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Abstract In oxide copper deposits, the acid soluble copper represents the fraction
of total copper recoverable by heap leaching. Two difficulties often complicate the
joint modeling and simulation of total and soluble copper grades: the inequality con-
straint linking both grade variables and the sampling design for soluble copper grade,
which may be preferential and cause biases in sample statistics. A methodology is
presented in order to accurately estimate the total and soluble copper grade bivariate
distribution, based on an explicit modeling of the conditional distributions of soluble
copper grade. Co-simulation is then realized by converting the copper grades into
Gaussian random fields, through stepwise conditional transformation, and by fitting
a coregionalization model while accounting for the preferential sampling design. The
proposed approach is illustrated through an application to an ore deposit located in
northern Chile.

Keywords Inequality constraint · Preferential sampling · Conditional
transformation · Conditional simulation · Conditional variogram

1 Introduction

In oxide copper deposits, when the mined material is processed by heap leaching, the
total copper grade does not correspond to the actually recovered grade, as the recover-
ies of the different oxide minerals vary to a great extent (Parkinson and Bhappu 1995;
Razavizadeh and Afshar 2008). Consequently, the mineral resources evaluation, giv-
ing the basis for economic analysis, mine design and mine planning, should consider
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not only the total copper grade, but also the acid soluble copper grade, which cor-
responds to the fraction of total copper recoverable by heap leaching. In the scope
of geostatistical modeling, this leads to the problem of jointly estimating or jointly
simulating the total and soluble copper grades.

One difficulty for co-estimation or co-simulation is the inequality constraint be-
tween both grade variables, as soluble copper grade is always less than or equal to
total copper grade. Several approaches have been proposed to reproduce such a con-
straint, e.g.: quadratic programming (Mallet 1980), constrained interpolation func-
tions (Dubrule and Kostov 1986), stepwise conditional transformation (Leuangthong
and Deutsch 2003) or change to variables free of inequality constraints (Emery et al.
2004).

A second difficulty commonly met in practice arises from the unequal sampling
of total and soluble copper grades. Typically, total copper is assayed prior to deciding
whether or not soluble copper is worth being assayed. Such a preferential sampling
leads to biases in the sample distribution of soluble copper grade, as missing data
are likely to correspond to low grades. Attempts to deal with preferential sampling
include the use of declustering techniques for calculating sample histograms and var-
iograms (Goovaerts 1997, p. 79; Richmond 2002; Emery and Ortiz 2005, 2007), de-
biasing techniques based on the dependence relationship with a secondary variable
(Deutsch et al. 1999; Pyrcz and Deutsch 2003), removal of clustered data in order
to achieve a non-preferential sampling (Olea 2007), subdivisions into more homo-
geneously sampled subdomains (Guan and Afshartous 2007), and use of likelihood-
based inference methods (Diggle et al. 2010).

In the following, the problem of modeling the joint distribution of total and sol-
uble copper grades and of co-simulating these grades is addressed. The proposed
approach follows the works of Pyrcz and Deutsch (2003) for debiasing the sample
distribution of soluble copper grade, based on its relationship with total copper grade,
and of Leuangthong and Deutsch (2003) for transforming the total and soluble cop-
per grades into jointly Gaussian random fields. However, rather than working with
empirical distributions, which requires binning the data, an explicit modeling of the
univariate and bivariate distributions of total and soluble copper grades will be un-
dertaken, through the use of gamma and beta distributions. Another issue that will be
examined relates to variogram analysis in the presence of a preferential sampling, im-
plying biased sample variograms. The methodology will be presented together with
a case study corresponding to a Chilean copper deposit.

2 Presentation of Case Study

2.1 Original Data Set

The data set under consideration consists of 15,622 drill hole samples, composited
at 1.5 meter, from the oxide zone of a porphyry copper deposit located in north-
ern Chile. Acid soluble copper mainly occurs in the form of chrysocolla, atacamite,
malaquite and pseudo-malaquite, but a proportion of the copper mineralization is in
an acid insoluble form due to the presence of copper wad and copper pitch. Total and



Math Geosci (2012) 44:27–46 29

Fig. 1 Histograms of (A), total copper grade and (B), soluble copper grade (original data set)

soluble copper grades have been assayed in almost all the samples, so that the sam-
ple distributions of both grades can be assumed representative of the entire deposit
(Fig. 1; Table 1). In the following sections, the original grade values are adjusted by
a constant scale factor in order to preserve the confidentiality of the data.

