
Math Geosci (2011) 43: 363–377
DOI 10.1007/s11004-010-9308-3

Combining Robustness with Efficiency
in the Estimation of the Variogram

Hilário Miranda · Manuela Souto de Miranda

Received: 31 March 2009 / Accepted: 4 August 2010 / Published online: 24 September 2010
© International Association for Mathematical Geosciences 2010

Abstract In the present paper, we propose a new method for the estimation of the
variogram, which combines robustness with efficiency under intrinsic stationary geo-
statistical processes. The method starts by using a robust estimator to obtain discrete
estimates of the variogram and control atypical observations that may exist. When the
number of points used in the fit of a model is the same as the number of parameters,
ordinary least squares and generalized least squares are asymptotically equivalent.
Therefore, the next step is to fit the variogram by ordinary least squares, using just
a few discrete estimates. The procedure is then repeated several times with different
subsets of points and this produces a sequence of variogram estimates. The final es-
timate is the median of the multiple estimates of the variogram parameters. The sug-
gested estimator will be called multiple variograms estimator. This procedure assures
a global robust estimator, which is more efficient than other robust proposals. Under
the assumed dependence structure, we prove that the multiple variograms estimator is
consistent and asymptotically normally distributed. A simulation study confirms that
the new method has several advantages when compared with other current methods.
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1 Introduction

The variogram plays an important role in spatially distributed random processes since
it describes the dependence structure of the spatial process and it decisively influences
the prediction of the process at unobserved locations (kriging). It is important then to
estimate the variogram using estimators with good theoretical properties in order to
assure accurate variogram estimates which produce good kriging results. The usual
variogram estimation procedure consists of two steps. In the first one, the variogram
is estimated directly from the process sample at specific lags, resulting in a finite
set of discrete variogram estimates. In this step, the most commonly used estimator
is the method of moments estimator proposed by Matheron (1962). This nonpara-
metric estimator of the variogram has many nice properties, like unbiasedness and
consistency in a pointwise sense. However, the Matheron estimator just provides dis-
crete estimates for posterior fit of a parametric model of a valid variogram. In the
traditional approach, the second step of the variogram estimation is performed us-
ing the least squares method. Since the nonparametric estimates of the variogram are
correlated (because the same process observation is used to estimate the variogram
at different lags) the generalized least squares (GLS) estimator is the most adequate
method. Lahiri et al. (2002) proved that the GLS estimator is asymptotically efficient.
Nevertheless, the GLS criterion is not feasible since the exact expression for the co-
variance matrix of the nonparametric estimator is very difficult to obtain, even for
Gaussian processes. Furthermore, as Lahiri et al. (2002) mention, inversion of the
covariance matrix of the nonparametric variogram estimator and minimization by the
GLS criterion often proves to be computationally prohibitive. Given these difficulties,
a solution can be attained by approaching the GLS by weighted least squares (WLS).
There are several proposals for the weights. The classical and most commonly used
was proposed by Cressie (1985).

The traditional procedures for the estimation of the variogram have good proper-
ties, but they are not robust. Genton (1998a) points out that the Matheron estimator
has a null breakdown point and an unbounded influence function. Notice that nowa-
days the robustness of an estimator is often evaluated through its breakdown point
and its influence function. The empirical breakdown point of an estimator is the lim-
iting proportion of atypical data that the estimator can handle—a robust estimator
has a non-null breakdown point. The influence function of an estimator measures the
relative effect of each observation towards the value of the estimate, and it can be
interpreted as a derivative of the estimator—a robust estimator has a bounded influ-
ence function (see, e.g., Hampel et al. 1986; Maronna et al. 2006). Thus, the classical
nonparametric estimator of the variogram behaves poorly if the model assumptions
are not valid. The WLS proposed by Cressie (1985) is also not robust.

