examples for the ES was much lower than for the EnKF
due to the one-step update and smoother simulation runs for the ES.

In this paper, we introduce an iterative ensemble smoother (or batch-EnRML), in
which all data are assimilated simultaneously as in the ES, but in which the model
variables are iteratively updated as in the sequential version of the EnRML (Gu and
Oliver 2007). In the following sections, we first review the EnRML formulation with
emphases on its sequential and batch implementation. Because the iterative method
requires estimation of the sensitivity, we investigate the ensemble estimate of sen-
sitivity and compare it with the sensitivity from the adjoint method, and illustrate
the effect of using ensemble sensitivity in the EnRML for high-dimensional history
matching problems. Results from the EnKF, the ES, the seq-EnRML and the batch-
EnRML are compared for two examples with varying degrees of nonlinearity which
have been selected to illustrate the potential benefits of iteration, damping of updates,
and sequential data assimilation for improving the skill of the predictions.

2 Ensemble Randomized Maximum Likelihood Method

An iterative form of the ensemble Kalman filter called the ensemble randomized
maximum likelihood method (EnRML) was introduced in Gu and Oliver (2007). If
sequential updating is not desirable, the EnRML can also be used with a slight modifi-
cation to assimilate data from different times or to assimilate all data simultaneously.

2.1 Optimization Method to Sample Posterior pdf

In this section, we review the method that samples the posterior pdf by the mean
of optimization without the ensemble approximation. Denote two independent sets
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of data by d I
obs and d II

obs with no condition on observation time or from how many
different times they are collected. Let p(m | d I

obs) be the probability density function
(pdf) of model variables m conditioned to the first set of data d I

obs. The pdf p(m | d I
obs)

is the prior pdf for the assimilation of a new set of data d II
obs. The Bayes theorem gives

the probability density of model variables m after the assimilation of data d II
obs as

p
(
m

∣∣ d I
obs, d

II
obs

)
∝ p

(
d II

obs

∣∣ m
)
p
(
m

∣∣ d I
obs

)
. (1)

Efficient methods of sampling from the posterior pdf can be used if the prior pdf
p(m | d I

obs) before the assimilation of data d II
obs can be approximated as Gaussian

with mean, mI, and covariance, CM, and the error in measurement d II
obs are normally

distributed with zero mean and covariance, CD, so that (1) becomes

p
(
m

∣∣ d I
obs, d

II
obs

)
∝ exp

[−S(m)
]
, (2)

where

S(m) = 1

2

[(
g(m) − d II

obs

)T
C−1

D

(
g(m) − d II

obs

) + (m − mI)
TC−1

M (m − mI)
]
. (3)

In (3), g(·) indicates the nonlinear relationship between data d II
obs and the model vari-

ables m.
For Monte Carlo methods, we sample from (2) as a way of representing the pdf

of model variables conditional to both sets of data. An efficient, but approximate,
method of sampling is to compute the values of model variables that minimize the
stochastic objective function

S∗(m) = 1

2

[(
g(m) − d II∗

)T
C−1

D

(
g(m) − d II∗

) + (m − m∗)TC−1
M (m − m∗)

]
, (4)

where m∗ is a sample from the prior pdf p(m | d I
obs) and d II∗ is a sample from

p(d | d II
obs). Samples from p(m | d I

obs) are available from the ensemble. If errors in
the observations are additive, then samples from p(d | d II

obs) are obtained by adding
perturbations εD from the assumed pdf for observation error to the actual observa-
tions

d II∗ = d II
obs + εD. (5)

Using the Gauss–Newton method to minimize the stochastic objective function S∗(m)

in (4), the (� + 1)th iterative estimate of a sample of model parameters is

m�+1 = β�m∗ + (1 − β�)m
� − β�CMGT

�

(
CD + G�CMGT

�

)−1

× [
g
(
m�

) − d II∗ − G�

(
m� − m∗

)]
, (6)

where G� is a linearization of g(·) at m� and β is the step length parameter that can
be determined by standard line search. If β equals one, the iteration takes a full step
size, otherwise the correction at the iteration is damped.
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2.2 Ensemble-Based Methods

For methods in which the adjoint gradient is used in the Gauss–Newton minimization
(6), it is typical that d II

obs contains all the data and CM is the covariance of the model
parameters prior to assimilation of any data, so that stationarity of CM or singular
value decomposition of CM can be used to reduce the computation for large scale
problems. In ensemble-based methods, both the covariance Ce

M and the sensitivity
Ge are obtained from a limited size ensemble. The stochastic objective function (4)
then becomes

Se∗(m) = 1

2

[(
g(m) − d II∗

)T
C−1

D

(
g(m) − d II∗

) + (m − m∗)TCe−1
M (m − m∗)

]
. (7)

In some implementations of the EnKF, the covariance of noise in data CD is also
approximated by the ensemble. It is often, however, to assume uncorrelated data and
use the theoretical variance of the noise in CD. Benefits of the ensemble approxi-
mation are computational efficiency and ability to handle non-stationary covariance
after data assimilation.

When the ensemble approximation Ce
M and Ge are used and β = 1, the first itera-

tion of the Gauss–Newton methods (6) becomes

m1 = m∗ − Ce
MGeT(

CD + GeCe
MGeT)−1[

g(m∗) − d II∗
]
, (8)

which is simply the perturbed-observation form of the EnKF update equations (Burg-
ers et al. 1998; Houtekamer and Mitchell 1998) when applied to the updating of
model parameters. If d II includes all the data at various times, (8) represents the ES
update. In both the EnKF and ES, the sensitivity Ge is never calculated explicitly, in-
stead only the cross-covariance between model and state variables and data are used
in the Kalman gain. The cross-covariance between model variables m and data d is

Cmd = E
[
(m − m̄)

(
g(m) − ḡ(m)

)T]

≈ E
[
(m − m̄)(m − m̄)TGeT]

≈ Ce
MGeT, (9)

where the overbar indicates the mean, E[·] indicates the expectation. Similarly, in the
EnRML the ensemble approximation of the covariance and sensitivity is used in (6)
to iteratively minimize the objective function Se∗(m) in (7):

m�+1 = β�m∗ + (1 − β�)m
� − β�C

e
MGeT

�

(
CD + Ge

�C
e
MGeT

�

)−1

× [
g
(
m�

) − d II∗ − Ge
�

(
m� − m∗

)]
. (10)

Different from the EnKF, however, Ge
� and Ce

M in (10) need to be calculated sepa-
rately in the EnRML. Ce

M is the covariance of model parameters conditioned to data
d I

obs before the assimilation of the new set of data d II
obs. This covariance, represented

by the ensemble of models in the EnRML, provides weighting of prior information
for assimilation of d II

obs. The covariance Ce
M does not change with iterations, while
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the ensemble approximation of the sensitivity Ge
� does. The Hessian preconditioning

is also approximated from the ensemble, although the Hessian matrix is not shown
explicitly in (10) due to matrix manipulation.