2.2 Preferential Sampling

In order to test the accuracy of the proposed methodology, a new data set is generated,
by purposely removing 85% of the soluble copper grade information at the data for
which the total copper grade is less than 0.3%. Accordingly, the sample distribution of
soluble copper grade in this new data set is biased with respect to the true underlying
distribution (Fig. 2, Table 1).

3 Modeling Total and Soluble Copper Grade Distributions

3.1 Univariate Distribution of Total Copper Grade

Since the sampling of total copper grade is not preferential, the distribution of this
variable can be inferred without bias from the sample distribution. In practice, it can
be modeled through a transformation to a given theoretical distribution (Chilès and
Delfiner 1999, p. 406). In the following, a standard gamma distribution is considered,
the density of which is defined on R+ as

∀y ∈ R+, gα(y) = 1

�(α)
e−yyα−1 (1)

where � is the Euler gamma function and α > 0 is a shape parameter that determines
the skewness of the gamma distribution. This distribution has been chosen because it
will allow the construction of a bivariate model for the total and soluble copper grades
that is consistent with the inequality constraint between these two grades (Sect. 3.2).
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Fig. 2 (A) Histogram of soluble copper grade for biased data set. (B), (C), and (D), scatter diagrams of
soluble copper grades vs. coordinates (conditional mean curves are superimposed, for both the original
and biased data sets)

Table 1 Basic statistics of copper grade data

Variable Number
of data

Minimum
(%)

Maximum
(%)

Mean
(%)

Standard
deviation
(%)

Correlation
with total
copper grade

Total copper grade 15,622 0.013 3.836 0.396 0.236

(original data set)

Soluble copper grade
(original data set)

15,431 0.007 3.808 0.244 0.155 0.732

Soluble copper grade 10,521 0.014 3.808 0.289 0.165 0.667

(preferential data set)

Such a constraint cannot be reproduced when considering the well-known bivariate
Gaussian model.

Let Z1 denote the total copper grade and Y1 its gamma transform

Z1 = φα(Y1), (2)
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where φα is a non-decreasing function called gamma anamorphosis. It can be deter-
mined experimentally via expansions into Laguerre polynomials (Hu and Lantuéjoul
1988) or via the definition of a transformation table (Emery 2006).

3.2 Bivariate Distribution of Total and Soluble Copper Grades

Let now Z2 be the soluble copper grade and define Y2 as

Z2 = φα(Y2). (3)

The same anamorphosis function φα has been applied to Z1 and Z2 in order to pre-
serve the inequality constraint between the transformed random fields Y1 and Y2.
Indeed, because φα is a non-decreasing function, one has 0 ≤ Y2 ≤ Y1.

The joint distribution of total and soluble copper grades will be determined by
specifying a bivariate model between Y1 and Y2. To this end, let us write

Y2 = BY1, (4)

where B is a random variable with outcomes in [0,1]. As a particular case, if B

is a beta random variable independent of Y1 and with parameters {a, b} such that
a + b = α, then Y2 is a standard gamma random variable with shape parameter a and
the joint density of (Y1, Y2) is (McKay 1934; Yeo and Milne 1991)

∀y1 ∈ R+,∀y2 ∈ [0, y1], fa,b(y1, y2) = ya−1
2 (y1 − y2)

b−1e−y1

�(a)�(b)
. (5)

A more general model consists of the assumption that, conditionally to Y1 = y1, B has
a beta distribution with parameters

{
a = h1(y1),

b = h2(y1)
(6)

for some positive functions h1 and h2. Consequently, the raw moments of Y2 condi-
tionally to Y1 = y1 are

∀n > 0, μn(y1) = E
(
Yn

2 |Y1 = y1
)

= E
(
Bn|Y1 = y1

)
yn

1

= �(h1(y1) + n)�(h1(y1) + h2(y1))

�(h1(y1) + h2(y1) + n)�(h1(y1))
yn

1 . (7)

Functions h1 and h2 can be determined by considering the first two moments, leading
to ⎧⎨

⎩
h1 = μ1(μ1−μ2)

μ2−μ2
1

,

h2 = (1−μ1)(μ1−μ2)

μ2−μ2
1

(8)

and by replacing μ1 and μ2 by the experimental regressions of Y2 upon Y1 and of
Y 2

2 upon Y1, respectively. These regressions are assumed to be unbiased estimates of
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the conditional moments μ1 and μ2, insofar as there is no preferential sampling of
soluble copper grade for a given total copper grade, i.e., the sample distribution of
Y2 conditional to Y1 = y1 is assumed representative of the theoretical distribution of
{Y2|Y1 = y1}.

