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Abstract The variogram function is an important measure of the spatial dependen-
cies of a geostatistical or other spatial dataset. It plays a central role in kriging, de-
signing spatial studies, and in understanding the spatial properties of geological and
environmental phenomena. It is therefore important to understand the variability at-
tached to estimates of the variogram. Existing methods for constructing confidence
intervals around the empirical variogram either rely on strong assumptions, such as
normality or known variogram function, or are based on resampling blocks and sub-
ject to edge effect biases. This paper proposes two new procedures for addressing
these concerns: a quasi-block-bootstrap and a quasi-block-jackknife. The new meth-
ods are based on transforming the data to decorrelate it based on a fitted variogram
model, resampling blocks from the decorrelated data, and then recorrelating. The
coverage properties of the new confidence intervals are compared by simulation to a
number of existing resampling-based intervals. The proposed quasi-block-jackknife
confidence interval is found to have the best properties of all of the methods consid-
ered across a range of scenarios, including normally and lognormally distributed data
and misspecification of the variogram function used to decorrelate the data.
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1 Introduction

Spatial datasets consist of one or more variables measured at a number of locations
defined by a coordinate system. One of the aims of many spatial analyses is to under-
stand how the relationship between the variables measured at two points depends on
their positions. Typically nearby points tend to be similar while distant points are less
so, but the way in which the relationship depends on distance can be very different
in different examples, and a good understanding of this is crucial in the design and
analysis of spatial studies.

The sample variogram is a widely used tool for this purpose (Cressie and Hawkins
1980). Variograms can be generalized to the cross-variogram for multivariate data
(Chiles and Delfiner 1999), but we will consider situations where a single variable
Z is measured on a set of points defined in two dimensions. We write Z(s) for the
value of Z at a point s. First and second order stationarity is assumed; that is, the
first two moments of Z(s) are assumed to not depend on s. It will also be assumed
that E[Z(s)] = 0; in practice, this would be achieved approximately by subtracting
a grand mean or the fitted value from a regression model from each observation. Let
h be the distance between two points s1 and s2, defined using the Cartesian or some
other metric. The variogram

γ (h) = Var
[
Z(s1) − Z(s2)

] = E
[
Z(s1) − Z(s2)

]2 (1)

is assumed to depend only on h and not on s1 and s2. Anisotropic models, in which the
variogram also depends on the direction of the vector s1 − s2, are sometimes used but
will not be considered here. The covariogram and correlogram are alternative, related
representations of spatial dependency; however, the variogram has the advantage that
it may exist in situations where covariances and variances do not (Cressie 1993).

The value of γ (0) is equal to 0. The value of C0 = limh↓0 γ (h) (called the nugget
parameter) may be non-zero, due to measurement error or discontinuities in the data
(e.g., nuggets or seams in geological data). The variogram generally increases as h

increases, with more distant points becoming less correlated. The least upper bound
of the variogram is called the sill and will be denoted as C0 + C. In some models,
the variogram will be equal to the sill for h ≥ a, in which case a is referred to as the
range of influence. In other cases, the variogram will approach its sill asymptotically,
in which case the practical range (or effective range) is defined to be the distance at
which the variogram reaches a value of 0.95 times the sill (Oliver and Webster 2001).
The marginal variance of Z (if it exists) is equal to (C0 + C)/2.

The integral range is another measure of the strength of spatial correlations over
a region V with volume |V |. Let ρ(h) be the correlation between values at points
separated by distance h. The integral range is defined by A = ∫

ρ(h)dh (Chiles and
Delfiner 1999). If A is large compared to |V |, this means that spatial correlations are
very pervasive. To see this, let Z̄V be the mean of the variable Z over all points in
the region. Then the variance of Z̄V is equal to the variance that would be obtained
by an uncorrelated sample of M observations from V , where M = |V |/A (Chiles
and Delfiner 1999). Thus, full observation of the spatial field V is in some sense
equivalent to M independent observations, at least for the purpose of estimating the
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mean of Z. The quantity M can be considered to be the effective sample size of the
region V .