In Gu and Oliver (2007), line search is performed based on the average value of
the objective function of the ensemble, so all ensemble members take the same step
length β at each iteration. Zhao et al. (2008) and Wang et al. (2010) suggested that
using separate line search for each ensemble member could improve the efficiency
of the method. Although the same data are used multiple times during iterations,
the EnRML obtains correct estimates of the mean and the posterior covariance for
linear problems due to the prior term in (6) (Gu and Oliver 2007). Iterative methods
that do not explicitly incorporate a prior term during iteration must either terminate
the iteration after a small number of iterations (Wen and Chen 2007) or include a
prior term in the stopping criteria of the iteration to prevent overfitting to the data
and excessive reduction in ensemble variability (Lorentzen and Nævdal 2011). In the
following two sections, we show two special forms of the EnRML depending on the
content of the two sets of data d I

obs and d II
obs: one form leads to an iterative EnKF

and one leads to an iterative ensemble smoother. A pseudo-code is included in the
Appendix as a reference for implementation.

2.3 Sequential EnRML (Iterative EnKF)

If d I
obs consists of data from time 1 to k − 1, dobs,1, . . . , dobs,k−1 and d II

obs is the data
collected at time k and the updating process repeats for all k, the EnRML performs
as an iterative EnKF. If the prior pdf, before the assimilation of data at time k, is
sufficiently close to Gaussian with mean, mk−1, and covariance, CM,k−1, such that
the Gaussian approximation is adequate for weighting new data versus prior data,
and the error in measurement dobs,k are normally distributed with zero mean and
covariance, CD,k , then each realization of the model parameters is updated using (10)
as

m�+1
j = β�mk−1,j + (1 − β�)m

�
j − β�C

e
M,k−1G

eT
k,�

(
CD,k + Ge

k,�C
e
M,k−1G

eT
k,�

)−1

× [
gk

(
m�

j

) − dobs,k,j − Ge
k,�

(
m�

j − mk−1,j

)]
, j = 1,2, . . . ,Ne. (11)

In (11), the subscript j is the index for the ensemble members and Ne is the size
of the ensemble, gk(·) indicates the nonlinear relationship between data at time tk
and model variables, the sensitivity matrix Ge

k,� is a linearization of gk(·) at the �th

iteration. At each data assimilation time k, Ce
M,k−1 is the prior covariance before

the assimilation of data at time k, represented by the ensemble of model realizations
mk−1,j , j = 1,2, . . . ,Ne.

2.4 Batch EnRML (Iterative ES)

The EnRML can also be used to incorporate all data collected at different times to-
gether to estimate the model variables, in which case d I

obs is an empty set and d II
obs

consists of data collected at all data times dobs,1, . . . , dobs,Nt , where Nt represents to-
tal number of data times. Assuming that the prior pdf before the assimilation of any
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data is Gaussian with mean mpr, and covariance CM, and the error in measurement
dobs,1, . . . , dobs,Nt are normally distributed with zero mean and covariance, CD, then
each realization of the model parameters is updated using (10) as

m�+1
j = β�mpr,j + (1 − β�)m

�
j − β�C

e
MGeT

�

(
CD + Ge

�C
e
MGeT

�

)−1

× [
g
(
m�

j

) − dobs,j − Ge
�

(
m�

j − mpr,j
)]

, j = 1,2, . . . ,Ne, (12)

with

dobs =
⎛

⎜
⎝

dobs,1
...

dobs,Nt

⎞

⎟
⎠ , g(·) =

⎛

⎜
⎝

g1(·)
...

gNt(·)

⎞

⎟
⎠ ,

CD =
⎛

⎜
⎝

CD,1 . . . 0
...

. . .
...

0 . . . CD,Nt

⎞

⎟
⎠ , Ge =

⎛

⎜
⎝

Ge
1
...

Ge
Nt

⎞

⎟
⎠ .

The only difference between this batch implementation of the EnRML and the se-
quential implementation is that data from all times are used simultaneously to condi-
tion the model variables, so that the sensitivity matrix Ge is expanded to include
sensitivity of data at different times. The batch implementation of the EnRML,
in fact, strongly resembles the traditional iterative gradient-based history matching
method (Li et al. 2003), but with the ensemble representation of the pdf and the en-
semble approximation of the sensitivity. Similar to the sequential EnRML, Ce

M and
mpr,j , j = 1,2, . . . ,Ne in (12) represent the prior information before the assimilation
of data and do not change with iteration.

2.5 Ensemble-Based Sensitivity

Note that in (11) and (12), there is no realization index for the sensitivity matrix G,
because in the EnRML all realizations use the same approximation to the sensitivity.
The ensemble average sensitivity Ge at the �th iteration, can be computed by solving

�d� = Ge
��m� (13)

using singular value decomposition (SVD) (Gu and Oliver 2007). The columns of
�d� and �m� are deviation realizations of the predicted data and deviation realiza-
tions of the model variables from the mean, respectively. Although the dimension of
the model variables, Nm, is generally large (104–106), the size of the ensemble, Ne,
is typically fairly small (102) so the effort required to compute the SVD is affordable.