Accordingly, the steps to determine the model parameters are the following.

1. Choose a value for the shape parameter α.
2. Transform the total copper grade data into gamma distributed data (gamma scores)

with shape parameter α and determine the gamma anamorphosis function φα

(see (2)).
3. Use the inverse function φ−1

α to transform the available soluble copper grade data
into data on Y2 (see (3)).

4. Determine the experimental regression curves μ̂1 and μ̂2 of Y2 and Y 2
2 upon Y1.

5. Substitute μ̂1 and μ̂2 for μ1 and μ2 in (8), in order to obtain estimates ĥ1 and ĥ2

of functions h1 and h2.
6. Fit a model to ĥ1 and ĥ2, using known basis functions, e.g., exponential functions.

A practical difficulty arises if soluble copper grades are strongly under-sampled
for low total copper grades: because of the scarcity of data, ĥ1(y1) and ĥ2(y1) may
be poor estimates of h1(y1) and h2(y1) for low values of y1, so that the fit mainly
relies on extrapolating the behavior observed for higher values of y1. If the fit is
deemed unsatisfactory or too complex, the shape parameter α chosen at Step 1 can
be changed.

7. Numerically determine the joint and marginal distributions of (Z1,Z2). To this
end, generate a large set of realizations of Y1, then, for each realization, generate
a realization of B (see (6)), obtain a realization of Y2 (see (4)) and back-transform
the pair (Y1, Y2) into (Z1,Z2) (see (2) and (3)).

3.3 Application

For the application to the case study presented in Sect. 2, a shape parameter α = 4
has been chosen for the transformation of the total copper grade. This parameter
corresponds to a moderately skewed gamma probability density function, similar in
shape to the original total copper grade distribution (Fig. 1(A), 3(A)). The gamma
anamorphosis function φα (see (2)) has been determined following the methodology
presented by Emery (2006). From the total copper grade sample distribution, an em-
pirical transformation table is calculated first, then a piecewise linear interpolation is
used for determining φα at any intermediate value, while exponential functions are
used for tail extrapolation (Fig. 3(B)).

Provided with the gamma anamorphosis function φα , the soluble copper grade data
are transformed according to (3) and the scatter diagrams of Y1 and Y2 (Fig. 4(A))
and of Y1 and Y 2

2 (Fig. 4(B)) are constructed. The experimental regressions μ̂1 and
μ̂2 of these scatter diagrams are used to estimate functions h1 and h2 (see (8)), which
are finally fitted with exponential functions (Fig. 4(C), 4(D))

∀y ∈ R+,

{
h1(y) = exp(1.3964 − 0.1068y),

h2(y) = exp(1.0542 − 0.1092y).
(9)
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Fig. 3 (A) Distribution of gamma scores data of total copper grade (variable Y1); (B) experimental (dots)
and modeled (solid line) gamma anamorphosis function

Fig. 4 Scatter diagrams of gamma scores data of total copper grade (Y1) versus (A), transformed soluble
copper grade (Y2) and (B), squared transformed soluble copper grade (Y 2

2 ). Experimental curves and fitted
models for (C), function h1 and (D), function h2
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Fig. 5 Distributions of B = Y2/Y1 conditional to (A), Y1 = 3.35 and (B), Y1 = 5.80. Histograms corre-
spond to sample conditional distributions (tolerances on the values of Y1 have been used in order to get
about 1000 data per histogram). Superimposed solid lines are the theoretical beta distributions, rescaled
by a factor 20 corresponding to the number of histogram classes

The fit is validated by comparing the sample distribution of B = Y2/Y1 conditional to
Y1 = y1 with the beta distribution of parameters h1(y1) and h2(y1), for a few selected
values of y1 (Fig. 5).