The lack of robustness can have worse consequences in the estimation of the vari-
ogram than in other popular models because any single observation contributes to the
computation of many increments of the process. This fact implies that the existence
of just one contaminated observation might strongly affect the results. Therefore, the
use of a robust nonparametric estimator of the variogram is essential and it also deter-
mines the robustness properties of the final estimator. If the nonparametric estimates
are controlled in the first step of the estimation method, the second step can be per-
formed with a nonrobust estimator without loosing robustness.
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It is also possible to consider the use of robust procedures in both steps of the vari-
ogram estimation. However, when the degree of robustness is increased, generally the
efficiency gets lower under Gaussian processes. Hence, the use of robust estimators in
both steps of the variogram estimation is not recommended since the gain in robust-
ness is low when compared with the efficiency that is lost. So, for improving both
robustness and efficiency, we should maximize the robustness of the nonparamet-
ric estimator in the first step, and maximize the efficiency of the fitting estimator in
the second step. To maximize the robustness of the nonparametric estimator, Genton
(1998a) proposed a highly robust variogram estimator that will be denoted henceforth
by Qn. This Qn estimator achieves the maximum breakdown point without loosing
too much efficiency, and it seems to be the best robust choice for the first step of
the estimation procedure. To improve the use of the Qn estimator, we concentrated
our attention on the maximization of the efficiency of the method used in the sec-
ond step. The desirable procedure would be to use the GLS estimator for fitting the
variogram model to the nonparametric estimates. But the form of the Qn estimator
does not allow the explicit computation of its covariance structure, even in the in-
dependent scenery. Assuming independent observations, Genton (1998b) concluded
through a simulation study that the covariance structure of the Qn estimator could
be approached by the corresponding covariance structure of the Matheron estimator.
This made it possible to use the weights in Cressie (1985) and the WLS estimator
for fitting a valid variogram model in the second step. However, the WLS estimator
is not efficient and in geostatistical processes the data is hardly ever independent.
Therefore, the second step of Genton’s proposal can still be improved.

In the present paper, we propose a method that increases the global efficiency of
the robust variogram estimator by considering two additional steps. The new method
emphasizes robustness or efficiency, depending on the main criterion used in each
stage. The asymptotic efficiency of the estimator used in the second step can be in-
creased using a result of Lahiri et al. (2002) that compares the asymptotic efficiency
of different least squares estimators. Applying such a result, we recommend that only
a few nonparametric variogram estimates have to be computed, precisely as many
as the number of parameters of the variogram model. Afterwards, we fit the vari-
ogram model using ordinary least squares (OLS), knowing that the procedure has an
asymptotic efficiency that is equivalent to the asymptotic efficiency attained with the
GLS estimator. We repeat both stages several times with different nonparametric esti-
mates. The final variogram estimate is then selected among the curve estimates. The
four steps that constitute the new estimation method are summarized and discussed
in the following section. The global procedure will be called multiple variograms
(MultV) estimator, suggested by the third step of the method. The MultV estimator
revealed good properties. Besides robustness, we proved that the estimator is consis-
tent and asymptotically normally distributed. Furthermore, a simulation study showed
that the MultV estimator performs better than the estimators that are commonly used
by practitioners, either with clean or contaminated data.

The paper is organized as follows. In Sect. 2, we introduce some notation, we
define the MultV estimator and we discuss the motivation behind this proposal. In
Sect. 3, we prove the consistency and the asymptotic normality of the MultV estima-
tor. The simulation study is detailed in Sect. 4. Finally, we present some concluding
remarks.
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2 The Multiple Variograms Estimator

In this section, we introduce some definitions and notation that will be necessary
for presenting the MultV estimator. Consider a spatial stochastic process {Z(s) : s ∈
D}, where the domain D is a subset of R

d , d ≥ 1. Assume that Z(s) satisfies the
hypothesis of intrinsic stationarity, which ensures that

∀si , sj ∈ D, E
[
Z(si ) − Z(sj )

] = 0,

∀si , sj ∈ D, Var
[
Z(si ) − Z(sj )

] = 2γ (si − sj ).

The function 2γ is called the variogram, and it is defined as the variance of the incre-
ments Z(si )−Z(sj ). Let {Z(s1), . . . ,Z(sn)} be a sample of the spatial process Z(s).
The classical nonparametric estimator of the variogram was proposed by Matheron
(1962), and for a fixed h ∈ R

d , it is defined as

2γ̂M(h) = 1

#N(h)

∑

(si ,sj )∈N(h)

[
Z(si ) − Z(sj )

]2
,

where N(h) is the set defined by

N(h) = {
(si , sj ) : si − sj = h; i, j = 1, . . . , n

}
.

This estimator is obtained by the method of moments since it results from equating
the variance of the increments and their sample variance.

The Matheron estimator has good properties, such as unbiasedness and consis-
tency, but it is not robust. Genton (1998a) stresses that the Matheron estimator has a
null breakdown point and an unbounded influence function. The author proposed to
estimate the variance of the increments with a robust scale estimator. The estimator
of the standard deviation becomes

Q#N(h) = c × {∣∣(Z(si ) − Z(si + h)
) − (

Z(sj ) − Z(sj + h)
)∣∣ : i < j

}
(k)

,

where Z(si ) − Z(si + h) represents an increment of the process for a fixed vector h,
the index (k) stands for the kth order statistic with k = ([#N(h)/2]+1

2

)
, and c = 2.2191

is a factor to achieve consistency for the Gaussian distribution. Therefore, for a fixed
h, the variogram can be estimated by

2γ̂Q(h) = Q2
#N(h).