Generally, we do not expect the sensitivity approximation from the ensemble to be
identical to the accurate local gradient (e.g. analytical solution or adjoint sensitivity)
unless the variability of the ensemble is very small and the size of the ensemble is
large. The adjoint equation calculates the local derivative based on a numerical reser-
voir simulator, while the ensemble approximates an average relationship between the
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Fig. 1 Illustration of the first two iterations of the batch EnRML. The solid blue curve represents the
change of objective function with the model variable (permeability of the bottom layer); the five red dots
are the model ensemble prior to assimilation of data at the current iteration; the black dashed curve is the
quadratic approximation of the objective function from the ensemble at the current iteration; the black ar-
row shows the direction of change for each realization and the length of the arrow represents the magnitude
of change

change in predicted data and the change in model parameters through the correla-
tion estimated from multiple simulation runs. We illustrate the use of the ensemble-
based sensitivity in the EnRML using a simple three layer system (one-dimensional
horizontal flow in each layer with no vertical communication between layers) with
piston-like displacement of oil by water at constant inlet and outlet pressures with
only one uncertain model parameter, the permeability of the bottom layer. Details of
this example can be found in Oliver et al. (2011) where the permeability of all three
layers are estimated using a gradient-based method. The data are observations of wa-
ter cut and total flow rate at the outlet at seven different times. All 14 data from the
seven times are assimilated simultaneously using the batch EnRML (12).

The solid blue line in both plots in Fig. 1 represents the change of the objective
function (3) with respect to the model parameter. Because the water cut is measured
at discrete intervals, this objective function has multiple local minima and is not dif-
ferentiable everywhere. The local gradient, as would be obtained from the adjoint
method, is the slope (if it exists) of the solid blue line. Depending on the starting
point of the minimization, a gradient-based minimization method using the local gra-
dient may converge to different minima. Figure 1(a) illustrates the first iteration of
the batch EnRML using an ensemble of size five. First, the realizations are sampled
from the prior pdf of model parameters and the values of the objective function are
evaluated at each realization. The five realizations used in this one-parameter problem
are shown as red dots in Fig. 1(a). From the values of the model parameter and their
corresponding objective function, the ensemble approximates the objective function
by a quadratic function (shown as the dashed black curve in Fig. 1(a)) based on the
computed estimate of the Hessian and gradient of the objective function. The black
arrows in Fig. 1(a) represent the direction of change for each realization and in this
case all the realizations require an increase to the permeability of the bottom layer in
order to reduce the objective function. The magnitude of change to each realization
is represented by the length of the arrow in Fig. 1(a). Figure 1(b) shows the same
procedure as in Fig. 1(a) for the second iteration with the starting model parameters
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(five red dots in Fig. 1(b)) being the updated realizations after the first iteration shown
in Fig. 1(a).

In high-dimensional problems, the ensemble approximation of the sensitivity Ge is
often poor and corrupted by noise. The product of covariance and sensitivity Ce

MGeT
� ,

however, can be better approximated from the ensemble (will be shown later). Except
for the last term in the updating equation of the EnRML, (10), the sensitivity Ge

�

appears together with Ce
M. The last term of (10), Ge

�(m
� − m∗), is generally small

when the correction to the model parameters is small. As a result a good estimate
of the product Ce

MGeT
� is usually sufficient for minimizing the objective function

using (10). At the first iteration of the EnRML, the covariance sensitivity product
Ce

MGeT
� is the same as the cross-covariance between the model parameters and the

data as used in the EnKF (9). At later iterations, however, Ce
MGeT

� cannot be replaced
by the cross-covariance since Ge

� changes with iteration and Ce
M does not.

To show the similarity of the product Ce
MGeT and CMGT, we compare both the

sensitivity and the covariance sensitivity product from the adjoint method and from
an ensemble of size 100 using a two-dimensional waterflood example of standard
5-spot pattern with 41 × 41 gridblocks. All the wells are under bottom-hole-pressure
constraint. The ensemble mean of the log-permeability (lnk) is shown in Fig. 2(a).
The log-permeability is modeled as a Gaussian random field with two-dimensional
spherical covariance function

C(r) =
{

σ 2(1 − 2r
aπ

√
1 − r2/a2 + 2

π
arcsin r

a
) for 0 ≤ r ≤ a,

0 for r > a
(14)

with σ = 1 and a = 30 gridblocks. The coordinates are transformed to create
anisotropy with the principal direction 30 degrees from the vertical direction and
an anisotropy ratio of 3.5. The ensemble sensitivity (Ge) is computed using (13). The
adjoint sensitivity is computed using the ECLIPSE 300 simulator for the ensemble
mean ln k field. Figures 2(b) and 2(c) show the covariance of ln k at the injector cell to
ln k at all other locations from the ensemble approximation and from the theoretical
model (14), respectively. Note that for large scale models, it is computationally pro-
hibitive to compute the full CM and a lower rank representation from the ensemble
is usually necessary. The theoretical covariance and its product with the sensitivity
is shown here only for comparison. Figures 2(d) to (i) show the sensitivity and the
covariance sensitivity product from both the adjoint and ensemble methods. Since it
is the pattern of the sensitivity and covariance sensitivity product that determines the
relative importance of each model variable (gridblock lnk in this case) to a particu-
lar data, we only use the dashed thick line in each subplot to show the zero contour.
The warmer color indicates high magnitude and cooler color indicates low magni-
tude. The sensitivity of water production rate of P2 at the end of Year 8 to gridblock
ln k from the adjoint method and from the ensemble are shown in Figs. 2(d) and (g),
respectively. The adjoint-based sensitivity (Fig. 2(d)) shows a clear high sensitivity
region corresponding to the high permeability path between P2 and the injector in
the mean lnk field, while the ensemble-based sensitivity (Fig. 2(g)) appears to be
quite noisy. Figures 2(e), (f), (h) and (i) show the corresponding covariance sensi-
tivity product with both the ensemble estimation Ce

M and the true covariance CM.
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Fig. 2 Comparison between sensitivity and sensitivity covariance product from the ensemble-based and
adjoint-based method. (a) ensemble mean of the lnk, (b) covariance of lnk at the injector cell to lnk at
all other locations from the ensemble, (c) covariance of lnk at the injector cell to lnk at all other locations
from the theoretical model, (d) sensitivity of water rate of P2 at the end of Year 8 to ln k from the adjoint
method, (e) product of the adjoint G with the ensemble estimate of covariance Ce

M, (f) product of the
adjoint G with the theoretical covariance CM, (g) sensitivity of water rate of P2 at the end of Year 8 to
lnk from the ensemble, (h) product of the ensemble Ge with the ensemble estimate of covariance Ce