Having fitted functions h1 and h2, one can simulate a large number of realizations
of total and soluble copper grades (Sect. 3.2), giving numerical representations of the
joint and marginal distributions of both grades (Fig. 6). The marginal distribution of
soluble copper grade so obtained is then compared with the true underlying distribu-
tion (inferred from the original data set) through a quantile-quantile plot: it is seen
that the modeled distribution almost perfectly matches the true distribution, contrast-
ing with the biased sample distribution obtained after the preferential sampling of
soluble copper grade (Fig. 7).

4 Co-simulation of Total and Soluble Copper Grades

4.1 Algorithm

The co-simulation of total and soluble copper grades conditional to the available drill
hole data values is now addressed. To avoid simulating random fields linked by an
inequality constraint (Z2 ≤ Z1), a change of variables will be considered. It relies
on the pair of variables (Y1,B) defined in (4), for which co-simulation can be done
under the well-known multi-Gaussian model (Verly 1983; Chilès and Delfiner 1999,
p. 381).

The steps for co-simulation are as follows.

1. Transform the total and soluble copper grade data into data on Y1 and Y2 (see (2)–
(3)).

2. Calculate B = Y2/Y1 at the locations where both the total and soluble copper
grades are sampled (see (4)). Unlike Y1,B is not known at all the data locations
because of the preferential sampling of soluble copper grade.
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Fig. 6 Modeled bivariate and marginal distributions for total and soluble copper grades, calculated on the
basis of 15,000 realizations

3. Based on the distributions of Y1 (see (1)) and B (see (6)), transform the data on Y1

and B into data with standard Gaussian distributions (normal scores). Denoting
by G, Gα and Ga,b the standard Gaussian, gamma and beta cumulative distribu-
tion functions, respectively, the Gaussian transforms are defined by

{
T1 = G−1 ◦ Gα(Y1),

T2 = G−1 ◦ Gh1(Y1),h2(Y1)(B).
(10)

Note that the transformation function used for B depends on Y1. It is comparable
to the stepwise conditional transformation proposed by Leuangthong and Deutsch
(2003), except that here the use of theoretical distribution models (gamma for Y1

and beta for B) avoids the problems caused by the discretization of the empirical
distributions (banding effect) and by the missing B-values. Moreover, the resulting
Gaussian random fields T1 and T2 are not assumed to be uncorrelated for the zero
lag separation vector.
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Fig. 7 Quantile–quantile plot of true soluble copper grade distribution (original data set) versus (A),
biased sample distribution and (B), modeled distribution

4. Calculate the sample direct and cross variograms of T1 and T2 and fit a coregion-
alization model.

5. Co-simulate (T1, T2) at the target grid locations, conditionally to the information
at the data locations. This step amounts to traditional conditional co-simulation
in the multi-Gaussian context; it can be performed by any Gaussian simulation
algorithm, e.g., sequential, spectral or turning bands simulation (Goovaerts 1997,
p. 388; Chilès and Delfiner 1999, p. 460; Lantuéjoul 2002, p. 183; Emery 2008).

6. Back-transform the simulated fields (T1, T2) into (Y1,B) (see (10)), then into
(Z1,Z2) (see (2)–(4)).

4.2 Variogram Analysis

Let us assume that the random fields (T1, T2) defined in (10) are stationary and jointly
Gaussian. Due to the preferential sampling of the soluble copper grade, depending on
whether or not the total copper grade is above threshold z1 = 0.3%, T2 is unknown at
some data locations and its sample variogram might be a biased estimate of its prior
variogram. A few examples of such biases occurring in the presence of a preferential
sampling are presented in Appendix.

To solve this issue, a trial-and-error procedure is proposed, through the following
steps.

1. Calculate the sample variogram of T1, which provides an unbiased estimate of the
prior variogram of this random field.

2. Select the subset of data locations at which the total copper grade is greater than z1

(above this threshold, almost all the data carry information on the total and soluble
copper grades). This subset can equivalently be defined by selecting the data for
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which T1 is greater than a threshold t1 such that z1 = φα ◦ G−1
α ◦ G(t1) (see (2),

(10)).
3. Using the normal scores data at the selected data locations, calculate the sam-

ple direct and cross variograms of T1 and T2, for given lag separation vectors
{hk, k = 1, . . . ,K}. These sample variograms are unbiased estimates of the vari-
ograms of the Gaussian random fields T1 and T2 conditioned to T1 > t1. Hereafter,
they will be referred to as “conditional variograms”, as opposed to the prior (non-
conditional) variograms of T1 and T2.