This expression defines the Qn estimator of the variogram. The estimator Qn was
adapted from Rousseeuw and Croux (1993) and possesses useful advantages. Ac-
cording to Genton (1998a), 2γ̂Q is consistent, it has a 50% breakdown point, it has a
bounded influence function with gross error sensitivity γ ∗ = 2.069 for the standard
Gaussian distribution, and it keeps a Gaussian asymptotic efficiency of 82%, which
is close to the 100% of the Matheron estimator that is not robust. These properties
show that the Qn estimator is the nonparametric estimator of the variogram that bet-
ter combines a high efficiency with the best robustness properties among the known
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alternatives. Hence, this seems to be the best option for the robust nonparametric es-
timator of the variogram. But the covariance matrix of the Qn estimator cannot be
computed explicitly and this is a great disadvantage because it is impossible to fit a
valid variogram model to the nonparametric estimates with the GLS estimator. The
solution found in Genton (1998b) is an approximation of the GLS estimator, which
induces a considerable loss of efficiency.

A remedy to the problem is the use of the MultV estimator that we describe.
The MultV estimator is supported by an important property that was demonstrated
in Lahiri et al. (2002). Adjusting the notation, write 2γ (h, θ) = 2γ (h) to denote a
valid variogram model with parameter θ = (θ1, . . . , θq) and assume that the model
will be fitted to the vector of estimates 2γ̂ = (2γ̂ (h1), . . . ,2γ̂ (hH )). In Lahiri et al.
(2002), the authors showed that if the dimension q of the parameter θ is equal to
the dimension H of the vector 2γ̂ , then the OLS, the WLS and the GLS are all as-
ymptotically efficient under the Gaussian model. Therefore, if we consider a number
of nonparametric estimates of the variogram equal to the dimension of θ , that is,
H = q, then we can use the OLS estimator for fitting the valid variogram model,
since the OLS estimator turns to be asymptotically efficient. Hence, in computing the
MultV estimator, we will always consider H = q.

For the most popular variogram models, the number of parameters is very small,
and therefore only a few nonparametric estimates will be used in the fitting procedure.
This fact requires special attention for the identifiability of the parameter. It is nec-
essary to assure that the lags where the nonparametric estimates are computed result
in identifiability conditions of θ and, therefore, in the existence of a unique solution
for the OLS estimator. To illustrate the issue, consider an isotropic variogram model
(which depends on h only through its norm, e.g., the spherical variogram model). One
needs to estimate the three traditional parameters (range, nugget effect, and sill) and
so we will use just three nonparametric estimates of the variogram to fit the spherical
model. It is possible to guarantee that the parameters are identifiable, taking estimates
such that two lags are smaller than the range and the other one is greater than or equal
to the range. If we consider fewer than two nonparametric estimates with lag smaller
than the range, then the parameters of the spherical model become non-identifiable
and the solution of the OLS estimator is non-unique. From now on, we will assume
that the parameter θ is identifiable.

Summarizing the main ideas of the procedure until this point, we conclude that the
first step of the new estimator is the estimation of the variogram in a number of lags
equal to the number of parameters of the valid variogram model that will be fitted.
Those lags are randomly selected according to the identifiability conditions stated
above. The nonparametric estimates are computed with the Qn estimator. Thus, they
are safe against outliers. Notice that this step is mainly concerned with the robustness
of the procedure. Next, we fit a valid variogram model using OLS.

The OLS estimator is very sensitive to each individual point that contributes to
the fit. When we fit the variogram model to the H = q nonparametric estimates by
OLS, the OLS estimate θ̂ becomes strongly dependent on the few vectors h1, . . . ,hH