M,
(i) product of the ensemble Ge with the theoretical covariance CM. The dashed thick line in the middle
and bottom row shows the zero contour line. The color scale is only for (a). The axis labels are shown in
(a) for all plots

Despite the large difference in the sensitivity, the covariance sensitivity product ob-
tained from the two methods (comparing Figs. 2(e), (f), (h) and (i)) shows similar
patterns, with high correlation at areas that are expected to be influential to the water
rate at P2.
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Approximating sensitivity from an ensemble does not require the objective func-
tion to be differentiable as the adjoint-based method does. If the objective func-
tion has multiple small local minima but with a relatively well behaved large
trend, using sensitivity approximated from an ensemble might be more efficient,
because it has less chance of getting stuck at local minima (a good example of
this is shown in Fig. 2 of Annan and Hargreaves (2004)). The quality of the
ensemble-based sensitivity depends on the ensemble and the shape of the objec-
tive function, which is generally unknown for high-dimensional problems. Com-
parisons between the EnKF and estimation methods using the adjoint sensitivity
(4DVAR and RML), however, suggest that the EnKF gives comparable performance
as the 4DVAR in operational models for the weather system (Caya et al. 2005;
Kalnay et al. 2007) and performs better than the RML for a problem of estimation of
geologic facies boundary in history matching (Liu and Oliver 2005).

3 Illustrative Examples

Gu and Oliver (2007) showed that the EnRML obtains correct estimates of the mean
and covariance for linear problems even when the updates are damped and many iter-
ations are used. In this section, two nonlinear reservoir problems are used to compare
results of the four methods introduced in the introduction: EnKF, ensemble smoother
(ES), sequential EnRML (seq-EnRML) and batch EnRML (batch-EnRML). The first
example is a five-spot waterflood problem, in which we compare the four methods
using cases with different levels of nonlinearity. The experiment was repeated with
multiple, independent ensembles for all four methods in order to reduce the effect of
variability in the initial ensemble. The second example is the Brugge benchmark case
with a relatively large number of model parameters (165,000), including horizontal
and vertical permeability, porosity, net-to-gross ratio for each model gridblock and
relative permeability curve, initial oil-water contact and layer mean of permeability.
With large amounts of data available, appropriate selection of the model variables
and localization of the Kalman gain, the EnKF has been shown previously to work
well on this example (Peters et al. 2010). The focus of the Brugge example is the
comparison of the sequential updating scheme of the EnKF to the batch assimilation
methods, i.e. the non-iterative ensemble smoother and the batch EnRML. We also use
this example to investigate the importance of appropriate tuning of the analysis step
for the ES and the appropriate damping at early iterations for the iterative methods.

3.1 Five-Spot Waterflood

In this section, we consider a two-dimensional reservoir model (41 × 41 cells) with
an injector at the center and four producers at the corners. The injector is constrained
by bottom-hole pressure of 8000 psi and the producers are constrained by bottom-
hole pressure of 500 psi. The initial reservoir pressure is 3600 psi. Porosity is 0.2
throughout the reservoir and log-permeability (lnk) is a Gaussian random field with
mean equal to 2.4 and standard deviation equal to 1.2, so the permeability field has a
mode close to 12 mD and a range roughly from 5 mD to 150 mD. The reference ln k
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Fig. 3 Reference lnk and one realization from the biased initial ensemble

field is drawn from a multivariate normal distribution with an anisotropic exponential
covariance function, with range equal to 18 gridblocks and 10 gridblocks, respec-
tively, in the two principal directions. The reference ln k field and the well locations
are shown in Fig. 3(a). The irreducible water saturation (Swir) and the residual oil
saturation (Sor) are both set as 0.2. Water cut of the producers at days 300, 600, 900,
1200, 1500 and 1900 are used as data for the assimilation, so the number of data at
each data assimilation time is four and the total number of data is 24. The noise of the
water cut data is 1%. We choose an ensemble size of 100, which is relatively large
compared to the number of data for assimilation, so that localization is not necessary
for the assimilation of data. Although the performance of the ensemble-based meth-
ods will still be affected by sampling error, the effect is expected to be similar for the
four ensemble-based methods compared in this section. The focus of the comparison
is on the benefit from the iterative schemes in the presence of strong nonlinearity.

Two scenarios were considered: the first is a scenario with biased initial ensemble,
in which the mean of the initial ensemble is 1.5, so that the ensemble is biased com-
pared to the reference case; the second is a scenario with unbiased initial ensemble,
in which the mean of the initial ensemble is the same as the reference case. Other
than the difference in the mean, the initial ensemble is identical in the two scenar-
ios. An isotropic exponential covariance function with range 10 gridblocks is used to
generate the initial realizations. One of the initial realizations from the biased initial
ensemble is shown in Fig. 3(b). Figure 4 shows the prediction of water cut of Well
P2 from the initial ensemble for both the scenario with biased and unbiased initial
ensemble. The predictions from the biased initial ensemble show much later water
breakthrough for all producers compared to the reference case and the unbiased sce-
nario due to the lower mean of the initial ensemble. Bias due to incorrect specification
of the prior is usually negligible in synthetic studies, but real field cases are generally
more complex, and often bias cannot be completely avoided. The biased scenario is
chosen in this example to represent a realistic situation where the initial assessment
of uncertainty is poor and the amount of data is limited, so that the inverse problem
is highly nonlinear.
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Fig. 4 The prediction of water cut of Well P2 from the biased and unbiased initial ensemble. The red
curve is the reference, the black curves are ensemble forecasts

The four methods are compared based on results from 20 independent assimila-
tion experiments with different initial ensembles of size 100 for both the biased and
unbiased scenario. The performance of the four methods are compared in terms of
the quality of data match after data assimilation and the computational cost. To dif-
ferentiate the scenario with biased and unbiased initial ensemble, we use Γ (15) as a
measure of nonlinearity of the inverse problem