4. Propose a coregionalization model for T1 and T2, i.e., direct and cross variogram
models. For the random field T1, the direct variogram model should be chosen in
order to fit the sample variogram calculated at Step 1.

5. For each lag separation vector hk where the sample conditional variograms have
been calculated:

(i) Generate a large number of realizations of the Gaussian random vector
(T1(0), T2(0), T1(hk), T2(hk)). The LU triangular decomposition of the co-
variance matrix algorithm (Davis 1987) can be used at this stage.

(ii) Discard the realizations for which T1(x) ≤ t1 at x = 0 or x = hk .
(iii) With the remaining realizations, calculate the direct and cross variograms

of T1 and T2 for the lag separation vector hk , which approximate the the-
oretically expected conditional variograms. Although the conditional direct
variogram of T1 can be calculated analytically as a function of the prior vari-
ogram (see (18) in Appendix), a numerical approach has been preferred here
because analytical calculations are cumbersome for the conditional direct
variogram of T2 and cross variogram between T1 and T2.

6. Compare the sample and theoretically expected conditional variograms obtained
at Steps 3 and 5. If the fit is not satisfactory, go back to Step 4.

The above procedure can be simplified if T1 and T2 are independent random fields.
In such a case, the restriction to a subset of data locations depending on the values
of T1 (Step 2) does not provoke any bias on the distribution of T2, in particular on its
variogram. In other words, provided that T1 and T2 are independent, the conditional
variogram of T2 is the same as its prior variogram. The variogram fitting procedure
can therefore be achieved by fitting prior variogram models to the sample direct vari-
ograms calculated by using all the available data, without caring about the preferential
sampling.

4.3 Application

The total and soluble copper grade data are transformed into normal scores data
on (T1, T2). By considering only the data with a total copper grade greater than
z1 = 0.3%, the sample conditional variograms of (T1, T2) are then calculated along
the horizontal and vertical directions, recognized as the main directions for anisotropy
and variogram modeling. The cross variogram takes low values (between −0.05
and 0.10), indicating that the random fields T1 and T2 are poorly correlated (Fig. 8).
Accordingly, these two random fields are assumed independent and a separate mod-
eling of their direct variogram is undertaken (Fig. 9(A), 9(B)). The following prior
variogram models, nesting nugget, exponential and spherical structures with a geo-
metric anisotropy between the horizontal and the vertical directions, are found
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Fig. 8 Sample cross variogram
of normal scores data on T1 and
T2, along the horizontal (blue)
and vertical (red) directions,
calculated by using the data with
total copper grade above 0.3%

Fig. 9 Direct variograms of normal scores data on T1 and T2, along the horizontal (blue) and vertical (red)
directions, calculated with (A), (B), all the available data from the biased data set, (C), (D), the subset of
data with total copper grade above 0.3%. Sample variograms are indicated with circles and dashed lines,
models with solid lines

⎧⎪⎪⎨
⎪⎪⎩

γT1 = 0.32nugget + 0.22 exp(100 m,100 m)

+ 0.4 exp(900 m,500 m) + 0.06 exp(∞,600 m),

γT2 = 0.33nugget + 0.32 sph(75 m,100 m)

+ 0.11 sph(1800 m,100 m) + 0.24 sph(1800 m,1800 m),

(11)
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where the distances into brackets indicate the horizontal and vertical ranges, respec-
tively.

The fitted models are validated by comparing the sample conditional variograms
of T1 and T2 (calculated by using the subset of data with a total copper grade greater
than 0.3%) with the theoretical conditional variograms (Steps 5–6 of the trial-and-
error procedure described in Sect. 4.2). The fitting is excellent for the random field
T2 (Fig. 9(D)), which is explained because the variogram model is unchanged and
the sample variogram is almost the same when using the selected subset of data. In
contrast, for the random field T1, a deviation between the sample and modeled con-
ditional variograms is observed, although the fitting remains acceptable (Fig. 9(C)).
Given that the conditional variogram of T1 only depends on its prior variogram and
on the assumption of a multivariate Gaussian distribution ((18) in Appendix), the ob-
served deviation can be explained because the actual distribution of the normal scores
data on T1 slightly departs from the distribution of a stationary, standard Gaussian
random field.