The variogram is commonly estimated by the binned empirical variogram. Sup-
pose that distances h are partitioned into bins (usually non-overlapping) Bk , k =
1, . . . ,K , with midpoints hk . Let hij = ‖si − sj‖ be the distance between points i

and j , and let Pk contain all pairs of points such that hij ∈ Bk . The binned empirical
variogram at hk is defined as

γ̂ (hk) = 1

|Pk|
∑

(ij)∈Pk

(
Z(si) − Z(sj )

)2 (2)

(Matheron 1963). If the bins Bk are of width 0 (i.e., if Pk only contains points exactly
hk apart), then (2) is exactly unbiased for the true variogram. There is a bias when
bins are of width greater than 0 (Emery 2007), which can be minimized by making
the bins narrow enough so that the variogram does not change substantially over
h ∈ Bk . The binned empirical variogram can be sensitive to outliers and outlier-robust
versions have been proposed; Cressie and Hawkins (1980), Emery (2007), Cressie
(1993), Dowd (1984), Lark (2000) evaluated a number of these and recommended
the method of Dowd (1984).

The variogram is usually modelled as a smooth curve with several parameters to be
estimated. One benefit of modelling is that most commonly used models guarantee
that the modelled variance–covariance matrix of any set of points is positive semi-
definite. This is necessary for most kriging methods, and also allows for simulation
of data from the model. Four commonly used variogram models are

γ (h) = C0 + C
(
1 − e−h/a

)
, (the exponential model) (3)

γ (h) = C0 + C
(
1 − e−h2/a2)

, (the Gaussian model) (4)

γ (h) =
⎧
⎨

⎩

C0 + C(7(h/a)2 − 8.75(h/a)3 + 3.5(h/a)5 − 0.75(h/a)7)

if h ≤ a

C0 + C if h > a

⎫
⎬

⎭
, (5)

(the cubic model)

γ (h) =
{

C0 + C(1.5h/a − 0.5(h/a)3) if h ≤ a

C0 + C if h > a

}
, (6)

(the spherical model)

where h is greater than 0 and a is a parameter controlling the range. The first two
variogram models approach their sills asymptotically, with the Gaussian model ap-
pearing more parabolic for short distances than the exponential model. The cubic
and spherical variogram models both reach their sills at distance a; the cubic is less
smooth than the spherical variogram.

Estimated variograms are important in the prediction of unknown points (referred
to as kriging, Chiles and Delfiner 1999). The variogram is also often of scientific in-
terest in its own right. For example, Wang et al. (2009) used empirical variograms
to compare the spatial structure of stable carbon isotope and organic carbon content



246 Math Geosci (2011) 43: 243–259

at two sites in southern Africa. Cosh et al. (2003) compared empirical variograms
representing different time points to observe the effect of dry periods on vegetation
density. Shafer and Varljen (1990) noted that it is useful to compare empirical var-
iograms over time to determine if a spatially correlated variable is time invariant.
They also proposed that, when conducting a repeated spatial survey, variograms from
previous and current iterations should be compared to identify significant changes in
the spatial structure of the variable of interest and ensure that the survey design re-
mains optimal. To make such comparisons meaningful, the uncertainty surrounding
the empirical variogram needs to be taken into consideration.