Γ = 1

NeNd

Ne∑

j=1

(
g(mpr,j ) + Ge

pr(mpost,j − mpr,j ) − g(mpost,j )
)T

× C−1
D

(
g(mpr,j ) + Ge

pr(mpost,j − mpr,j ) − g(mpost,j )
)
, (15)

where Ge
pr is the ensemble estimate of sensitivity of water cut data at the six data as-

similation times to ln k based on the initial ensemble of lnk using (13). The samples
from the prior and posterior pdf are represented by mpr,j and mpost,j , respectively.
The nonlinearity measure Γ shows the difference between simulated data from sam-
ples of the posterior pdf and the linear projection of their magnitude using the simu-
lated data from samples of the prior, the ensemble sensitivity from the prior and the
correction required to change from the prior to posterior. This measure is appropriate
for the ES and the batch EnRML in which data at all times are assimilated simulta-
neously. For the filtering problem, such as the EnKF, the nonlinearity changes with
the sequential assimilation (this is discussed in Sect. 3.2.4), so a different measure
should be used. The initial realizations are used to represent samples from the prior
pdf, mpr,j . The samples from the posterior pdf, mpost,j , are represented using the fi-
nal updated realizations from the batch EnRML, because these updated realizations
typically show reasonable updates and good match to data (as shown later in the sec-
tion). The nonlinearity measure Γ for the scenario with biased and unbiased initial
ensemble from the 20 runs are shown in Table 1. The nonlinearity for the scenario
with biased initial ensemble is about twice as large as for the scenario with unbiased
initial ensemble based on the measure in (15).
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Table 1 Data mismatch of the initial ensemble and the updated ensemble and the computational cost for
different methods in terms of the number of equivalent simulation runs for one history matched model.
The nonlinear measure for the scenario with biased and unbiased initial ensemble is shown in the second
row. The values in the table are given in terms of the mean plus and minus one standard deviation from the
20 independent runs

Nonlinearity (Γ ) Biased Unbiased
294 ± 53 142 ± 27

Data mismatch Number of runs Data mismatch Number of runs
initial 2581 ± 73 – 1373 ± 64 –
EnKF 96 ± 43 1 ± 0 51 ± 16 1 ± 0
ES 243 ± 64 1 ± 0 80 ± 10 1 ± 0
seq-EnRML 39 ± 11 2.4 ± 0.7 30 ± 8 2.7 ± 0.8
batch-EnRML 49 ± 16 7.9 ± 2.3 34 ± 9 6.5 ± 1.5

Data mismatch is computed using predictions from the updated ensembles,

SD = 1

NeNd

Ne∑

j=1

(dsim,j − dobs)
TC−1

D (dsim,j − dobs), (16)

where dobs is the vector of measured data and dsim is the vector of simulated data
from the model. Data mismatch for the four methods in the two scenarios are shown
in Table 1. The computational cost is reported in terms of the number of equivalent
simulation runs for each history matched model and the overhead for matrices ma-
nipulation at the analysis step is not considered, so that both the EnKF and ES require
one simulation run for one history matched model. The overhead is negligible for this
small example, however it can be considerable for large scale field studies as reported
in Skjervheim and Evensen (2011). In Table 1, one simulation run is defined as run-
ning one simulation for the entire production length (from day 0 to day 1900). For
the sequential EnRML, iterations at different data assimilation times require simu-
lation runs for different lengths of time period. One simulation for iterations at the
second data assimilation time (day 600) is considered as 600/1900 ≈ 0.32 equivalent
simulation run. Iterations are triggered in the sequential EnRML in case of large cor-
rections to the state variables. The indicator we used for this example is the maximum
change to saturation (among all the gridblocks) at the analysis step of the EnKF. If
the maximum change to saturation is greater than 0.3 but less than 0.5, iterations will
start from the EnKF solution, meaning that the EnKF update is accepted as the first
iteration of the sequential EnRML with a full step size (β1 = 1 in (11)). If the maxi-
mum change to saturation is greater than 0.5, the EnKF solution is discarded and the
iteration starts with β = 0.3 in (11) for the first iteration. The stopping criterion for
the iteration for both sequential and batch EnRML is the reduction to the objective
function at two consecutive iterations being less than 1%.

Both iterative methods, the sequential and batch EnRML, show lower data mis-
match than the EnKF and ES. The reduction in data mismatch from iteration, how-
ever, is much more significant in the scenario with biased initial ensemble. Although
the quality of data match is similar for the two iterative methods, the computational
cost is much lower for the sequential EnRML since iterations are only triggered at
the first one or two data assimilation times (for all the 20 runs) at which the cost of
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iteration is relatively low. Note that the threshold for the change in saturation at the
analysis step for triggering iteration is reduced to 0.2 for the sequential EnRML for
the unbiased scenario, otherwise iteration was almost never triggered and the results
from sequential EnRML are about the same as the EnKF.

3.2 Brugge Benchmark Study

In this section, history matching results for the first ten years of the Brugge field
(Peters et al. 2010) are used to evaluate the performance of the EnKF, the ES and
the batch EnRML. The results from the sequential EnRML are reported in Chen
and Oliver (2010a) and are similar to the EnKF. The size of the Brugge model is
139 × 48 × 9, with 10 injectors and 20 producers and with only oil and water phases
present (for more description of the Brugge benchmark study see Peters et al. (2010)).
The model parameters we chose to update include gridblock horizontal permeability
(kh) heterogeneity, vertical permeability (kv) heterogeneity, porosity and net-to-gross
ratio, three end points of Corey-type relative permeability curves, one initial water–
oil contact and the mean horizontal and mean vertical permeability of each model
layer. The total number of model parameters is approximately 165,000. The inclu-
sion of the relative permeability parameters, depth of the initial contact and layer
mean of the permeability allows correction to the model on a large scale, thus re-
duces the need for excessive changes to the gridblock properties. Typically a large
parameterization provides the ability to make necessary updates to a variable at some
location without inappropriately forcing a change at other locations. The use of large
numbers of variables, even when not required for a match, can be beneficial in retain-
ing plausible values of other parameters when an appropriate form of regularization
is used. More details on the selection of model parameters can be found in Chen and
Oliver (2010a, 2010b). The 104 realizations of the gridblock properties provided for
the Brugge benchmark study are used for the three methods.