where the estimates are computed. Therefore, the obtained curve estimate θ̂ gives a
poor picture of the variogram, while it should be precise. The question is particularly
important near the origin, where the dependence structure is stronger. Actually, the
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estimate of the nugget effect is crucial since it describes the regularity of the spatial
process; it also gives a measure of the microscale variation. To deal with this problem,
we propose constructing a set of OLS estimates {θ̂1, . . . , θ̂B} with the same sample.
This is motivated by the continuity of the spatial index of the geostatistical processes
and it allows repeating the fitting procedure, varying the lags where the nonparametric
estimates of the variogram are computed. To obtain different sets of lags, we repeat
the random selection of h1, . . . ,hH . It is not possible to assure that there exist ob-
served increments for each new selected hi . Therefore, we follow a procedure that is
similar to the one used by practitioners in the computation of the classical estimates.
The Qn estimates are then computed with the increments contained in a neighbor-
hood of each hi , for i = 1, . . . ,H. The constructed set of OLS estimates provides
a better picture of the underlying Z(s) dependence structure. Like the second step,
this stage also aims at increasing the efficiency of the procedure. Finally, the MultV
estimate is defined as a central estimate of the obtained set {θ̂1, . . . , θ̂B}. We suggest
the use of the median as a central measure since the efficiency of the method was
assured in the two previous steps. This set of estimates of the variogram parameters
define the final variogram estimate. In this stage, robustness is the main criterion.

To conclude the presentation of the MultV estimator, we summarize the procedure
in the following MultV estimator algorithm:

1. Compute H = q nonparametric estimates of the variogram with the Qn estima-
tor, obtaining 2γ̂ Q = (2γ̂Q(h1), . . . ,2γ̂Q(hH )). The vectors h1, . . . ,hH must be
randomly selected among those which assure that the parameters of the variogram
model are identifiable. All the increments contained in a neighborhood of hi con-
tribute to the computation of 2γ̂Q(hi ) in a similar way to the classical estimates.

2. Fit the variogram model 2γ (h, θ), with θ = (θ1, . . . , θq), by OLS, to the non-
parametric estimates of the variogram obtained in the step above, obtaining
θ̂b = (θ̂b,1, . . . , θ̂b,q).

3. Repeat the steps above B times, varying the lags h1, . . . ,hH where the nonpara-
metric estimates are computed, thus obtaining the set of estimates {θ̂1, . . . , θ̂B}
of the model parameters. B is the minimum integer such that the final variogram
estimate becomes unchanged.

4. The MultV estimate is defined by 2γ (h, θ̃B), where

θ̃B = (
Median{θ̂1,1, . . . , θ̂B,1}, . . . ,Median{θ̂1,q , . . . , θ̂B,q}).

Notice that the first and last steps aim at improving the robustness of the procedure.
On the other hand, Step 2 and Step 3 improve the efficiency of the global estimator.

3 Properties of the MultV Estimator

In this section, we will see that the MultV estimator is robust in the sense that it has
a bounded influence function and a positive breakdown point. Furthermore, we shall
demonstrate that under mild conditions, the MultV estimator is consistent and asymp-
totically normally distributed. Analyzing the robustness of the MultV estimator, we
can observe that if the nonparametric estimator of the variogram is not robust, then a
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single outlier in the data can destroy all the nonparametric estimates of the variogram.
Since a single outlier contaminates all nonparametric estimates of the variogram, the
contamination becomes so strong that it cannot be removed during the next steps of
the MultV estimator, even if we utilize highly robust estimators in those steps. Hence,
the global estimator becomes nonrobust. On the other hand, if the nonparametric es-
timator of the variogram is robust, then it will control the outliers that might exist
in the data. Therefore, the nonparametric estimates of the variogram will be clean
of outliers. In this way, the next step of the MultV estimator can be performed with
efficient estimators that are not necessarily robust, maintaining the robustness of the
global estimator. Thus, the robustness of the MultV estimator is determined by the
robustness of the nonparametric estimator of the variogram which is used in the first
step, that is, the robustness properties of the MultV estimator are determined by the
robustness properties of the Qn estimator.

Using results from Rousseeuw and Croux (1993), Genton (1998a) stated that the
Qn estimator of the variogram has a bounded influence function and a 50% break-
down point. However, these two results were stated for the process of increments of
Z(s), that is, {Z(s)−Z(s + h),h ∈ R

d, s ∈ D such that s + h ∈ D}, with a fixed vec-
tor h, on which the Qn estimator is applied. But in Geostatistics, we are much more
interested in the computation of the breakdown point that is associated with the ini-
tial spatial process Z(s), which is called the spatial breakdown point. Genton (1998c)
studied this problem. The author affirmed that the spatial breakdown point of the Qn

estimator cannot be computed exactly because it is a very difficult numerical problem.
However, he also concluded that the number of initial data from {Z(s1), . . . ,Z(sn)}
which can be perturbed without destroying the Qn estimates is roughly 30%. Gen-
ton (1998c) confirmed this result by simulations and theoretical results. Nevertheless,
the author advises that there exist particular configurations of perturbation, which he
called most unfavorable configurations, for which the maximal number of initial data
which can be perturbed is much lower than 30%. Since the breakdown point of the
MultV estimator coincides with the breakdown point of the Qn estimator, we can
conclude that the MultV estimator has a positive breakdown point, which is roughly
30%.