It is therefore of interest to calculate confidence intervals for empirical variograms.
Standard jackknife and bootstrap confidence intervals assume that data are indepen-
dent. Section 2 reviews a number of resampling techniques that have been proposed
for spatial data and variograms. One of these approaches is the quasi-bootstrap, where
the data is transformed to create an approximately independent vector of observa-
tions, using the estimated covariance matrix of the observed data. This approach
works well provided that the covariance matrix can be accurately estimated, but this
is usually based on a model for the variogram or correlogram, and results can be
sensitive to misspecification of this model. Another approach is to divide the region
into blocks and resample these blocks. This works well provided data from different
blocks is approximately uncorrelated, but this will not be the case unless the effective
range is less than the block size. Section 3 proposes two new methods for comput-
ing confidence intervals for empirical variograms, designed to overcome these short-
falls by combining aspects of the quasi-bootstrap and block resampling approaches.
The use of Box–Cox transformations to deal with non-normal data is also discussed.
Section 4 summarizes a simulation study comparing the new approaches to existing
methods. Data was initially simulated from a normal distribution with an exponential
variogram. To assess robustness to modelling assumptions, datasets were also gen-
erated from a lognormal distribution and a Gaussian variogram. Section 5 contains
conclusions.

2 Review of Resampling-Based Confidence Intervals for Variograms

In resampling methods for variance estimation or confidence intervals, data is resam-
pled from the observed data or from a model estimated using the observed data, and
the statistic of interest (e.g., the empirical variogram for a given bin) is calculated for
each of these replicate datasets. The variance over the replications of the statistic is
used to estimate the variance of the statistic. Commonly used replication techniques
include the following: the nonparametric bootstrap, where observations are selected
by simple random sampling with replacement from the original data; the parametric
bootstrap where replicate datasets are generated from a model fitted to the population;
and the jackknife, where one observation or a group of observations is dropped from
each replicate (Davison and Hinkley 1997). Confidence intervals can be constructed
by assuming that the statistic is normally distributed. Alternatively, if a bootstrap
method is used, confidence intervals can be constructed using the percentiles of the
replicate statistics.
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Standard nonparametric jackknife and bootstrap methods assume that data is inde-
pendent and identically distributed. Sebastyén (2004) applied the standard bootstrap
procedure in conjunction with the percentile method to construct confidence intervals
for variograms. This approach is flawed because spatial correlations are not allowed
for; therefore, these confidence intervals would perform poorly unless these correla-
tions are negligible (Tang et al. 2006).

Parametric bootstraps have been applied to time series data (Davison and Hink-
ley 1997), but less so to spatial data. The parametric bootstrap handles correlated
data naturally, provided the multivariate distribution of the data can be correctly
specified and estimated (Cressie 1993). Lahiri (2003) described a range of block
resampling procedures for spatial and other dependent data. One example of this
is a method of bootstrapping blocks or tiles in two or more dimensions, also dis-
cussed by Hall (1985). The approach is to partition up the space into non-overlapping
blocks. Replicates are then constructed by replacing each block’s data with the data
from another block selected at random from all blocks. Let Ti refer to block i,
where i = 1, . . . ,m, Yi refer to the vector of variables observed from block i, and
θ̂ (Y1, . . . ,Ym) refer to the statistic of interest calculated using the observed data
from all blocks. Let Y∗

i refer to the bootstrapped observations for block i, equal
to Yj (i) where j (i) is selected at random from {1, . . . ,m}. The bootstrap replicate
is then given by θ̂∗ = θ̂ (Y∗

1, . . . ,Y∗
m). The bias of the bootstrap variance estima-

tor was shown by Hall (1985) to be asymptotically negligible under two assump-
tions:

(i) The statistic of interest should be expressible as θ̂ (Y1, . . . ,Ym) =
m−1 ∑m

i=1 θ̂ (Yi ), where θ̂ (Yi ) is an estimator of the parameter of interest calcu-
lated using only the data in block i.

(ii) The covariances between θ̂ (Yi ) and θ̂ (Yj ) are asymptotically negligible when
blocks i and j are adjacent and are zero otherwise.

The first assumption would not be satisfied for many nonlinear statistics, includ-
ing empirical variograms, although it may be approximately satisfied provided that
blocks are large. In the case of estimating variograms, both assumptions probably
require that the blocks are large relative to the lags of interest as well as relative to
the effective range.