The independence of T1 and T2 indicates that the proposed bivariate model
(see (10)) allows to separate a component that only depends on the total copper grade
(T1, which is nothing else than the Gaussian transform of Z1) and a component that
is independent of the total copper grade (T2) and whose distribution is not affected by
the preferential sampling pattern. This preferential sampling, however, has an impact
on the soluble copper grade distribution (in particular, on its variogram), insofar as
Z2 depends on both T1 and T2 (see (3), (4), and (10)).

Having fitted and validated the coregionalization model of the Gaussian random
fields T1 and T2, the turning bands algorithm (Emery and Lantuéjoul 2006) is used
to generate 100 point-support conditional realizations of these two random fields.
The size of the domain targeted for co-simulation is 1000 m × 1500 m × 150 m
and the grid mesh has been set to 2.5 m × 2.5 m × 5 m. After back-transformation,
one obtains 100 point-support conditional realizations of the total and soluble copper
grades, which are finally regularized to a block support of 10 m × 10 m × 10 m.
The maps of the first realization and of the average of 100 realizations for a given
elevation are displayed in Fig. 10.

Table 2 gives estimates of the resources that can be recovered above given cut-offs
associated with total copper grade: fraction of tonnage, mean grades above cut-off
and solubility ratio, defined as the quotient between soluble and total copper grades.
These estimates have been obtained by averaging the recoverable resources calcu-
lated on each realization. The overall mean soluble copper grade (mean grade above
a zero cut-off grade) is 0.237%, very close to the mean soluble copper grade of the
original data set (0.243%). The importance of using the realizations individually for
estimating the copper resources is clear from Fig. 10, insofar as the expected grades
obtained by averaging the realizations yield smooth maps and therefore lead to bi-
ased grade-tonnage curves, as illustrated in Fig. 11 for the tonnage and mean soluble
copper grades above cut-off.

The total and soluble copper grade realizations can also be used for mine planning
and for decision-making. For instance, assume that each mined block can have three
possible destinations: flotation plant if the total copper grade is above 0.5% and the
solubility ratio is less than 70%, dump if the soluble copper grade is less than 0.25%,
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Fig. 10 (A), (B) Maps of simulated total and soluble copper grades for realization #1. (C), (D) Maps of
expected total and soluble copper grades (average of 100 realizations)

and heap leaching otherwise. The realizations can be used to calculate the probability
of each destination for each block and to assign the most probable destination (Ta-
ble 3); such a classification cannot be performed when separately simulating total and
soluble copper grades, but only through a joint simulation of these grades.

5 Conclusions

The quantification of total and soluble copper grade resources is a recurrent problem
in the evaluation of oxide ore deposit. The main difficulties arise from the functional
dependence (inequality constraint) between the grade variables and, regarding soluble
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Table 2 Tonnages, mean grades and mean solubility ratios for different cut-off grades, calculated from
100 block-support conditional realizations

Cut-off grade
(% total
copper)

Fraction of
tonnage

Mean total
copper grade
(%)

Mean soluble
copper grade
(%)

Mean solubility
ratio

0.00 1.000 0.406 0.237 0.599

0.10 0.999 0.406 0.237 0.599

0.20 0.951 0.418 0.244 0.599

0.25 0.857 0.439 0.254 0.595

0.30 0.712 0.472 0.270 0.589

0.35 0.557 0.513 0.288 0.573

0.40 0.419 0.559 0.308 0.560

0.45 0.307 0.608 0.328 0.547

0.50 0.222 0.660 0.349 0.535

0.55 0.160 0.713 0.370 0.524

0.60 0.115 0.767 0.391 0.515

0.65 0.084 0.821 0.412 0.507

0.70 0.061 0.876 0.433 0.499

0.80 0.033 0.986 0.475 0.486

0.90 0.019 1.097 0.518 0.475

1.00 0.011 1.210 0.560 0.466

Fig. 11 Fractions of tonnage
and mean soluble copper grades
above cut-off grades, calculated
on each realization (dashed
lines) and averaged over all the
realizations (solid black line).
Grade-tonnage curves calculated
by using the average of the
realizations are indicated with
solid red lines

copper grade, from the stochastic dependence between the grade and the sampling
design, insofar as the soluble copper grade is generally not assayed at the samples
with low total copper grade (preferential sampling).