To establish the asymptotic properties of the MultV estimator, it is convenient to
analyze separately the four different steps of the method. In the first step, the nonpara-
metric estimates of the variogram are computed with the Qn estimator. Its properties
are already studied in Genton (1998a) under the same conditions considered herein,
thus we use them directly. In that paper, the author confirms that the Qn estimator is
consistent in a pointwise sense. That is, for any fixed vector h,

2γ̂Q(h)
P−→2γ0(h),

where P means convergence in probability and 2γ0(h) represents the true variogram
value at h. On the other hand, we know from Rousseeuw and Croux (1993) that the
Qn estimator is asymptotically normally distributed.

The properties of the method in the second step are a consequence of the results
stated in Lahiri et al. (2002). The authors showed that, under some regularity con-
ditions, the properties of the estimator used in the first step are reflected in the OLS
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estimator. Therefore, assuming that the Qn estimator is consistent and it has a normal
asymptotic distribution, the OLS estimator is also consistent and it has also a normal
asymptotic distribution. Using mathematical notation, one has

θ̂b
P−→ θ0,

where θ0 is the true parameter of the variogram, and

θ̂b
L−→Nq(θ0,�b),

where L represents convergence in law, Nq stands for the q-dimensional normal dis-
tribution, and the covariance matrix �b has a specific form that can be found in Lahiri
et al. (2002), which depends on the covariance matrix of the estimator used in the first
step.

In the third step, we obtain the set {θ̂1, . . . , θ̂B} of the parameter estimates. These
OLS estimates are obtained in an independent manner because the lags where the
nonparametric estimates of the variogram are computed are selected independently.
Finally, it is necessary to investigate the properties of the results obtained in the fourth
step. In this step, the median of the obtained OLS estimates is computed, that is, we
compute

θ̃B = (
Median{θ̂1,1, . . . , θ̂B,1}, . . . ,Median{θ̂1,q , . . . , θ̂B,q}).

The consistency and the asymptotic normal distribution of the median estimator is
well known when the variables are independent and identically distributed (i.i.d.).
However, that is not the case. Recall that for any i = 1, . . . , q, the random variables
θ̂1,i , . . . , θ̂B,i are independent, and that when n is sufficiently large, they converge to
the normal distribution. Nevertheless, they are not identically distributed since they
have different variances. Notice that in every loop of the procedure, the lags of the
nonparametric estimates are different, thus implying that the variance of the succes-
sive OLS estimators varies.

The following results are convenient generalizations of the i.i.d. scenery. We as-
sume that the sample size n is sufficiently large for applying the convergence in law
cited above.

Theorem 1 Assume that θ̂b = (θ̂b,1, . . . , θ̂b,q), b = 1, . . . ,B are independent random
vectors and let θ̃B = (Median{θ̂1,1, . . . , θ̂B,1}, . . . ,Median{θ̂1,q , . . . , θ̂B,q}). If for all
b = 1, . . . ,B, θ̂b ∼ Nq(θ0,�b), then

θ̃B
P−→

B→∞ θ0.

Proof For each fixed i = 1, . . . , q, let

F̄B,i = 1

B

B∑

b=1

Fb,i ,
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where Fb,i is the probability distribution function of the random variable θ̂b,i . Since
θ̂b ∼ Nq(θ0,�b), then θ̂b,i ∼ N(θ0,i , σ

2
b,i) and the symmetry of the distribution as-

sures that

F̄B,i(θ0,i ) = 1

B

B∑

b=1

Fb,i(θ0,i ) = 1

2
.

On the other hand, as Fb,i , b = 1, . . . ,B , are all strictly increasing functions for fixed
b, then F̄B,i is also a strictly increasing function. Therefore, for all ε > 0, we have
1/2 < F̄B,i(θ0,i + ε) < 1 and 0 < F̄B,i(θ0,i − ε) < 1/2. As a consequence,

√
B

(
F̄B,i(θ0,i + ε) − 1

2

)
−→

B
∞

and
√

B

(
1

2
− F̄B,i(θ0,i − ε)

)
−→

B
∞.

The two above conditions, in addition to the independence of the θ̂b, for b =
1, . . . ,B, assure the necessary conditions for applying the result of Theorem 1 in
Mizera and Wellner (1998) and conclude that

Median{θ̂1,i , . . . , θ̂B,i} P−→
B

θ0,i .