Kunsch (1989) specified a block jackknife method for spatial statistics. The region
was divided into B blocks, as in Hall (1985). B replicate datasets {Z∗

b : b = 1, . . . ,B}
were created by dropping one block b at a time. Applying this method to empirical
variograms, we would let γ̂k(b) be the estimate for bin k calculated from replicate b.
The jackknife variance estimator is then

ˆvar
[
γ̂ (hk)

] = B − 1

B

B∑

b=1

{
γ̂b(hk) − ¯̂γ .(hk)

}2
. (7)

Confidence intervals can be calculated using the normal approximation for either
γ̂ (hk) or log(γ̂ (hk)).

The block bootstrap just described creates edge effects where the correlations be-
tween adjacent points which lie on the edges of two different blocks is much less in
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the bootstrap samples than in the original data. The effect is negligible as the block
size tends to infinity, but it can be important in practice. The same is true of the block
jackknife, although the effects are probably less severe as only one block is dropped
at a time with the remaining blocks staying in position. Different variants of block re-
sampling have been proposed to better deal with edge effects. These include so-called
post-blackening of time series data, where the residuals of each observation given the
preceding observation are resampled, rather than resampling the observations them-
selves (Davison and Hinkley 1997).

Solow (1985) developed a quasi-bootstrap approach based on transformation for
one-dimensional time series data. A second order stationary process Z(t) was as-
sumed where t is time. The first step was to estimate a variance–covariance matrix V
of the data Z by fitting an exponential variogram model. A Cholesky decomposition
V̂ = L̂L̂T was then calculated where L̂ is a lower triangular matrix. The transformed
data U = L̂−1Z should then be approximately uncorrelated with unit variances. Boot-
strap samples U∗ were selected by simple random sampling with replacement from
U, and were then recorrelated using Z∗ = L̂U∗. Statistics of interest were calculated
from the so-called quasi-bootstrap sample Z∗ and the process repeated many times.
The variance over the replicate empirical variograms was then used to estimate the
variance of the statistics of interest. The approach was used to estimate variances
and calculate confidence intervals for functions of the one-dimensional variogram,
and worked reasonably well in a small simulation study. Solow (1985) commented
that robustness to misspecification of the variogram model was an open question.
The method could similarly be applied to stationary two-dimensional data by using a
fitted model for the variogram to obtain V̂.

Tang et al. (2006) modified the approach of Solow (1985) and extended it to two-
dimensional data. The values of U∗ were generated from independent standard nor-
mal distributions rather than by resampling from U. These were then recorrelated us-
ing Z∗ = L̂U∗ and the method then proceeded as in Solow (1985). A simulation study
found that it gave appropriate coverage levels for confidence intervals for a grand
mean parameter, even when the variogram model was misspecified. The method
would be expected to depend to some extent on the data being normally distributed,
and this was not evaluated. Shafer and Varljen (1990) proposed a somewhat ad hoc
resampling method for statistics based on spatial data. Resamples were constructed
by firstly selecting n/3 points by simple random sampling without replacement from
all n points. For each of these points, three associated points were selected, each
of which were random in orientation and separation distance up to the correlation
length. The method was trialled on a dataset of groundwater nitrogen/nitrate concen-
trations, but has not been validated by a simulation study. Gascuel-Odoux and Boivin
(1994), Huisman et al. (2003), and Wingle and Poeter (1993) also made use of this
approach.

A number of methods for estimating variogram uncertainty were evaluated in a
simulation study in Marchant and Lark (2004). Several theoretical expressions for
the variances of the empirical variogram were compared to simulation estimates of
the variances with both being based on an assumption of normally distributed data.
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3 Two Quasi-Block-Resampling Methods