The primary constraints of the wells are fluid production rate (FPR) for the produc-
ers and water injection rate (WIR) for the injectors. All wells are subject to bottom-
hole pressure (BHP) limits. Most of the producers are steered under FPR constraint
of 2000 bbl/day and all the injectors are steered under WIR of 4000 bbl/day in the
true case. Producer P9 was not able to make the target fluid production rate and the
BHP of 725 psi was the active constraint throughout the ten years of production.
The data used in assimilation include bottom-hole pressure, water cut, fluid produc-
tion rate and water injection rate from 19 times. The number of data at each data
assimilation time is 80. The primary constraints of the wells were also included as
data with a low level of error to force the estimated models to honor the same ac-
tive constraints as in the true case. The standard deviation of noise used for differ-
ent types of data are 30 psi for BHP, 3.5% for water cut, 1 bbl/day for FPR and
WIR if they are active constraint, 20 bbl/day for FPR of P9. Because the number
of the data at each data assimilation time is relatively large and the initial ensemble
of model parameters is not close to Gaussian, it was shown that localization is nec-
essary to insure reasonable updates and data match (Chen and Oliver 2010a). The
same distance-based localization as in Chen and Oliver (2010a) is used for all the
three methods to constraint the updates of the gridblock properties. The updates to
the global variables, i.e. parameters of the relative permeability curves, initial water–
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Table 2 The average data mismatch (16) of the prediction from the updated ensemble for all the data and
for different data types

All data BHP injectors BHP producers WCT FPR WIR

EnKF 1.1 0.3 0.9 0.8 1.0 0
ES 12.7 0.7 15.5 3.6 12.9 0
batch-EnRML 1.3 0.3 1.4 1.3 0.6 0

oil contact and the layer mean of permeability, are not localized, although the update
of them could be regularized using adaptive localization methods (Anderson 2007;
Zhang and Oliver 2010).

3.2.1 Comparison of Data Assimilation Results

Figure 5 shows a few selected production profiles predicted by the initial ensemble
and the ensembles after updating by the three methods. For nonlinear problems, when
the predictions from the initial ensemble are far from the observed data, iterations are
necessary to obtain a satisfactory data match (compare ES results in the third row to
batch-EnRML results in the bottom row of Fig. 5). The EnKF, however, gives a good
data match without having to iterate as reported in early studies (summarized in Peters
et al. (2010)). The prediction from the batch EnRML generally shows slightly higher
variability than prediction from the EnKF. Table 2 shows the averaged data mismatch
(16) for the EnKF, the ES and the batch EnRML for all the data and for different data
types, i.e. bottom-hole-pressure measurements of the injectors and producers, water
cuts, fluid production rates and water injection rates.

Figure 6 shows the estimated permeability heterogeneity of Layer 1 of one of the
realizations using the EnKF and the corresponding initial realization on the same
scale. The permeability in regions that are away from the wells remain mostly un-
changed as a result of distance-based localization. Only small changes are made to
the well coverage area and the updated realization maintains the channel structure as
in the initial realization. The updated realizations from the ES and the batch EnRML
are visually similar to that from the EnKF, but the realizations updated by the EnKF
and the batch EnRML give much improved data match compared to those from the
ES (as shown in Fig. 5 and Table 2).

Figure 7 shows the change of the data mismatch of the ensemble with iteration
for the batch EnRML. The total number of iterations used in the batch EnRML is
26; iteration is terminated when the reduction of the average objective function be-
comes less than 0.5% . The black dots indicate the mean of the data mismatch of the
ensemble, the dashed lines represent the 25% and 75% quantiles, the dotted dashed
lines represent the minimum and maximum, and solid line represents the median. It-
eration index 0 on the horizontal axis represents the initial ensemble. The variability
of the data mismatch among the ensemble members is large at early iterations, and
there exist realizations with extremely large data mismatch indicated by the mean be-
ing higher or close to the 75% quantile. With iterations all the realizations gradually
converge to a low level of data mismatch.

Figures 8 and 9 show the evolution of the estimates of two of the global parame-
ters, mean of the log-permeability of Layer 7 and initial water–oil contact, with the
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Fig. 5 Data match for a few selected wells for different methods. The top row shows prediction from the
initial ensemble and is on different scale from the other rows. The predictions from the EnKF, ES and
batch EnRML are made by rerunning simulations from initialization using the updated ensemble. The red
dots are observations; the black curves are ensemble prediction and the vertical dashed lines indicate the
times at which observations were assimilated

Fig. 6 The initial and the final estimate of the log-permeability heterogeneity of Layer 1 of one realization

data assimilation time for the EnKF and with iteration for the batch EnRML. In the
EnKF, the estimate changes gradually with the assimilation of data at different times
with also gradually reduced uncertainty. For the batch EnRML, the estimate and the
associated uncertainty show gradual change in the first seven to 10 iterations then
stabilize at about the same level in later iterations. The first 10 iterations correspond
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Fig. 7 Change of data mismatch from the updated realizations with iteration in the batch EnRML. The
black dots indicate the mean of the data mismatch of the ensemble (16), the dashed lines represent the 25%
and 75% quantiles, the dotted dashed lines represent the minimum and maximum, and solid line represents
the median of the data mismatch of the ensemble. Iteration index 0 corresponds to the initial ensemble

Fig. 8 Estimate of the global parameters with data assimilation time for the EnKF. The bounds of the box
are 25% and 75% quantiles, the whiskers are the extremes, the line in the box is the median, and the pluses
are outliers

Fig. 9 Estimate of the global parameters with iteration for the batch EnRML. The bounds of the box are
25% and 75% quantiles, the whiskers are the extremes, the line in the box is the median, and the pluses are
outliers

to the significant reduction of the objective function as shown in Fig. 7. The objec-
tive function of most of the realizations has reduced to less than 10 after the 10th
iteration. Global parameters typically have high sensitivity to the overall behavior of
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Fig. 10 Data match for a few selected wells for ES without truncation of singular values in the pseudo
inversion. The red dots are observations; the black curves are prediction from the updated ensemble and
the vertical dashed lines indicate the times at which observations were assimilated

the production, so that the change in global parameters could induce large change in
the objective function. After the early iterations, the estimate of parameters with high
sensitivity are stabilized and small changes to some of the gridblock properties at
the later iteration further improve the data match for each of the wells. Note that the
variability was maintained after the estimate of the global parameters has converged
because of the prior term, Ce

M and mpr in (12).