The consistency of the sample median was verified for all i = 1, . . . , q. Thus, we can
conclude that θ̃B converges in probability to θ0 as B → ∞. The result presented in
Theorem 1 confirms that the MultV estimator is consistent under general regularity
conditions. Now we state the asymptotic distribution of the MultV estimator.

Theorem 2 Assume that the conditions of Theorem 1 hold and suppose that
limB→∞ 1

B

∑B
b=1 fb,i(θ0,i ) is a positive number, where fb,i is the normal probability

density function of θ̂b,i , for all i = 1, . . . , q. Then,

√
B

(
Median{θ̂1,i , . . . , θ̂B,i} − θ0,i

) L−→
B

N

(

0,

(

2 lim
B→∞

1

B

B∑

b=1

fb,i(θ0,i )

)−2)

.

Proof According to the assumptions of the theorem, for a fixed index i = 1, . . . , q,

the random variables θ̂1,i , . . . , θ̂B,i are independent and follow a normal distribution,
with mean θ0,i and variance σ 2

b,i . The proof will be complete taking into account a re-
sult in Koenker (2005), namely, Theorem 4.1 of that book. This theorem assures that
for any quantile τ (0 < τ < 1), the quantile regression estimator follows an asymp-
totic normal distribution, even when the errors of the quantile regression model are
heteroscedastic. In the present proof, we make use of Koenker’s result with τ = 0.5,

letting xb,i = 1 for all b = 1, . . . ,B. Proceeding in this way, for each fixed component
i of the parameter θ , we obtain the model

θ̂b,i = θ0,i + εb,i ,
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where εb,i are the model errors and Q0.5(θ̂b,i |xb,i) = θ0,i , for all b = 1, . . . ,B. If the
above model satisfies the conditions of Koenker’s Theorem 4.1, then the mentioned
result concludes the present proof. Therefore, the present proof consist of showing
that the conditions of Koenker’s Theorem 4.1 hold. Condition A1 holds since the
random variables θ̂b,i follow a normal distribution that is absolutely continuous and
verifies 0 < fb,i(θ0,i ) < ∞. Conditions A2 also hold because their original matrix
form becomes a positive number. Thus,

1. lim
B→∞

1

B

B∑

b=1

xb,ix
T
b,i = 1 > 0 (T stands for the transpose matrix);

2. lim
B→∞

1

B

B∑

b=1

fb,i(θ0,i )xb,ix
T
b,i = lim

B→∞
1

B

B∑

b=1

fb,i(θ0,i ) > 0; and

3. max
b=1,...,B

‖xb,i‖√
B

= 1√
B

−→
B→∞ 0.

Since all the conditions of Koenker’s theorem hold, the proof is complete. This result
confirms the asymptotic normal distribution of the MultV estimator.

4 Simulation Study

To investigate the performance of the MultV estimator, we carried out a simulation
study. We compared the MultV estimator with the traditional estimator and with a ro-
bust alternative. More precisely, we compared the MultV estimator with the following
alternatives: first, the classical estimator uses the Matheron estimator to obtain the
nonparametric estimates of the variogram and the WLS estimator with the weights in
Cressie (1985) for fitting the valid variogram model. Second, Qn with WLS uses the
Qn estimator to compute the nonparametric estimates of the variogram and the WLS
estimator with the weights in Cressie (1985) for fitting the valid variogram model.

We simulated samples from Gaussian geostatistical processes. Following the work
of Genton (1998a), the Gaussian samples were simulated from a process with an
isotropic spherical variogram, given by

γ
(‖h‖; θ) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0, if ‖h‖ = 0,

τ 2 + σ 2[ 3‖h‖
2φ

− ‖h‖3

2φ3 ], if 0 < ‖h‖ ≤ φ,

τ 2 + σ 2, if ‖h‖ > φ,

where θ = (τ 2, σ 2, φ) and φ > 0. All the processes were generated with the following
parameters: φ = 15 (range); τ 2 = 1 (nugget effect); and τ 2 + σ 2 = 3 (sill). Since the
chosen variogram model is isotropic, the samples were generated in R

1, as in Genton
(1998a). The sample locations were randomly selected in a line segment with 200
units length. We considered two different sample sizes in order to investigate the
performance of the estimators as the sample size increases. We simulated samples
with 50 observations and with 200 observations.
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To study how the different estimators behave in the presence of contamination, we
considered several cases. In each case, we randomly replaced ε% of the data by new
values. These values were generated as a random sample from a Gaussian distribution
N(0, σ 2). The following situations were considered:

A.1 Sample without contamination;
A.2 Sample 10% contaminated with σ = 5;
A.3 Sample 20% contaminated with σ = 5;
A.4 Sample 30% contaminated with σ = 5;
A.5 Sample 10% contaminated with σ = 10; and
A.6 Sample 10% contaminated with σ = 20.