3.1 Quasi-Block-Jackknife

The first step in both methods is to calculate the binned empirical variogram using (2).
A variogram model (e.g., the exponential model (3)) is then fitted to the data. This can
be done by maximum likelihood, but this requires a full specification of the joint dis-
tribution of the spatial field. Instead, we suggest using a least squares fit to the binned
empirical variogram to estimate the parameters C0, C, and a. The Newton–Raphson
algorithm is the usual method for nonlinear least squares; however, we found that
this often failed to converge in the simulation study in the next section. A grid search
procedure can be used instead, where a grid over possible values for the variance,
nugget, and scale parameters is constructed. A shortfall of the grid search is that the
grid must be reasonably coarse to make the computation feasible, resulting in less
precise parameter estimates. This would be a problem if the variogram model fit was
of interest in its own right, but we will be using it only as a tool to construct confi-
dence intervals, so a grid search may be adequate. In our simulation study, we used
a grid of 80 possible values for each of the three parameters, and this seemed to be
adequate (for details, see Sect. 4.1).

The variance–covariance matrix V̂ of the data Z is then calculated according to this
fitted model, and a Cholesky decomposition V̂ = L̂L̂T is calculated. The data is then
transformed using U = L̂−1Z. So far, this is identical to the quasi-bootstrap method.
However, the quasi-bootstrap method used a simple bootstrap which assumed that the
elements of U are independent. If the variogram model is misspecified, this may not
be justified, so a block jackknife can be used instead. This relies on the correlations
between blocks having a negligible effect, which is a weaker assumption. The method
proceeds as follows:

(i) Divide the region into B blocks. Block jackknife replicates U∗
b are constructed

by dropping all of the observations in U from block b, for b = 1, . . . ,B .
(ii) Let V̂b be the submatrix of V̂ obtained by dropping the covariances involving

one or two points in block b. Let V̂b = L̂bL̂T
b be its Cholesky decomposition.

Recorrelate U∗
b by calculating Z∗

b = L̂bU∗
b .

(iii) Calculate the empirical variogram for Z∗
b; let be γ̂k(b) be the empirical variogram

for bin k.
(iv) Estimate var[γ̂k] using the usual jackknife approach

ˆvar[γ̂k] = B − 1

B

B∑

b=1

{
γ̂k(b) − ¯̂γ k(.)

}2
.

Confidence intervals can be calculated using a normal approximation. Alterna-
tively, var[log(γ̂k)] can be estimated and confidence intervals can be constructed
based on ˆvar[log(γ̂k)].

A disadvantage of the block-jackknife approach is that the data from each block are
not independent, leading to biased variance estimators. This is sometimes called an
edge effect since the dependencies are greatest between observations on either side
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of the edge between two blocks. The approach described here reduces this problem
because the blocks are dropped from the transformed data U rather than from the
original data Z. The values in U from different blocks will be much closer to being
independent because if the assumed variogram model is correct, then every observa-
tion in U will be approximately independent.

3.2 Quasi-Block-Bootstrap

Again, the first step is to fit a variogram model, calculate the Cholesky decomposition,
and transform the data using U = L̂−1Z. The block bootstrap is then calculated as
follows:

(i) Divide the region into B blocks. The observations in each block are then re-
placed by the observations from a donor block selected at random from all other
blocks. This gives a block bootstrap replicate U∗

j , for j = 1, . . . , J where J is
the number of replicates.

(ii) Recorrelate U∗
j by calculating Z∗

j = L̂U∗
j .

(iii) Calculate the empirical variogram for Z∗
j ; let be γ̂k(j) be the empirical variogram

for bin k and replicate j .
(iv) Estimate var[γ̂k] using the variance over the J bootstrap replicates

ˆvar[γ̂k] = (J − 1)−1
J∑

j=1

{
γ̂k(j) − ¯̂γ k(.)

}2
.

The variance of log(γ̂k) can be similarly estimated. Confidence intervals can be
calculated using a normal approximation for γ̂k or log(γ̂k), or using a percentile
method.

As for the quasi-block-jackknife, this method should be less sensitive to misspecifica-
tion of the variogram model than the quasi-bootstrap, and less subject to edge effects
than the block bootstrap.