3.2.2 Tuning Inversion for ES

It was shown in Evensen (2009, Chap. 14) that the truncation of singular values in
the pseudo inversion of the matrix CD + GeCe

MGeT in (8) for the EnKF is important
when the number of data is larger than the number of ensemble members or the matrix
has poor conditioning. The number of data assimilated in the ES is generally much
larger than the number of data at each data assimilation time in the EnKF, and is
typically greater than the size of the ensemble. Even if the theoretical variance of the
noise in data is used to construct CD, the matrix CD + GeCe

MGeT is usually very ill-
conditioned and the truncation in pseudo inversion becomes necessary to regularize
the ES updates. Figure 10 shows the match to the same set of data as in Fig. 5 for the
ES without truncation of singular values in the pseudo inversion. Compared to when
95% percent of energy is retained in the pseudo inversion for the ES (the 3rd row
of Fig. 5), it is clear that retention of all singular values resulted in poor data match.
Figure 11 compares the estimate of the log-permeability heterogeneity of Layer 1 of
one of the realizations for the ES with 100% energy and 95% energy retained in the
pseudo inversion. The corresponding initial realization is shown in Fig. 6(a). Without
the tuning of inversion, the updates appear to be large and introduce roughness to the
estimate.

The optimal truncation level, however, is case dependent. In this example we sim-
ply chose the best truncation level from a few trials. Table 3 shows the data match for
the ES with different level of energy retained in the pseudo inversion. A large part
of the data mismatch of the ES with 100% percent energy retained is a result of the
violation of the fluid production rate constraint of the producers, meaning that not all
the updated models from the ES are able to honor the production target (indicated
by Fig. 10(a)). The reduction of data mismatch of other data types is also substantial
from the tuning of inversion. Note that when truncation is used, scaling for different
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Fig. 11 The final estimate of the log-permeability heterogeneity of Layer 1 of one realization using the
ES with different level of energy retained in the pseudo inversion

Table 3 The average data mismatch (16) of the prediction from the updated ensemble using the ES with
different level of energy retained in the pseudo inversion. The data mismatch is shown for all the data and
for different data types

Energy retained All data BHP injectors BHP producers WCT FPR WIR

80 percent 129.7 0.8 9.8 6.18 314.6 0
95 percent 12.7 0.7 15.5 3.6 12.9 0
99 percent 111.8 4.9 22 3.9 256.9 0
100 percent 2575.6 7.4 24.9 10.7 6535.2 0

types of data is important to avoid elimination of data with small magnitude, e.g.
water cut (Wang et al. 2010).

3.2.3 Effect of Step Length at Early Iterations of EnRML

For the gradient-based history matching methods using the adjoint sensitivity, it was
shown that it is important to damp updates at early iterations when the data mismatch
is large (Li et al. 2003; Gao and Reynolds 2006). Without damping, the roughness
introduced at early iterations will not always be removed at later iterations, and the
minimization is more likely to be stuck at a local minimum. Damping large updates at
early iterations is also important for the EnRML and other iterative ensemble-based
assimilation methods. In this paper, we simply restrict the magnitude of the update
without modifying the direction, so that the rate of convergence might not be optimal.
Applying methods like Levenberg–Marquardt or truncation of singular values might
be viable alternatives.

The effect of step length β in (12) to the data mismatch of the resulted ensemble at
the first iteration is analyzed using the Brugge example. The data mismatch for water
cut versus the step length β at the first iteration is shown in Fig. 12. We chose the
mismatch of water cut data because there are fewer outliers in the distribution and
because the same scale can be used for all choices of β . The mismatch of other data
types show similar behavior. The leftmost box in Fig. 12 corresponds to β = 0, so it
is the water cut mismatch of the initial ensemble. The bounds of the box are 25% and
75% quantiles, the whiskers are the extremes, the line in the box is the median, the red
dot is the mean, and the pluses are outliers. The choice of β = 1 shows the highest
mean data mismatch among all the choices in plot (excluding β = 0). Although a
choice of β between 0.4 to 0.5 would give the lowest data mismatch after the first
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Fig. 12 Data mismatch of the
water cut with respect to the step
size β at the first iteration of the
batch EnRML. The bounds of
the box are 25% and 75%
quantiles, the whiskers are the
extremes, the line in the box is
the median, the red dot is mean
(16), and the pluses are outliers.
The first box represents the
initial ensemble

iteration, generally a more conservative choice of β at early iterations benefits the
overall performance. In the results represented for the Brugge example, we chose
β = 0.3 at the first iteration of the batch EnRML.

3.2.4 Benefit of Sequential Update of EnKF

For the Brugge example, the EnKF showed comparable results as the batch EnRML
without the need to iterate. The good performance of the EnKF as a non-iterative
method could be largely due to its sequential updating in which each sequential pre-
diction from one data time to the next are from the models that have been conditioned
to earlier data so that the nonlinearity at the subsequent updates are gradually reduced.
We use the magnitude of innovation at the analysis step as an indicator of potential
nonlinearity at each data assimilation time k

Ik,j = 1

Nd

(
gk(mj ) − dobs,k

)T
C−1

D,k

(
gk(mj ) − dobs,k

)
, for j = 1,2, . . . ,Ne, (17)

where the notation is the same as in (11). The innovation of the realizations reflects
the distance between the model prediction and the data and distance for which a
quadratic approximation needs to be made to determine the updates to the model pa-
rameters. Generally, small distance reduces the error in the quadratic approximation.
The same measure is computed for both the EnKF and the batch EnRML for all data
times, k = 1,2, . . . ,Nt. Although observations from all data assimilation times (Nt
= 19 in this case) are incorporated simultaneously in the batch EnRML, we compute
the innovation for data at different times separately for comparison with the EnKF.