A methodology has been presented to face these difficulties and to co-simulate
total and soluble copper grades. It consists in modeling the bivariate distribution of
total and soluble copper grades, based on their dependence relationship inferred with
collocated sample data. The recourse to theoretical distributions (gamma and beta)
for this modeling avoids the problems linked to the binning of data when working
with empirical distributions, as well as the problems linked to the presence of missing
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Table 3 Number of blocks and
estimated mean copper grades
for each possible destination

Destination Heap leaching Flotation Dump

Number of
blocks

39,498 35,896 149,606

Mean total
copper grade (%)

0.458 0.622 0.340

Mean soluble
copper grade (%)

0.316 0.312 0.197

values for soluble copper grade. The remaining steps are the transformation of total
and soluble copper grade data into multi-normally distributed data, joint variogram
analysis of the normal scores data, co-simulation of the associated Gaussian random
fields and back-transformation into original grades. As shown with the case study, the
proposed approach is versatile and of relatively simple use. It can be adapted to more
complex distributions than the beta for modeling the ratio variable B , depending on
more than two parameters, and to non-stationary models, by considering that these
parameters may vary in space, e.g., with the elevation.
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Appendix: Conditional Variogram

The objective of this appendix is to show that, in the presence of a preferential sam-
pling, the sample variogram may be a biased estimate of the prior variogram model.
For the sake of simplicity, consider the case of a single random field {Y(x) : x ∈ D}
and of a sampling strategy consisting in locating the samples in areas where the ran-
dom field takes values above a given threshold y. In this context, the sample vari-
ogram is an unbiased estimate of the conditional variogram, defined as

γy(h) = 1

2
E

{[
Y(x + h) − Y(x)

]2 | Y(x + h) > y,Y (x) > y
}
. (12)

It is of interest to relate the prior variogram γ (h) with the conditional variogram
γy(h). To this end, two stationary random field models (Gaussian and lognormal)
will be examined.

First, let us assume that {Y(x) : x ∈ D} is a stationary, standard Gaussian random
field. Let g and G be the standard Gaussian probability density function and cumu-
lative distribution function, and gr the joint density of a standard Gaussian pair with
correlation coefficient r . The conditional variogram is

γy(h) = 1

2

∫ +∞
y

∫ +∞
y

(t − t ′)2g1−γ (h)(t, t
′) dt dt ′∫ +∞

y

∫ +∞
y

g1−γ (h)(t, t ′) dt dt ′
. (13)
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Let us define the normalized Hermite polynomials {Hp,p ∈ N} as (Rivoirard 1994,
p. 40)

∀p ∈ N,∀t ∈ R, Hp(t) = 1√
p!g(t)

dpg(t)

dtp
(14)

with, in particular

∀t ∈ R, H0(t) = 1, H1(t) = −t and H2(t) = 1√
2

(
t2 − 1

)
. (15)

Furthermore, let us define

∀p,q ∈ N,∀y ∈ R, Spq(y) =
∫ +∞

y

Hp(t)Hq(t)g(t) dt. (16)

Spq(y) can be calculated recursively by using the following identities (Rivoirard
1994, p. 58; Chilès and Delfiner 1999, p. 641)

⎧⎪⎪⎨
⎪⎪⎩

S00(y) = 1 − G(y),

∀p > 0, S0p(y) = Sp0(y) = − 1√
p
Hp−1(y)g(y),

∀p > 0,∀q > 0, Spq(y) =
√

p
q
Sp−1q−1(y) − 1√

q
Hp(y)Hq−1(y)g(y).