3.3 Using a Box–Cox Transformation to Deal with Non-normal Data

The methods described in Sects. 3.1 and 3.2 did not require any assumption that data
is normally distributed. However, the empirical variogram is sensitive to outliers, and
this could result in poor confidence intervals if the data is very skewed or heavy
tailed. A Box–Cox transformation of the observed data could be used to make the
observations more normally distributed. This would mean replacing each observation
Z by g(Z) where g belongs to the Box–Cox family

g(zi) =
{

zλ−1
λ(GM(z))λ−1 if λ �= 0,

GM(z) log(zi) if λ = 0,

where GM(z) = (z1 · · · zn)
1/n is the geometric mean of the data, and λ is a parameter

to be determined. The method can only be used for data which is strictly positive. The
value of λ is typically estimated by maximum likelihood, under the assumption that
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there exists a λ such that g(Z) is normally distributed. The original data Z would then
be transformed to g(Z) using the estimated λ, and the methods of Sects. 3.1 and 3.2
would be applied to the transformed data, to give the empirical binned variogram and
confidence intervals for g(Z).

Another approach that could be used for non-normal data is to transform using the
empirical distribution function, or a smoothed estimate of the distribution function.

4 Simulation Study

4.1 Methodology

A simulation study was conducted in the R statistical environment (R Development
Core Team 2007). For each model considered, 500 datasets of 2500 correlated nor-
mally distributed values were generated on a 50 by 50 regular square grid. Distances
between distinct points ranged from 1 to 69.3. Variables on this spatial field were
generated as follows:

(i) Normally distributed values were generated using the exponential variogram
model (3) and the Gaussian variogram model (4). In each case, the nugget pa-
rameter C0 was set to 0.5, and C was set to 2. This implies that the variables
have a marginal variance of 1.25. The range parameter, a, was chosen so that
the effective range was 0 (i.e., independent data), 2, 5, 10 and 15. The data were
generated using the GaussRF function in the RandomFields package (Schlather
2006), using the direct matrix decomposition method.

(ii) In addition, lognormally distributed spatially correlated variables were gener-
ated by exponentiating the variables from (i) at each point, after multiplying by√

0.25/
√

1.25. This meant that these variables had marginal LN(0,0.25) distrib-
utions. This is a moderately right-skewed distribution, with median 1, mean 1.13,
and skewness 1.75.

We found that when the effective range was equal to 15, all of the confidence inter-
vals considered performed poorly in some respect. When this parameter was much
greater than 15, none of the confidence intervals were adequate. This is perhaps not
surprising. When the effective range is 15, the integral range of the exponential var-
iogram model is equal to A = 2π152/9 = 157.1 (Garrigues et al. 2006, Table 3), so
that the effective sample size is given by the area of the region divided by A, giving
an effective sample size of 2500/157.1, or just 15.9. In other words, the complete re-
gion, even if fully observed, would in a sense contain information equivalent to just
16 independent observations of Z.

The binned empirical variogram (2) was calculated for each simulation and vari-
able. The first three bins were defined to be of width zero and contain the values 1,√

2, and 2. This was done because the data are on a regular grid with unit spacing,
so that there were many pairs of points whose distances are exactly equal to these
values, but no pairs whose distances lie between these values. Subsequent bins were
intervals of width 1 up to a distance of 10, and then width 2 up to a distance of 40.
Thus the midpoints of the bins were {1,

√
2,2,2.5,3.5, . . . ,9.5,11,13,15, . . . ,39}.
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Variance estimates for the log of the binned empirical variogram at each midpoint
were calculated using five methods:

(i) A block jackknife. The 50 by 50 grid was partitioned into 25 square blocks
each of size 10 by 10. For each simulated dataset, 25 jackknife variograms were
estimated by dropping one square at a time. The variance of log(γ̂ (hk)) was
estimated as described in Sect. 2.

(ii) A block bootstrap. The 50 by 50 grid was partitioned into 25 square blocks
each of size 10 by 10. The variance of log(γ̂ (hk)) was estimated as described in
Sect. 1.