For each of the six situations, we simulated 1000 samples. Notice that situations A.2,
A.3, and A.4 are useful for investigating the performance of the variogram estimators
as the degree of contamination increases. In those situations, the contaminated ob-
servations were generated from the same distribution. On the other hand, situations
A.2, A.5, and A.6 are useful for investigating the behavior of the variogram estima-
tors as we increase the variance of the distribution that generates the contamination.
In those situations, the number of contaminated observations remains the same. The
three variogram estimators were computed taking into account the practical rules rec-
ommended by Journel and Huijbregts (1978). Therefore, the nonparametric estimates
were only computed at lags smaller than a half of the maximum distance between the
sample locations; the nonparametric variogram estimates were computed only for the
cases with at least 30 increments. The MultV estimator was calculated using B = 250
multiple variogram estimates, that is, the loop that iterates the first two steps was
repeated 250 times.

To evaluate the performance of the estimators, we used the mean square error.
Hence, for every situation under study, we computed the empirical mean square error

EMSE(θ̄∗
i ) = 1

1000

1000∑

j=1

(
θ̄

∗(j)
i − θi

)2
, i = 1,2,3,

where θ̄
∗(j)
i is the ith estimate of the variogram parameter that was obtained in the

j th sample, and θi is the true value of the ith variogram parameter, which was used
in the simulation of the processes. Every computation was performed using the R
software (R Development Core Team 2008). We also used some additional R pack-
ages, namely, geoR and robustbase. The geoR package was constructed by Ribeiro
and Diggle (2001). Along with this work, the geoR was helpful in the simulation of
the Gaussian samples and for the computation of the classical variogram estimates.
The package robustbase is devoted to robust methods, and it includes a function that
was used for computing the Qn estimates. We will provide the R macros to anyone
who might be interested. The results that were obtained are shown in Table 1 (n = 50)
and in Table 2 (n = 200).

From both tables, one can see that the MultV estimator performs better than the
other two variogram estimators in almost every situation. Notice that the MultV es-
timator gives better results than the classical estimator, even when the sample is not
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Table 1 Empirical mean square errors of the variogram estimators for samples with 50 observations

Spherical model with φ = 15, τ2 = 1 and σ 2 = 2 (n = 50)

Contamination Variogram estimator EMSE(φ̂) EMSE(τ̂2) EMSE(τ̂2 + σ̂ 2)

A.1 Math. WLS 402.615 0.318 1.375

Qn WLS 376.581 0.380 1.717

Mult. variog. 141.389 0.253 1.113

A.2 Math. WLS 476.080 7.590 12.667

Qn WLS 415.593 1.732 6.355

Mult. variog. 166.621 1.489 5.549

A.3 Math. WLS 428.559 24.019 31.948

Qn WLS 387.574 6.060 16.966

Mult. variog. 214.242 6.124 17.098

A.4 Math. WLS 352.776 52.121 66.025

Qn WLS 413.158 19.210 40.767

Mult. variog. 231.812 19.287 41.931

A.5 Math. WLS 467.990 98.230 216.365

Qn WLS 478.496 2.885 19.395

Mult. variog. 222.453 2.527 14.027

A.6 Math. WLS 407.576 1522.922 3773.975

Qn WLS 526.673 3.956 35.813

Mult. variog. 238.036 3.721 24.565

contaminated. This is surprisingly good because the classical estimator should per-
form better in the non-contaminated samples. However, the use of the WLS to approx-
imate the GLS makes the classical estimator to lose much efficiency. That is probably
one of the main reasons which justify the fact that the MultV estimator performs bet-
ter than the classical estimator under non-contaminated samples. Besides, the MultV
estimator also performs better than the Qn estimator with WLS, especially in the esti-
mation of the range of the variogram model. According to Genton (1998b), the range
is the most important parameter of the spherical model since it is the only parameter
that influences the kriging weights. Thus, the results show that the MultV estimator
is better than the Qn estimator with the WLS. The same comments are valid for both
sample sizes and for different degrees of contamination. Other studies with spatial
samples of isotropic models simulated in the plane (not considered in the present pa-
per) led to identical conclusions. In conclusion, the MultV estimator performed better
than the alternatives considered here, either with contaminated samples or even with-
out contamination. Notice that we just dealt with simple models of the variogram
which are isotropic, but these models are used most of the time. Therefore, the sim-
ulation study confirmed that the MultV estimator is an interesting solution for the
robust estimation of the variogram.
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Table 2 Empirical mean square errors of the variogram estimators for samples with 200 observations