Figure 13 compares the innovation Ik,j for the batch EnRML at the first and last
iteration with the innovation for the EnKF. The black color represents the batch En-
RML at the first (Fig. 13(a)) and the last (Fig. 13(b)) iteration. The red color rep-
resents the EnKF and is the same in the two subplots, but on different scales. The
dots indicate the mean, the dashed lines represent the 25% and 75% quantiles, the
dotted dashed lines represent the minimum and maximum, and solid line represents
the median. The innovation is the same for the first iteration of the batch EnRML
and the EnKF at the first data time. The innovation at the subsequent data times for
the EnKF are much lower than that of the batch EnRML at the first iteration due to
the sequential assimilation of data. Note that the increase in the innovation around
data time 7 for the EnKF is due to water breakthrough at various wells, which pro-
vides new information for data assimilation. The innovation at the last iteration of
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Fig. 13 Innovation (17) at each data assimilation time for the EnKF and batch EnRML. The dots repre-
sent the mean, the dashed lines represent the 25% and 75% quantiles, the dotted dashed lines represent
the minimum and maximum, and solid line represents the median. The black color represents the batch
EnRML at the first (a) and last (b) iteration. The red color represents the EnKF and is the same in (a) and
(b), but on different scale

the batch EnRML at early data times (data time 1 to 10) is lower than the EnKF due
to the updates at earlier iterations, but innovation at late data times (data time 11 to
19) is similar to the EnKF indicating the sequential assimilation of the EnKF gives
similar effect as the iterative process of the batch EnRML (Fig. 13(b)).

4 Conclusions

In this paper, we propose the use of ensemble randomized maximum likelihood
method as an iterative ensemble smoother (batch-EnRML) to improve the data match
for problems in which the relationship between data and model parameters is highly
nonlinear. The batch EnRML is compared with a sequential iterative method (seq-
EnRML) and with two non-iterative methods, the ensemble Kalman filter (EnKF) and
the ensemble smoother (ES) using two illustrative examples. The EnKF often works
quite well at assimilating data into reservoir models, especially if the ensemble is
sufficiently large or localization is used. A major reason for the good performance of
the EnKF as a non-iterative methods appears to be a result of the sequential updating
of variables. In the Brugge example, the sequential assimilation of data was observed
to steadily reduce the nonlinearity of the problem. In the five-spot example with a bi-
ased prior, however, the nonlinearity was sufficiently large that the EnKF was unable
to achieve an acceptably small data mismatch.

If simulator restarts complicate the data assimilation workflow or substantially in-
crease the computational cost, the ES may be the appropriate choice, as it avoids the
need for restarts and works well when the required updates are not large (Skjervheim
and Evensen 2011). In our examples, however, we show that it is generally necessary
to iterate in order to achieve satisfactory matches to data when the required changes to
model variables are relatively large, while maintaining the flexibility of the smoother
setup. Because of the benefits of the sequential adjustment of model variables, the
sequential EnRML appears to be the preferred choice of iterative algorithms, unless
the cost of restarts is substantial in which case the batch EnRML may be able to attain
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small mismatch with a larger number of simulation runs. Localization is necessary
to address the problem of assimilation of large amounts of data and spurious corre-
lations for the ensemble-based methods, but does not directly address the issues of
nonlinearity.

When large amounts of data are incorporated simultaneously, reduction in the
magnitude of the corrections from the Gauss–Newton step in early iterations appears
to be important. Appropriate damping increases the chance of convergence to an ac-
ceptable model and reduces the number of iterations that are required to converge.
We also demonstrated that the use of the ensemble-based sensitivity might have ad-
vantages over the local accurate gradient for large scale complex inverse problems
that are non-differentiable and have small local minima.

Appendix: Pseudo-code for EnRML

In this section, we detail the iterative algorithms for the sequential and batch EnRML
methods. The notation is generally consistent with that used in Sect. 2:

Scalar

Ne number of realizations
Nm number of model variables
Np number of dynamic variables
Nt number of data assimilation times
k index for data times and k = 1,2, . . . ,Nt
Nd number of data
β step length parameter for iterations
� iteration index
c1 max change at EnKF analysis to trigger iterations
c2 max change at EnKF analysis to decline EnKF update and start En-

RML with a reduced step size at the 1st iteration
c3 min reduction of objective function for terminating iteration
c4 min update for terminating iteration
�max max number of iterations for terminating iteration

Matrix

m, �m Nm × Ne, model variables and deviation from mean
p, �p Np × Ne, state variables and deviation from mean
d, �d Nd × Ne, simulated data and deviation from mean, Nd is different for

seq-EnRML and batch-EnRML
m Nm × Ne, each column is the mean of the model variables
p Np × Ne, each column is the mean of the state variables
d Nd × Ne, each column is the mean of the simulated data
dobs,k,j Nd × 1, j th realization of perturbed obs at data time k

de
obs,k Nd × Ne, observation ensemble at data time k

Function

p = ft1→t2(m,pt1) function of model variables and state variables at time t1 to state vari-
able between time t1 and t2

d = g(m,p) function of model and state variables to predicted data
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Functional

C(δp) maximum change of saturation (or other possible indicators)
SD(m) average data mismatch of the ensemble

for k ← 1 to Nt do
de

obs,k = [dobs,k,1, dobs,k,2, . . . , dobs,k,Ne ]
end
if (batch-EnRML) then de

obs = [deT
obs,1, deT

obs,2, . . . , deT
obs,Nt

]T; N = 1 ;

if (seq-EnRML) then N = Nt;
for k ← 1 to N do

if (seq-EnRML) then de
obs = de

obs,k ; t2 = k;

if (batch-EnRML) then t2 = Nt;
p = fk−1→t2(mk−1,pk−1); d = g(mk−1,p);
�mk−1 = (mk−1 − mk−1)/

√
Ne − 1;

�p = (p − p)/
√

Ne − 1;
�d = (d − d)/

√
Ne − 1 ;

δm = �mk−1�dT(�d�dT + CD)−1(de
obs − d);

δp = �p�dT(�d�dT + CD)−1(de
obs − d);

if C(δp) > c1 then
if C(δp) > c2 then

� = 0; m� = mk−1;
else

� = 1; m� = mk−1 + δm;
end
while � < �max do

p = f0→t2(m�,p0); d� = g(m�,p);

G� = (d� − d�)(m� − m�)+; A� = G��mk−1;

δm = βmk−1 − βm� − β�mk−1AT
�
(CD + A�A

T
�
)−1 . . .

(d� − de
obs − G�(m

� − mk−1));

if SD(m� + δm) < SD(m�) then
m�+1 = m� + δm ;

if (SD(m�) − SD(m�+1))/SD(m�) < c3 or ‖δm‖ < c4 then
mk = m�+1; pk = p; exit

else
� = � + 1;

end
else

line search for β;
end

end
else

mk = mk−1 + δm; pk = p + δp

end
end
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