(iii) A quasi-bootstrap, using the method of Solow (1985) described in Sect. 1. The
variance V was estimated by fitting an exponential variogram model. The pa-
rameters of the variogram model were estimated using a grid of 80 possible
values for each of the sill (C + C0), nugget (C0) and scale parameters (a). The
grid values for the variance ranged from 0 to 3 times the maximum value of
the empirical variogram; the values for the nugget ranged from 0 to 3 times the
value of the empirical variogram for the first non-zero bin; and the values of the
scale ranged from 0.01 times the mean of the bin midpoints to 2 times the largest
bin midpoint. In each case, the grid was spaced more finely for the first half of
the range for each parameter, as this was considered more likely to contain the
optimal parameter values. The parameter values which minimised the sum of
the squared differences between the modelled and empirical binned variogram
were selected.

(iv) A quasi-block-jackknife, as described in Sect. 3.1, using the same fitted expo-
nential variogram model.

(v) A quasi-block-bootstrap, as described in Sect. 3.2, using the same fitted expo-
nential variogram model.

The bootstrap methods were all calculated using 100 replicates. 90% confidence in-
tervals for the log of the variogram were calculated using the normal approximation,
and then exponentiated to give confidence intervals for the variogram.

This method for confidence interval calculation was used for the normally distrib-
uted and lognormally distributed variables. For the latter variables, a Box–Cox trans-
formation approach was also evaluated. The boxcox function in the MASS package
in the R statistical environment (R Development Core Team 2007) was used with de-
fault settings to maximize the likelihood over λ ∈ {−2,−1.9,−1.8, . . . ,2} assuming
independent data. (The assumption of independence is not satisfied for spatial data,
but the resulting estimate of λ is still thought to be reliable enough for our purposes.)
The original data Z was transformed to g(Z) using the estimated λ, and the above
five methods were used to give confidence intervals for the variogram of g(Z).

The non-coverage rates of the intervals were estimated for each bin for each simu-
lation by taking the proportion of the 500 cases where the confidence interval did not
cover the true value of the variogram. For convenience, in calculating coverage, the
true variogram for each bin was approximated by the mean over the 500 replicates of
the empirical variogram for the bin. We found that this was a very good approxima-
tion for the true variogram provided the bin is sufficiently narrow so that γ (h) does
not vary significantly over the bin, which was the case for our bin ranges.
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Fig. 1 True variograms and distribution of empirical variogram for exponential variogram models and
normally distributed data

4.2 Results

4.2.1 True Variograms and Variability of Empirical Variograms

Figure 1 shows the true variogram for exponential models with effective range 0
(uncorrelated data), 2, 5, 10, and 15. The figure also shows the upper and lower fifth
and 25th percentiles of the empirical variograms over the 500 simulations. It can be
seen that for uncorrelated data, the variability of the empirical variogram is about the
same for all bins. As the effective range increases so that there are higher correlations
in the dataset, a fanning out pattern is evident with greater variability associated with
longer distances.

4.2.2 Coverage when Exponential Variogram Model Is Correct and Data Are
Normal

Figure 2 shows the non-coverage rates of the various confidence intervals over the
500 simulations. All of the confidence intervals did well for uncorrelated data, as
would be expected, but had higher non-coverage as the effective range increased. The
quasi-block-jackknife consistently had the coverage closest to the nominal 10% rate,
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Fig. 2 Noncoverage rates of confidence intervals for VGs, and for normal data simulated from exponential
variogram models with different effective ranges (90% nominal coverage)

followed by the quasi-bootstrap, the quasi-block-bootstrap, the block jackknife, and
the block bootstrap. The block bootstrap was clearly the worst performer, presumably
because edge effects were substantial when the effective range was 5 or more. It
should be noted that this is not the situation for which the block bootstrap is designed
as correlations across blocks are clearly not negligible.