Spherical model with φ = 15, τ2 = 1 and σ 2 = 2 (n = 200)

Contamination Variogram estimator EMSE(φ̂) EMSE(τ̂2) EMSE(τ̂2 + σ̂ 2)

A.1 Math. WLS 289.850 0.103 0.539

Qn WLS 369.682 0.117 0.663

Mult. variog. 40.021 0.043 0.462

A.2 Math. WLS 395.172 7.104 6.506

Qn WLS 284.331 0.714 2.619

Mult. variog. 34.998 0.574 2.206

A.3 Math. WLS 459.959 26.146 22.218

Qn WLS 207.917 4.168 9.085

Mult. variog. 56.484 3.903 8.844

A.4 Math. WLS 457.074 56.074 47.923

Qn WLS 264.367 14.796 23.327

Mult. variog. 95.673 14.560 24.859

A.5 Math. WLS 529.829 98.081 109.556

Qn WLS 238.009 1.421 7.410

Mult. variog. 43.019 1.150 6.411

A.6 Math. WLS 266.372 783.580 1883.447

Qn WLS 312.207 2.069 15.237

Mult. variog. 68.785 1.694 13.087

The evaluation of time efficiency of the MultV estimator must take into account
that the algorithm is a compound method, which uses the Qn estimator in each it-
eration. The total computation time depends on the number of iterations used. Thus,
clearly the MultV estimator consumes much more time than its alternatives, but the
tradeoff between time consumption and accuracy of the robust estimates is valuable.
Moreover, the MultV estimates are easily computed in most personal computers. For
illustration purposes, we present the times that were needed to compute the estimates
of the variogram in a real data set. We considered the soil250 data set that can be
found in the geoR package. The data set contains 250 observations of several chem-
ical soil properties measured on a 10 times 25 regular grid with squares whose sides
measure 5 meters (for more information on the soil250 data set, see Bassoi 1994). We
estimated the variogram for the potassium content using the three estimators studied
above. On an Intel(R) Core(TM)2 Duo CPU with 2.66 GHz and 4.00 GB of RAM
memory, the classical estimator consumed 0.30 seconds, the Qn estimator with WLS
consumed 2.76 seconds, and the MultV estimator with B = 250 repetitions of the
algorithm consumed 17.86 seconds. However, we must advocate that the obtained
times for the Qn estimator with WLS and for the MultV estimator can still be im-
proved with the development of a more efficient function for each estimator.
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5 Conclusions

In this paper, we presented a new method for the estimation of the variogram function,
called the multiple variograms (MultV) estimator. The estimator is constructed along
four steps, combining priority criteria of robustness with efficiency. The method has
several advantages in each of its stages. In the first place, it uses a robust procedure
for computing discrete estimates of the variogram. This prevents against the action
of atypical observations whose influence would be magnified by their contribution to
different increments of the process. Besides, computational costs are less when robust
techniques are used in an initial step. The procedure gains efficiency when compared
with other robust procedures, and it is very simple for interpretation and computation.
The reduced number of points used in the second step of the method is compensated
by the computation of multiple variogram estimates, obtained independently with the
same procedures. This step was inspired by the continuity of the variogram function
and contributes to the reduction of the variance of the estimators of the parameters
of the model. The last step just selects the central tendency of the variogram function
estimates already obtained with great efficiency. The use of the median in this stage
is consistent with robust and resistant concerns.

Statistical properties of the MultV estimator were proven taking into account its
several stages. In spite of the dependence structure, we established that under mild
conditions the MultV estimator is robust in the sense that it has a bounded influence
function and a positive breakdown point. The MultV estimator is also consistent for
estimating the true variogram function and it converges in law to the normal distrib-
ution.

From a computational evaluation, it should be noted that the estimates were ob-
tained with free software, particularly using the programme R and several specific
packages which are quite tested over the world. A simulation study confirmed that the
results were very satisfactory when the process is Gaussian and also in the presence
of contamination. The study was conducted considering five scenarios of contami-
nation and different sample sizes. In every situation, the performance of the MultV
estimator was superior when compared with the alternatives. In fact, the proposed
method revealed significant advantages in the estimation of the range and nugget ef-
fect. The quality of these estimates is essential since they strongly influence the shape
of the variogram near the origin. Finally, we conclude that the MultV estimator is a
promising method for combing robustness with efficiency in the estimation of the
variogram.
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