(17)

By expanding gr into the Hermite polynomials (Chilès and Delfiner 1999, p. 399)
and by using (15), it follows from (13) and (16)

γy(h) = 1

2

∑+∞
p=0[1 − γ (h)]p ∫ +∞

y

∫ +∞
y

(t − t ′)2Hp(t)Hp(t ′)g(t)g(t ′) dt dt ′∑+∞
p=0[1 − γ (h)]p ∫ +∞

y

∫ +∞
y

Hp(t)Hp(t ′)g(t)g(t ′) dt dt ′

=
∑+∞

p=0[1 − γ (h)]p{∫ +∞
y t2Hp(t)g(t) dt

∫ +∞
y Hp(t ′)g(t ′) dt ′ − (∫ +∞

y tHp(t)g(t) dt
)2}

∑+∞
p=0[1 − γ (h)]pS2

0p
(y)

=
∑+∞

p=0[1 − γ (h)]p{(S0p(y) + √
2S2p(y))S0p(y) − S2

1p(y)}∑+∞
p=0[1 − γ (h)]pS2

0p(y)
. (18)

For numerical calculations, the series in the numerator and denominator can be trun-
cated to a high order, e.g., p = 200. In Fig. 12, the conditional variogram γy is plotted
as a function of the prior variogram γ , for several values of the threshold y (−∞ and
the deciles of the standard Gaussian distribution). The conditional variogram is seen
to be less than the prior variogram, which indicates that the conditioned Gaussian
random field has a smaller variance. Also, because the plotted curves are different
from straight lines, the conditional variogram does not have the same shape as the
prior variogram. In particular, even if the prior variogram is a non-decreasing func-
tion of the lag distance, the conditional variogram at large threshold values (above
the median) is likely to present a hole effect.

As a second example, assume that {Y(x) : x ∈ D} is a stationary lognormal random
field and that its logarithm is a Gaussian random field with mean m, variance σ 2,



44 Math Geosci (2012) 44:27–46

Fig. 12 Conditional variogram
as a function of the prior
variogram (stationary standard
Gaussian random field)

covariance function Cln(h) and variogram γln(h) = σ 2 −Cln(h). The prior variogram
of Y is (Chilès and Delfiner 1999, p. 103)

γ (h) = exp
(
2m + σ 2)[exp

(
σ 2) − 1

] − exp
(
2m + σ 2)[exp

(
Cln(h)

) − 1
]

= exp
(
2m + 2σ 2){1 − exp

[−γln(h)
]}

. (19)

Concerning the conditional variogram, (18) has to be modified as follows:

γy(h) = 1

2

∑+∞
p=0

[
1 − γln(h)

σ 2

]p ∫ +∞
ξ

∫ +∞
ξ (em+σ t − em+σ t ′)2Hp(t)Hp(t ′)g(t)g(t ′) dt dt ′

∑+∞
p=0

[
1 − γln(h)

σ 2

]p ∫ +∞
ξ

∫ +∞
ξ Hp(t)Hp(t ′)g(t)g(t ′) dt dt ′

= e2m+2σ2

∑+∞
p=0

[
1 − γln(h)

σ2

]p{
S0p(ξ)

∑+∞
q=0

(−2σ)q√
q! Sqp(ξ) − e−σ2 [∑+∞

q=0
(−σ)q√

q! Sqp(ξ)
]2}

∑+∞
p=0

[
1 − γln(h)

σ2

]p
S2

0p
(ξ)

(20)

with ξ = ln(y)−m
σ

. The second equality in (20) relies on the following identity (Chilès
and Delfiner 1999, p. 641)

exp(σ t) = exp
(
σ 2/2

) +∞∑
q=0

(−σ)q√
q! Hq(t). (21)

In Fig. 13, the conditional variogram γy is plotted as a function of the prior variogram
γ , for several values of the threshold y (0 and the deciles of the lognormal distribu-
tion) and logarithmic variance σ 2. As for Fig. 11, it is observed that the shape of the
conditional variogram differs from that of the prior variogram and that a hole effect
appears for large threshold values, even if the prior variogram is a non-decreasing
function of the distance. Furthermore, unlike the Gaussian case, the conditional vari-
ogram may take values greater than the prior variogram, which is a manifestation of
a proportional effect (Manchuk et al. 2009): the variability in high-value areas (above
threshold y) is greater than that of low-value areas.

These results prove that, when a random field is known through a preferential
sampling pattern, the sample variogram is an unbiased estimate of the conditional
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Fig. 13 Conditional variogram as a function of the prior variogram (stationary lognormal random field
with logarithmic mean equal to 0 and logarithmic variance equal to (A), 0.09 and (B), 1.00)

variogram, but may be a biased estimate of the prior variogram. The knowledge of
how such a preferential sampling has been designed (in the above examples, by dis-
carding the data points where the random field takes values below a given threshold)
is essential in order to correct for the bias.
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