4.2.3 Exponential Variogram Model Is Incorrect and Data Are Normal

The quasi-resampling methods work by fitting an exponential variogram model to the
observed data. In practice, the true variogram is likely to differ from the exponential
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Fig. 3 Noncoverage rates of confidence intervals for VGs, and for normal data simulated from Gaussian
variogram models (90% nominal coverage)

model to some extent. Figure 3 shows the non-coverage of the various confidence
intervals when the data was generated by a Gaussian variogram model with effective
range of 2, 5, or 10. All five methods were adequate when the effective range was 2.
For longer effective ranges, only the quasi-block-jackknife gave acceptable coverage
levels.

4.2.4 Lognormal Data

Figure 4 shows non-coverage rates for the lognormally distributed data, and for ex-
ponential and Gaussian variogram models with effective ranges 0, 2, and 10. All of
the methods were adequate when the range was 0, but became dramatically worse
for longer ranges. The scale of the y-axis in Fig. 4 differs from Figs. 2, 3, and 5 to
accommodate this. The quasi-block-jackknife was again clearly the best method, but
still had unacceptably high non-coverage when the effective range was 10.

4.2.5 Lognormal Data when a Box–Cox Transformation is Applied

Figure 5 shows the results for the same lognormal data as Fig. 4 when a Box–Cox
transformation is applied to the data before implementing the confidence interval
methods. The true value of λ for this data was 0 and the estimator λ̂ was close to



256 Math Geosci (2011) 43: 243–259

Fig. 4 Noncoverage rates of confidence intervals for VGs, and for lognormal data simulated from several
variogram models (90% nominal coverage)

unbiased with standard deviation of 0.16 or less over the 500 simulations. Comparing
to Fig. 4 shows that making the transformation substantially improves the coverage
for all of the confidence interval methods. The quasi-block-jackknife remains the best
of the methods, with non-coverage fairly close to 10% in all cases.

4.2.6 Other Methods

A number of other evaluations were also conducted. The performance of the five con-
fidence interval methods under cubic and spherical variogram models was evaluated
in Clark and Allingham (2010) with similar conclusions.
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Fig. 5 Noncoverage rates of confidence intervals for VGs of Box–Cox-transformed data, and for lognor-
mal data simulated from several variogram models (90% nominal coverage)

A number of other confidence interval methods have also been evaluated. A stan-
dard bootstrap, where individual observations were resampled ignoring spatial loca-
tion, had very high non-coverage except when the effective range was 0. A paramet-
ric bootstrap was implemented with multivariate normally distributed data simulated
using the fitted exponential variogram model. This performed very similarly to the
quasi-bootstrap when the data was normal, but substantially worse when the data
was lognormal. The block bootstrap and quasi-block-bootstrap shown were calcu-
lated using fixed blocks. The data was divided up into 25 blocks, and these blocks
were effectively interchanged at random. Moving block bootstraps were also calcu-
lated, where the donor blocks could be any 10 by 10 block in the region. The results
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were very similar to the fixed block bootstraps. Percentile confidence intervals were
also calculated for the three bootstrap methods, giving a slight improvement over the
normal approximation confidence intervals shown in the figures.

5 Discussion

A range of methods have been proposed for calculating confidence intervals for sta-
tistics calculated from spatial data, but their applicability to empirical variograms
has been given relatively little attention. These methods include the block bootstrap,
the block jackknife and the quasi-bootstrap. The simulations described in this pa-
per show that all of these methods, as well as new quasi-block-bootstrap and quasi-
block-jackknife methods developed in this article, perform reasonably well when the
effective range is short (1/25 of the width of a square region). For longer range de-
pendency, the block jackknife performs less well while the block bootstrap performs
very poorly. The quasi-bootstrap gives close to correct coverage when the assumed
variogram model is correct, but is sensitive to misspecification of this model. The
new quasi-block-jackknife was clearly the best performer out of the methods consid-
ered, and was the only method with good coverage properties in all of the scenarios
considered except when the effective range was 20% or more of the region width (in
this case all of the methods performed poorly). It was robust both to non-normality
and to misspecification of the variogram function.
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